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Abstract: Semi-arid tree covers, in both high and coppice growth forms, play an essential role in 
protecting water and soil resources and provides multiple ecosystem services across fragile ecosys-
tems. Thus, they require continuous inventories. Quantification of forest structure in these tree co-
vers provides important measures for their management and biodiversity conservation. We present 
a framework, based on consumer-grade UAV photogrammetry, to separately estimate primary var-
iables of tree height (H) and crown area (A) across diverse coppice and high stands dominated by 
Quercus brantii Lindl. along the latitudinal gradient of Zagros mountains of western Iran. Then, mul-
tivariate linear regressions were parametrized with H and A to estimate the diameter at breast 
height (DBH) of high trees because of its importance to accelerate the existing practical DBH inven-
tories across Zagros Forests. The estimated variables were finally applied to a model tree above-
ground biomass (AGB) for both vegetative growth forms by local allometric equations and Random 
Forest models. In each step, the estimated variables were evaluated against the field reference val-
ues, indicating practically high accuracies reaching root mean square error (RMSE) of 0.68 m and 
4.74 cm for H and DBH, as well as relative RMSE < 10% for AGB estimates. The results generally 
suggest an effective framework for single tree-based attribute estimation over mountainous, semi-
arid coppice, and high stands. 
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1. Introduction 
Forests significantly contribute to the global carbon cycle by providing the largest 

reserves of terrestrial carbon [1]. Therefore, quantifying forest structure, particularly 
across fragile and erosion-prone forest sites, is of major importance for their conservation 
and management [2,3]. The structural analysis of such vegetation is also a prerequisite to 
assess their current condition and evaluate their ecosystem services such as carbon stocks, 
CO2 uptake [4,5], and aboveground biomass (AGB) [6] as affected by disturbances and 
land use changes. The primary structural attributes that are common among forest eco-
systems include the number of trees, species composition, tree size, and the AGB [7], 
which are considered inputs to derive secondary attributes such as total leaf area, tree and 
leaf biomasses, and multiple other ecosystem services  [3].  Tree height and diameter at 
breast height (DBH) are among the basic forest inventory attributes [8,9], which are inte-
grated by many allometric equations for estimating the AGB [10,11] and are therefore es-
sential information for quantifying forest carbon cycle [12], carbon stock [13], and global 
climate change [14]. Traditional methods of measuring tree height are costly and time-
consuming, and they are particularly infeasible for spatial upscaling to larger domains 
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[15]. In addition, one of the main obstacles of these measurements is the lack of sufficient 
visibility to the tree top, particularly for broadleaves with circular crowns. One way to 
bypass this is via the possibility of using high-resolution nadir view to enable two- and 
three-dimensional measurements by fully observing the surface of the tree canopy, which 
is commonly enabled by remote sensing data and methods [16–18]. In addition to height 
estimation, they can be rather intuitively applied to estimate a range of other tree canopy 
variables, including the crown area [19] and its diameter [20]. The list of studies on tree 
height estimations, by 3D remote sensing methods, is enormous [21], which includes stud-
ies that applied data from both active and passive sensors. LiDAR [13,22,23] and RADAR 
[24,25] data have been extensively studied, which are yet financially prohibitive despite 
their generally high estimation accuracies [26]. On the other hand, passive high-resolution 
sensors, such as photogrammetric Unmanned Aerial Vehicles (UAVs), offer possibilities 
to derive three-dimensional models at, comparatively, much lower costs [27] that allow 
for capturing the forest canopy surface via image matching and the subsequent post-pro-
cessing techniques [28]. On the one hand, multi-rotor drones are easier to take off and 
land, so they are therefore preferred by researchers because they are usually cheaper and 
more flexible for scientific purposes [29]. On the other hand, larger-scale studies have been 
carried out with the help of fixed-wing drones equipped with optical cameras [30]. A 
number of studies have been performed on fixed-wing drones in measuring the vertical 
structural attributes of forests for large-scale areas [31–33]. Although passive sensors do 
not penetrate the crown layer and thus cannot provide information from understories, 
they are beneficial in measuring the horizontal and vertical structural attributes for single-
story forest stands.  

Furthermore, DBH is another essential forest structural variable [34,35] that is ob-
tained by measuring the diameter of the trunk at a height of 1.3 m [36]. Although DBH 
can be conveniently measured with traditional methods such as caliper [35], problems are 
faced towards its spatial upscaling, particularly across remote and difficult-to-access areas 
with variations in tree growth forms [37]. In such cases, the use of remote sensing methods 
is considered as a reliable alternative [38–40]. In general, studies on direct estimation of 
DBH by remote sensing have mainly focused on using LIDAR data [41,42], while passive 
optical data fail to deliver sub-canopy observations due to tree foliage cover [37,43]. This 
entails an indirect estimation of the DBH, using 3D photogrammetric data, for example, 
by relating DBH and tree height [44]  or DBH and canopy area [45]. Additionally, Benjamin 
and Russell, 2021 [46] estimated DBH using complementary measurements on UAV-de-
rived models. Therefore, they first created a regression model using the area of tree cano-
pies, calculated the canopy diameter by fitting a circle to the canopy of each tree, followed 
by fitting against the ground reference data. This yielded relative errors ranging between 
19.7% and 33.7%. Whereas methods based on under-canopy UAV flights have returned 
promising results for estimating single tree DBH [47], they commonly entail an additional 
LiDAR payload that is prohibitive for budget applications designed and applied by most 
forest administrations. Moreover, AGB reserves are mainly related to forest structure and 
species composition [48,49]. The AGB is thus an important indicator for measuring the 
carbon sequestration capacity [50]. Direct methods to estimate AGB include destructive 
methods [51], while allometric equations are generally used as alternative indirect meth-
ods [52]. 

The UAV technology has enabled producing accurate small-scale estimates based on 
derivations such as digital surface models (DSMs), which can be further applied to derive 
side-products such as DTMs, and calibrate spatial models of forest structural attributes. 
The process of producing DTM in forested areas commonly involves interpolations [53–
56] with the main problem being the lack of empty areas, i.e., areas without trees, in dense 
stands [57]. On the contrary, sparse tree covers enable photogrammetric models that lead 
to the high accuracy of canopy height models (CHM = DSM-DTM), which are crucial to 
estimating tree structural variables. For example, Vahid et al. (2021) [58] estimated tree 
height from CHM using high-pass and local maximum filters across a test site, located 
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within the Hyrcanian mixed forests of northern Iran, followed by estimation of the tree 
canopy area using the Invert Watershed Segmentation (IWS) algorithm. This conse-
quently led to calculating crown diameter with a relative RMSE of 10.1% and 7.02% for 
estimating the height and crown diameter, respectively. 

The Middle East and West Asia are currently facing one of the worldwide harshest 
heatwaves, also termed as a heat dome (see https://earthobservatory.nasa.gov/im-
ages/148430/heatwave-scorches-the-middle-east access on 15 September 2021). They are 
considered obvious signs of climate change that have largely affected fauna, flora, and 
human communities. The Zagros Forests located in western Iran (with marginal expan-
sion into southeastern Turkey and northern Iraq) are among the most fragile ecosystems 
in west Asia. In Iran, they cover ca. 20% of the total countrywide vegetated area. These 
forests play a key role in maintaining the harsh climate, supplying water, and economic 
and social balance of Iran and the region [59]. These forests are dominated by three oak 
species Q. infectoria Olivier, Q. libani Olivier, and Q. brantii Lindl., with the relative domi-
nance of the latter species increasing along the latitudinal gradient [59–61]. The vertical 
structures of these species occur in both high and coppice forms, where coppice stands 
generally have a vertical one-story structure. The tremendous power of sprouting and 
asexual regeneration of Q. brantii, and the incompetence of other species for the establish-
ment, has led to almost pure dominance of Q. brantii in central and south Zagros zones, 
yet with different proportions of high and coppice stands affected by both the climate and 
lifestyles of local populations (nomadic or sedentary). Due to their unique historical de-
velopment and multiple anthropogenic influential phenomena, their crucial structural 
characteristics include species, the origin of trees (high or coppice), number of sprouts per 
sprout-clumps for coppices, sprout diameter and tree canopy diameters, DBH for high 
trees, as well as tree height and AGB for trees in both vegetative forms. Despite all associ-
ated challenges, continuous monitoring of Zagros Forests is largely constrained by acces-
sibility, lack of logistics, and financial capabilities, leading to hitherto available sporadic 
and insufficient quantitative structural information, even on small-scale spatial domains.  

In this study, we suggest a consumer grade UAV-based framework to retrieve a num-
ber of the most important primary and secondary structural attributes of Q. brantii–dom-
inated stands in both high and coppice forms along the north-south gradient of Zagros 
Mountains. We focused on the height and area of tree canopies as directly estimable at-
tributes, whereas the DBH of high trees and AGB were indirectly estimated. We estimated 
DBH via its relationship with crown area and height. Finally, we estimated the AGB by 
both allometric models with tree height and DBH as independent variables, as well as 
nonlinear regression models (random forest regression, RFR) with crown surface area and 
height as predictors. The aim was to provide both science and practice with objective com-
parative estimates of single tree-based Q. brantii AGB across these extremely fragile eco-
systems that have been continuously under climatic and anthropogenic pressures. 

The commonly-applied field methods of measuring the structural attributes of Zag-
ros Forests are costly and time consuming due to their mountainous topography and lim-
ited accessibility. Therefore, there is an interest in facilitating rapid field measurements of 
the structural attributes, particularly by means of 3D remote sensing methods. To the best 
of our knowledge, no international study has been published, so far, on the use of remote 
sensing in measuring the structural attributes of trees in the Zagros region. Therefore, 
here, we addressed the basic research question of whether UAV photogrammetric meth-
ods can serve as a complementary method in ground measurements of Zagros Forests. In 
particular, the innovative aspects of this study are that (1) it focuses on a rich dataset of 
plot measurements that are distributed across the latitudinal gradient of Zagros Forests, 
(2) it differentiates high and coppice growth forms for all analyses, (3) it compares AGB 
estimations from machine learning and allometric methods to serve both science and prac-
tice. This includes surveys to answer the following questions:  
- Are 3D photogrammetric models accurate enough to estimate the height of single 

trees in Zagros? 
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- Can DBH (as an essential variable that is unable to be directly derived from photo-
grammetric models) be estimated using other UAV-measured primary attributes? 

- How do the available single-attribute allometric equations for Q. brantii in Zagros 
Forests perform compared to commonly-applied nonlinear models (RFR) on UAV-
extracted variables to predict AGB? 

2. Materials and Methods 
2.1. Study Area 

Zagros Forests consist of ca. 1300 and ca. 200 km extensions along the latitudinal and 
longitudinal gradients, respectively. These semi-arid ecosystems comprise an area of ca. 
6 million ha and cover about 44% of Iran’s total area of forests [59,62]. The average annual 
temperature ranges between 9 and 25 degrees Celsius, with the maximum 74 degree dif-
ference between the coldest and warmest temperatures, which indicates a continental cli-
mate [62]. In general, the northern zone of Zagros is associated with comparatively wetter 
and cooler climate compared with the central and southern zones [59]. 

We divided Zagros Forests into three regions, based on both general climatic condi-
tions and administrative division, in which we established our sampling locations: north-
ern zone (zone 1), middle zone (zone 2), and southern zone (zone 3). Then, 11 study sites 
across all three regions with dominance of Q. brantii were selected with the aim of deriving 
their structural attributes in both high and coppice forms by covering a representative 
latitudinal gradient (Figure 1). 

 
Figure 1. The study area includes 11 sites from the three northern (Zone 1), middle (Zone 2), and southern (Zone 3) regions 
of the Zagros Forests. Each site is represented by UAV orthophotos. The locations are in the UTM zone 38N coordinate 
system. According to the pie-chart, all sites comprise both high and coppice trees, while in Zone 1, the predominant form 
is coppice. 

2.2. Field Measurements 
The reference data on a set of tree structural features, including height (H), canopy 

area (A), diameter at breast height (DBH), and the AGB were either field-sampled or 
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estimated as described below [63]. The inventories were conducted within the 11 study 
sites established along the latitudinal gradient of Zagros mountains during 4 months in 
2019, i.e., close to UAV imaging dates (Section 2.3) within the framework of provincial 
sub-projects of “the National Zagros Forest Monitoring Plan” coordinated by the Research 
Institute of Forests and Rangelands (RIFR) of Iran (Figure 1). The reference AGB was in-
directly calculated using the allometric equations (Table 1) [64,65] with the independent 
variables of H, DBH, and average diameter of the canopy (D) for each of the high and 
coppice forms separately (Table 2). We relied on the available field records when assign-
ing the stands to each of coppice or high vegetative forms, since single trees in all sites, 
except those in Zone 1, were tagged with either coppice or high origin, which we further 
adopted in our analysis. Due to the absence of this designation in all three sites in Zone 1, 
we took all trees with a single sprout as high trees and those with the number of sprouts 
> 1 as coppice trees. Thus, we partly deviated from the pure ecological principle in defin-
ing the vegetative form, which is primarily based on sexual or asexual growth origin. 

Table 1. Allometric equations for estimating biomass in Persian oak species. 

Stand Independent Variable Equation 

High 
Average tree crown diameter (m) Y = 0.881x3.228 

DBH (cm) Y = 0.615x1.865 
Tree height (m) Y = 0.067x3.921 

Coppice 
Average tree crown diameter (m) Y = 2.534x2.383 

Tree height (m) Y = 1.868x2.487 

Table 2. Summary of ground measured values. 

Zone Site Stand Number of Trees Symbol  Minimum Maximum  Mean STD 

1 

1 

Coppice 295 
H (m) 1.55 4.6 2.828 0.58 
D (m) 1.1 9.55 3.9 1.43 

High 54 
H (m) 1.4 4.1 2.843 0.64 
D (m) 0.85 6.75 3.549 1.67 

DBH (cm) 3 24 11.02 4.68 

2 

Coppice 200 
H (m) 1.8 6 3.775 0.85 
D (m) 1.15 6.65 3.787 1.05 

High 50 
H (m) 1.4 6 3.378 0.94 
D (m) 0.85 5.55 2.902 1.2 

DBH (cm) 6 31 12.14 5.05 

3 

Coppice 252 
H (m) 2.1 6.2 3.896 0.86 
D (m) 1.1 7.4 3.7 1.19 

High 40 
H (m) 2 5.2 3.538 0.85 
D (m) 0.6 3.75 2.036 0.71 

DBH (cm) 4 15 8.925 2.97 

2 

1 

Coppice 59 
H (m) 3.2 11.1 7.436 1.78 
D (m) 2.8 13.3 6.933 1.92 

High 10 
H (m) 3.2 9.6 7.08 1.96 
D (m) 3.95 10.3 6.84 1.94 

DBH (cm) 13 98 44.3 22.4 

2 

Coppice 12 
H (m) 2.1 14.8 10.44 3.25 
D (m) 1.9 16.6 9.504 3.37 

High 19 
H (m) 3.2 15 10.27 2.46 
D (m) 2.25 16.6 9.629 3.45 

DBH (cm) 12 98 36.79 21.8 

3 
Coppice 49 

H (m) 3.2 12 7.388 2.23 
D (m) 2.4 9.6 6.349 1.95 

High 62 
H (m) 2.5 13.4 7.195 2.12 
D (m) 2 11.8 5.406 1.8 
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DBH (cm) 2 59 20.27 9.41 

4 

Coppice 26 
H (m) 4.5 11.9 7.65 1.74 
D (m) 3.5 12.9 8.21 2.37 

High 39 
H (m) 4.5 13.4 7.697 2.01 
D (m) 3.7 12.95 7.624 2.19 

DBH (cm) 2 59 21.49 10.9 

3 

1 

Coppice 44 
H (m) 3 13 7.766 2.14 
D (m) 1.6 14.5 6.378 2.62 

High 23 
H (m) 2.1 12.5 7.835 2.86 
D (m) 0.75 12 6.024 3.18 

DBH (cm) 3 57 32.65 13.9 

2 

Coppice 75 
H (m) 4.3 8.3 6.1 0.94 
D (m) 1.65 10.75 4.764 1.91 

High 36 
H (m) 3.8 8.5 6.05 1.3 
D (m) 1.25 9 4.265 1.9 

DBH (cm) 9 42 23.17 7.56 

3 

Coppice 63 
H (m) 3.9 8.5 6.322 1.04 
D (m) 1.5 12 5.657 2.02 

High 29 
H (m) 3 8.2 6.183 1.12 
D (m) 1 11 5.545 2.08 

DBH (cm) 10 42 22.34 7.6 

4 

Coppice 107 
H (m) 2.8 12 7.686 2.03 
D (m) 2.75 14 5.932 2.28 

High 48 
H (m) 3 10 6.958 1.53 
D (m) 1.75 9 3.738 1.57 

DBH (cm) 4 58 19.31 8.63 

2.3. UAV Imaging 
We applied a consumer-grade DJI Phantom 4 pro multi-rotor UAV (DJI, 2016) for 

aerial imaging. The device included a 3-axis stabilization gimbal, 1’’ CMOS sensor camera 
and FOV 84° 8.8 mm/24 mm lens. The full list of technical specifications can be found at 
https://www.dji.com/phantom-4-pro/info (access on 15 September 2021). The flights for 
different sites were designed according to the site-specific topographic conditions and tree 
cover but generally as double-grid networks with 80% horizontal/vertical overlaps con-
ducted with an iOS version of Pix4DCapture (https://support.pix4d.com/hc/en-us/arti-
cles/204010419-iOS-Pix4Dcapture-Manual-and-Settings access on 15 September 2021) in-
stalled on an iPad 2018 tablet. The flights were carried out during 2nd–5th of September 
2019 for northern and central zones and 6th–7th of November 2019 for southern zone with 
a resolution of 5472 × 3648 pixels at 70 m flight altitude. In general, images were taken 
with a resolution of 5 cm, although there were slight differences in image resolution at 
various sites. This resulted in ca. 125 image tiles per forest site. 

Five control points that were recorded per site (four corners and a centroid) that in-
cluded GPS-measured latitudes, longitudes, and altitudes. The coordinates were meas-
ured using the real-time kinematic (RTK) method  for northern and central plots and the 
post-processing kinematic (PPK) method for southern plots by applying two GPS receiv-
ers of Trimble 5700 and 5800 and a Zephyr Geodetic antenna. For the PPK method, the 
recorded points were post-processed using geodetic fixed reference points within Shamim 
National Geodetic Platform (https://shamim.ssaa.ir/sbc access on 15 September 2021).  

2.4. Methodology 
Figure 2 shows the general flowchart of this research. Based on the field-measured 

variables of tree height, DBH, the first diameter, and the second diameter of the tree 
crown, allometric equations (Table 1) were parametrized to estimate the AGB values (see 
the left side of Figure 2). Furthermore, UAV-derived CHMs and orthophotos were applied 
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to extract the height and crown surface as primary variables, using which multivariate 
linear regressions were developed to estimate the DBH with H and A as independent 
variables. Consequently, the AGB values were predicted by (1) allometric equations as a 
function of H, DBH, and D (Table 1) and (2) nonlinear regressions with H and A as inde-
pendent variables (see Figure 2 right wing). We divided the entire reference data into sep-
arate training and test datasets for all three stages for which estimations were carried out. 
These three stages included (1) derivation of UAV-based models, (2) segmentation of in-
dividual tree crowns, and (3) derivation of single tree structural variables. 

 
Figure 2. General workflow of the study. 

2.4.1. UAV-Derived Terrain and Surface Models 
The raw UAV images were processed in Agisoft Metashape 1.7 

(https://www.agisoft.com access on 15 September 2021). The products from UAV data 
comprised DTM, DSM, and orthophoto for each site. Then, we derived the CHM using 
CHM = DSM-DTM. 

2.4.2. Individual Tree Crown Segmentation 
Individual trees were segmented in order to extract the height and crown area of 

individual trees. Despite the high dominance of Q. brantii within all sites, the individual 
trees were highly diverse in terms of their height and crown shape, resulting in the use of 
CHM for tree segmentation [19,66]. We applied the Marker-Controlled Watershed Seg-
mentation (MCWS,)  as a previously-tested and efficient method, across sparse tree stands 
[67,68]. We abstained from using the classical watershed as an unsupervised classification 
method due to the over-estimations raised by the presence of noise in images [69], which 
necessitates variable levels of pre- and post-processing. The MCWS method has been pre-
viously used to detect single tree crowns by applying a set of pre- and post-processors 
[67,70], with more technical details in [69] to which the reader is referred.  
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2.4.3. Extracting the Height and Canopy Area of Individual Trees 
After delineating the crown boundary of each tree, the variables of height and crown 

area for each tree were calculated as the maximum value of CHM in the tree polygon and 
the polygon area, respectively. The fact that the field reference data included the meas-
ured tree heights enabled a comparison of the CHM-derived and field-measured heights 
for high and coppice trees separately. 

2.4.4. DBH Estimation 
Since the DBH was infeasible to be directly derived from UAV photogrammetric 

data, we estimated it as a function of H and A [71–73] to serve its practical implementa-
tion. To this aim, multivariate linear regression models, using these two parameters (H 
and A) that were extracted in the previous steps, were applied [74]. The field-measured 
DBH values (for high trees) were used to train and test the model with random 50% par-
titioning within each forest site. 

2.4.5. AGB Estimation 
Allometric equations for estimating the biomass of Q. brantii trees in both high and 

coppice forms, using independent variables of H, DBH, and D followed [64] (Table 1). The 
H was directly extracted from UAV-based CHM, while the DBH was indirectly derived 
as described above. We directly applied the last two equations in Table 1 to estimate the 
AGB for trees in high stands, while the remainder of the equations were applied to the 
coppice stands. Moreover, we additionally included the A variable in AGB estimation, 
whereas it was not originally included in the allometric equations listed in Table 1. There-
fore, a nonlinear machine learning model, with H and A as independent variables, was 
applied for each of the tree vegetative forms. We employed RFR, a supervised algorithm 
based on ensemble learning by using a combination of a set of regression trees [75,76]. It 
converges by (1) randomly drawing numerous initial bootstrap samples with replace-
ments from the original training dataset, (2) fitting each regression tree to each of the boot-
strap samples, and (3) predicting all trees by constructing decision trees during training 
[77]. The RFR was numerously reported as a powerful and accurate approach, followed 
by its compatibility with nonlinear relationships [78]. The number of regression trees, 
identified as the number of estimators, was defined as hyperparameter by testing the 
RMSE on training data for values ranging between 100 and 1000 at intervals of 50 [79]. 
This resulted in selecting 700 trees as the optimal number of estimators. According to the 
number of existing allometric equations that were used to calculate the reference AGB 
values, the total three and two AGB values were obtained for each high and coppice tree, 
respectively. Moreover, the average of those models was also calculated as an additional 
AGB value.  

Here, obtaining different AGB values for a given tree was inherent, since each al-
lometric equation in Table 1 features a different independent variable (H, D, and DBH). 
Therefore, we performed a numerical modification to derive an average instead of an av-
erage that possibly does not incorporate different possible values for AGB. We did this 
modification by first defining a threshold value and then checking the variance of differ-
ent AGB values prior to calculating the final reference value. This ensured that the AGB 
value was ignored, i.e., it was treated as an outlier, if the variance (for high trees) or dis-
tance (for coppice trees) was higher than the defined threshold value. Otherwise, we cal-
culated the mean value of the applied multiple AGB equations and considered it as the 
modified average. This resulted in the final four AGB values for high stands and three 
values for coppice stands. In addition, the median of the three AGB values of high stands 
was considered to be an additional AGB value (Figure 3). 
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Figure 3. Flowchart of generating different AGB values. 

Following the generation of reference AGB values, the RFR was trained for each 
group. These models were evaluated using the Leave-One-Out-Cross-Validation 
(LOOCV) ]80[ . 

3. Results 
3.1. Tree Height Estimation 

The results of tree height estimation for both vegetative forms were obtained in each 
zone (Figure 4). The reader is referred to the Appendix A for the site-specific results. The 
results suggested the R2 values of 0.69, 0.91, and 0.85 for high stands and 0.61, 0.93, and 
0.84 for coppice stands for CHM-derived tree heights compared with the reference values 
in Zones 1–3, respectively. Apart from the practically accurate fits, it also suggested a 
high-quality segmentation that was previously carried out by MCWS prior to height esti-
mation. 
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Figure 4. Comparison of H from CHM with actual measured values (reference values). 

As shown in Figure 4, different values of tree height, from 1 m to 15 m in all three 
zones, were extracted with high accuracy. 

3.2. DBH Estimation 
The results of multivariate linear regression, as a comparison between the modelled 

DBH and the terrestrial reference values, showed a high linear correlation of estimated 
values with the reference values (Figure 5). The site-specific results are included in the 
Appendix B. 

 
Figure 5. Comparison of DBH, estimated from the multivariate linear regression model with independent variables of 
height (H) and canopy area (A) in trees with high stand form. 
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3.3. AGB Estimation 
3.3.1. AGB estimation by allometric equations 

The results of allometric equations, with H, D, and DBH as independent variables, 
were partially affected by the prediction accuracy of H and DBH from UAV data (Table 
3). In addition, the results of AGB estimations, when comparing field- and UAV-derived 
variables, are summarized in Figure 6. We directly extracted the crown area (A) and tree 
height (H) from the UAV models (CHM and orthophoto), while we indirectly estimated 
the DBH using the regression models on H and A. Therefore, only allometric equations 
on DBH and H were used. For the site-specific results, the reader is referred to the Appen-
dix C. 

Table 3. RMSE value of H and DBH parameters, estimated from photogrammetric models. 

Parameter Stand UAV Variables Best RMSE Unit 

Height 
Coppice 

CHM 
0.573 

m 
High 0.572 

DBH High CHM, Orthophoto 2.620 cm 

 
Figure 6. Biomass values obtained from allometric equations on variables measured by UAV (vertical axis) and reference 
values (horizontal axis) in coppice stands (a–c) and high stands (d–i). 

The results suggested that the AGB model 3, with H as an independent variable, 
showed a better fit with the reference data compared with the model 2 that used DBH as 
an independent variable. 

  



Remote Sens. 2021, 13, 4367 12 of 27 
 

 

3.3.2. AGB Estimation by RFR 
We only used H and A to estimate AGB using RFR, since the UAV-modelled DBH 

was a function of H and A. The relative RMSE values of LOOCV, for different reference 
AGB models, suggested comparatively higher performance of model 1 in mean rRMSE of 
AGB estimation for both high and coppice stands (Figure 7). 

 
Figure 7. Relative RSME values of RFR models for AGB estimation. 

As expected, model 3 returned intermediate results for coppice trees, since it was 
averaged from models 1 and 2. This was also partially the case for high stands. Among 
models 2 and 3, i.e., models based on DBH and H, the model with allometry on height in 
high trees outperformed the model with DBH for Zones 2 and 3. This was indicated by 
the lower mean rRMSE and the higher density of error distribution in the lower values for 
model 3. The allometric model 4, i.e., the median of models 1, 2, and 3, showed higher 
accuracy than model 5 for Zones 2 and 3, as resulted by its comparatively lower average 
value and the higher density of error distribution in the mid-range. In all three zones, the 
DBH model for the high stands was shown to perform weaker than almost all other mod-
els (except for Zone 1). Furthermore, model 1, i.e., the allometry on D, performed better 
than all other models. For coppice stands in all three zones, D and H were the most and 
least influential variables in allometric models, respectively (the site-specific results are 
presented in Appendix D). 

4. Discussion 
Zagros Forests are among the most ecologically diverse, yet most degraded ecosys-

tems in Iran and the Middle East. Upon first reports from early 2000, the region has been 
severely affected by a multi-agent oak dieback. This phenomenon mostly occurred across 
the central and southern parts of the Zagros region [81,82]. This necessitates rapid and 
cost-effective quantification and monitoring of their structural attributes to maintain their 
sustainability. However, harsh topography and infeasibility of field works, over remote 
and partly inaccessible areas, majorly constrain providing detailed structural information, 
which can be alleviated by locally adjustable UAV-based approaches. These benefits are 
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mainly valid across small-scale areas. Due to the problems raised by limited flight dura-
tion, limited areal coverage and fixed gimbals, the use of consumer grade UAVs are com-
monly limited to small-scale areas and plot-based inventories [83,84]. On the other hand, 
due to the sensitivity to weather conditions, it is necessary to ensure the weather stability 
before starting the flight operation [29]. Another major limitation of UAVs concerns the 
legal restrictions on flying, which avoids their use in many areas, including those close to 
country borders [85]. Despite those critical limitations, the advantages of using UAVs in 
small areas outweigh their disadvantages [86] and thus argument their use as alternatives 
or complements to other remote sensing data. 

Here, we mainly focused on indirect methods for estimating essential structural var-
iables of trees in natural Q. brantii dominated stands, in high and coppice vegetative forms 
that were spread over three distant biogeographical zones, along the latitudinal gradient 
of Zagros Forests. The canopy surface parameters and tree height for Q. brantii dominated 
stands were directly measured on UAV-based photogrammetric models. However, the 
AGB is generally calculated in practice by allometric equations, based on either height 
(H), average crown diameter (D), or diameter at breast height (DBH) of the trees in single-
factor allometric equations [64]. Whereas we relied on a range of previously available local 
AGB models for trees grown within coppice and high stands, we primarily tested the pos-
sibility to parametrize the models with UAV-estimated tree variables to serve the practical 
implementation of our results. To this aim, DBH was estimated, by linear regression of 
the H and A, and was then used within the allometric equations to derive the AGB. Apart 
from that, we also followed the commonly-tested RFR approach based on nonparametric 
spatial models with UAV-estimated input variables. We deliberately avoided using a 
large feature space, with multiple textural and spectral indices, to maintain the parsimony 
of the models as well as their comparability against the allometric models (see, for exam-
ple, [87]). This might be contrary to some relevant studies in which larger feature spaces 
were applied at the cost of applying exhaustive variable selection techniques (see [88]), 
which, however, are associated with limited comparability between allometric and RFR 
modeling approaches.  

With the rationale to minimize the potential error of tree height that occurred in field 
measurements (due to insufficient visibility of top crown in broadleaves, human errors, 
and device errors) [89–92]  numerous former studies applied high resolution remote sens-
ing data (mostly LiDAR). Other relevant studies using UAV photogrammetry reported 
RMSEs of 0.28 m [28] 0.34 m [93] 1.30 m [19] and 3.04 m, respectively. Our results of 0.82 
and 0.64 m RMSE, within high- and coppice-dominated stands, were in-line with those 
studies, though we generally do not recommend direct comparisons of absolute error 
rates among studies conducted in areas with different ecosystem properties and varying 
standards for field data collection.  

One of the main challenges in estimating the tree height is the production of CHM in 
dense forests [94]. To produce an accurate CHM, Vahid et al. (2021) [58] acquired UAV 
data in two different seasons corresponding to leaf-off and leaf-on conditions, followed 
by estimating single-tree heights. The estimations resulted in R2 = 0.808. Although leaf 
abundance was stated to be an influential factor on single tree height estimation [95], we 
used only leaf-on season images in our study within multiple sites of the Zagros Forests, 
due to different density of trees ranging from semi-dense to sparse, while there was no 
fully dense forest stand in our study sites. We reached R2 values ranging between 0.61 and 
0.93, depending on both factors of site and growth form. Despite the fact that the tree 
species were largely similar across all surveyed forest sites, the difference in accuracy 
across the three zones of Zagros Forests can be attributed to two factors of (1) the imaging 
conditions and (2) the applied RFR machine learning method. Although we attempted to 
capture imagery, possibly under constant weather conditions and flight planning in all 
three Zones, the difference in accuracy may be due to differences in the number of trees, 
i.e., density in each area (see Table 2), slightly different times of the flight and partially 
different topography of the sites. The latter factor can introduce variable levels of artifacts 
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in digital terrain modeling [96], single tree detection [97], and the subsequent AGB esti-
mation [98] when generally working on all 3D sources of airborne data. However, this 
was out of the scope of our study.  

In terms of DBH, it is among the most conveniently-measured variables in the field. 
Its direct derivation from passive UAV imagery is infeasible, but it is possible to be esti-
mated by models incorporating image-based UAV measurements, such as tree height and 
canopy area [99]. Here, we estimated H and A from UAV data across areas with high trees, 
which was in line with previous studies that estimated DBH using passive photogramme-
try data [45].  Our linear model reached an R2 in range of [0.67, 0.91] for Zones 1, 2, and 3, 
which was comparatively in line with [100] that reported R2 of 0.738 in a nonlinear model 
of DBH as a function of canopy diameter and tree height.  

Partly relevant studies such as [99] reported inferior predictions of AGB as a function 
of UAV-based tree height and canopy area compared with those based on DBH. However, 
the latter study was conducted in a mangrove ecosystem, in which both height and can-
opy area are less influential on the AGB compared to most terrestrial tree ecosystems, 
mainly due to their comparatively more complex structure and coppice-only vegetative 
forms. Here, our AGB models for both vegetative forms showed superiority of tree height 
to DBH when estimating AGB from UAV data by allometric equations. To the best of our 
knowledge, this is the first study that (1) differentiated between estimates of coppice and 
high stands and (2) estimated AGB based on photogrammetric data in the Zagros region, 
whereas even field-based studies on AGB in the Zagros region are rare [101]. Allometric 
equations, with DBH as an independent variable, were reported to be mostly correlated 
with AGB [102]. This was mostly the case for average canopy diameter (D) in field-based 
studies carried out within the Zagros ecosystem [103], which can be mainly attributed to 
the coppice and multi-stem origin of the majority of its forest stands. Similarly, the highest 
performances in both high and coppice forms in our UAV-based study were observed for 
models that were parametrized with average crown diameter. Apart from the dominant 
coppice origin, a further reason could be the generally extensive crown of Q. brantii trees 
within commonly sparse Zagros stands, which leads to the formation of a major part of 
the variance described for the AGB. Comparable UAV-based studies that combined spec-
tral information and H, extracted from UAV photogrammetric data, include, for example, 
[104] for poplar plantations, with R2 values reaching 0.54 and RMSE = 0.23 kg/m2 for the 
AGB (in a site with average AGB of 1.68 kg/m2). Furthermore, Lin et al. (2018) [105] sug-
gested a nonlinear regression model for estimating AGB with height as a single independ-
ent variable extracted from UAV oblique photography, which resulted in RMSE = 54 kg 
and rRMSE = 34% when compared with allometric equations on H. Here, our UAV-based 
models delivered RMSE values < 10%, using only H and A as the independent variables. 
Although we are aware of the general limitation of reference data calculations using al-
lometric equations [106], we attempted to compensate for this by (1) using diverse allom-
etries, including three equations for high-dominated and two for coppice-dominated 
stands, and (2) additionally averaging the resulted reference values via using the modified 
mean and median values. 

Finally, our UAV photogrammetric models to estimate a set of essential structural 
attributes can be tested across not only the Zagros region, but also over other similarly 
structured semi-arid forest stands. In forests similar to the Zagros Forests, the single trees 
extraction is more accurate due to the sparse tree distribution. Moreover, the height of 
each tree can be estimated with higher accuracy compared with denser tree ecosystems. 
In dense forests, deriving an accurate UAV-based DTM is mostly challenged by (1) diffi-
culty in separating the trees and (2) ground invisibility caused by tree density. Both con-
straints have a direct negative effect on the estimation of crown area and height, as well 
as indirectly on the estimation of DBH and AGB. However, in some cases, high resolution 
images can be helpful in extracting dense trees, but this adds another limitation: namely, 
the infeasibility of imaging large areas with consumer-grade UAVs. We tested direct and 
indirect methods to estimate the height, crown area, DBH, and AGB, separately, for stands 
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dominated by trees with coppice and high vegetative forms. When comparing the esti-
mates against detailed site-based results (see the Appendices A–D), the results suggested 
comparatively high accuracies, achieved by the photogrammetric method, applied on 
consumer grade UAV datasets. This can further support both forest scientific and practical 
administrative applications within the Zagros region, which already largely lacks such 
estimates and thus cannot be quantitatively monitored following the occurrence of multi-
ple diminishing factors including land-use change, tree decline, increased cattle grazing, 
and frequent wildfires. 

5. Conclusions 
Sustainable management of fragile semi-arid mountainous forests entails quantita-

tive monitoring of tree attributes on various spatial scales. Currently, sparsely available 
field estimates in Zagros is exacerbated by weak technical infrastructure, e.g., infeasibility 
of using Terrestrial LiDAR, GeoSLAM, or airborne LiDAR, which entail relying on meth-
ods based on a combination of limited field data and passive photogrammetry or remote 
sensing data. We suggested a UAV-assisted workflow to measure and estimate a range of 
primary and secondary structural attributes on single tree-level across multiple forest 
sites, located along the latitudinal gradient of Zagros Forests. Differentiation between 
high and coppice growth forms is highly relevant in Zagros and other oak-dominated 
ecosystems due to the strong anthropogenic pressure on tree regeneration, as well as high 
ability of oak trees for asexual regeneration. Despite the reported uncertainties, the results 
largely support the use of UAVs for plot-based measurements of single trees over such 
difficult-to-reach areas. Our results for direct estimation of H and A from three-dimen-
sional models were practically accurate over almost the entire forest sites, which justified 
their further application in estimating the single tree AGB using both allometric equations 
and machine learning. Moreover, estimating the DBH by regression on A and H as input 
variables was done to suggest a practical workflow for both science and forest administra-
tion in Zagros, where regular field-based methods are infeasible due to inaccessibility and 
lack of logistic facilities for frequent monitoring. However, this is associated with an un-
known amount of aggregated error. We also showed that high resolution UAV data ena-
ble an indirect retrieval of single tree DBH using UAV-extracted A and H as independent 
variables with negligible correlation. Finally, we suggest further research on (1) the use of 
consumer-grade UAV photogrammetry for tree measurements, in particular across cop-
pice trees to reduce the existing uncertainties via testing the effects of topography, data 
acquisition time, and shadow on model performance and (2) to follow spatial upscaling 
methods, based on a combination of UAV and satellite multispectral data for larger spatial 
scales. 

Author Contributions: Conceptualization, H.L. and S.A.F.; methodology, S.A.F. and H.L.; software, 
S.A.F.; validation, S.A.F.; formal analysis, S.A.F. and H.L; investigation, S.A.F. and H.L; data cura-
tion, H.L.; writing—original draft preparation, S.A.F. and H.L; writing—review and editing, S.A.F. 
and H.L.; visualization, S.A.F.; supervision, H.L. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by the National Zagros Monitoring Project of the Research In-
stitute of Forests and Rangelands (RIFR) (grant number 01-09-09-047-97012) within the sub-project 
“UAV-assisted Forest Structure Monitoring” (grant number: 013-09-0951-048-97012-970548). 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors are grateful to diverse field crews in three provinces of Kerman-
shah, Chaharmahal-and-Bakhtiari and Fars who collected the field data on oak decline. We are par-
ticularly grateful for the assistance of Mehdi Pourhashemi from RIFR, Yaghoub Iranmanesh, Hassan 
Jahanbazi, Seyed Kazem Bordbar, Mehrdad Zarafshar and Habibollah Rahimi at the provincial bu-
reaus of RIFR, as well as our patient driver Mohammad Qarliqi and our GPS assistants Mohammad 
Ali Bahavar and Javad Sabaei. The UAV and GPS measurement campaigns were logistically sup-
ported by the National Zagros Monitoring Project of the Research Institute of Forests and 



Remote Sens. 2021, 13, 4367 16 of 27 
 

 

Rangelands (Project No. 01-09-09-047-97012) within the sub-project “UAV-assisted Forest Structure 
Monitoring” (Project No. 013-09-0951-048-97012-970548). The authors also thank Marziye Ghasemi 
Mobaraki for her supports in terms of UAV and field data processing. This research was conducted 
within the “Remote Sensing for Ecology and Ecosystem Conservation (RSEEC)” research lab of the 
KNTU (https://www.researchgate.net/lab/Research-Lab-Remote-Sensing-for-Ecology-and-Ecosys-
tem-Conservation-RSEEC-Hooman-Latifi) (accessed date 27 October 2021).  

Conflicts of Interest: The authors declare no conflict of interest.  

Appendix A 

 
Figure A1. Site-specific comparison of H from CHM with actual measured values (reference values) in trees with high 
stand form. 
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Figure A2. Site-specific comparison of H from CHM with actual measured values (reference values) in trees with coppice 
stand form. 
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Figure A3. Site-specific comparison of DBH estimated from multivariate linear regression model with independent vari-
ables of height (H) and canopy area (A) in trees with high stand form. 
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Appendix B 

 
Figure A4. Site-specific AGB values obtained from allometric equations on variables measured by 
UAV (vertical axis) and reference values (horizontal axis) in high stands in Zone 1. 
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Appendix C 

 
Figure A5. Site-specific AGB values obtained from allometric equations on variables measured by 
UAV (vertical axis) and reference values (horizontal axis) in high stands in Zone 2. 
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Figure A6. Site-specific AGB values obtained from allometric equations on variables measured by 
UAV (vertical axis) and reference values (horizontal axis) in high stands in Zone 3. 

 
Figure A7. Site-specific AGB values obtained from allometric equations on variables measured by UAV 
(vertical axis) and reference values (horizontal axis) in coppice stands in Zone 1. 
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Figure A8. Site-specific AGB values obtained from allometric equations on variables measured by 
UAV (vertical axis) and reference values (horizontal axis) in coppice stands in Zone 2. 

 
Figure A9. Site-specific AGB values obtained from allometric equations on variables measured by 
UAV (vertical axis) and reference values (horizontal axis) in coppice stands in Zone 3. 

Appendix D 

 
Figure A10. Site-specific relative RSME values of RFR models for AGB estimation in high stands.  
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Figure A11. Site-specific relative RSME values of RFR models for AGB estimation in coppice stands.  
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