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Abstract: This paper describes a novel technique for estimating how many mines remain after a
full or partial underwater mine hunting operation. The technique applies Bayesian fusion of all
evidence from the heterogeneous sensor systems used for detection, classification, and identification
of mines. It relies on through-the-sensor (TTS) assessment, by which the sensors’ performances can
be measured in situ through processing of their recorded data, yielding the local mine recognition
probability, and false alarm rate. The method constructs a risk map of the minefield area composed
of small grid cells (~4 m2) that are colour coded according to the remaining mine probability. The
new approach can produce this map using the available evidence whenever decision support is
needed during the mine hunting operation, e.g., for replanning purposes. What distinguishes the
new technique from other recent TTS methods is its use of Bayesian networks that facilitate more
complex reasoning within each grid cell. These networks thus allow for the incorporation of two
types of evidence not previously considered in evaluation: the explosions that typically result from
mine neutralization and verification of mine destruction by visual/sonar inspection. A simulation
study illustrates how these additional pieces of evidence lead to the improved estimation of the
number of deployed mines (M), compared to results from two recent TTS evaluation approaches
that do not use them. Estimation performance was assessed using the mean squared error (MSE) in
estimates of M.

Keywords: bayesian network; naval mine countermeasures; risk; through-the-sensor evaluation

1. Introduction

Sea mines constitute a formidable threat to commercial shipping and naval operations
because these weapons are highly effective, low-cost, easy to employ, covert, and widely
available [1]. The primary method to address this threat is through mine sweeping and
mine hunting, collectively known as mine countermeasures (MCM). While sweeping is
focused on actuating the mines using mechanical or influence methods, mine hunting is
a multi-phase process that systematically searches for, identifies, and neutralizes mines.
Mine hunting requires the fusion of multiple data processing results from heterogeneous
sensors and platforms. The role of MCM evaluation is to assess the overall performance
and to communicate the remaining risk to decision makers. Improving the evaluation of
mine hunting is the focus of this work.

Recent developments in sensing, robotics, and perception algorithms, such as auto-
matic target recognition (ATR), have drastically changed the conduct of mine hunting.
Modern autonomous underwater vehicles (AUVs) equipped with advanced side looking
sonar systems (SLS), either side scan sonar (SSS) or synthetic aperture sonar (SAS), have
become essential platforms in mine hunting [2]. Such vehicles provide superior data quality,
improved efficiency, covertness, and reduced risk to personnel [2,3]. Increasingly, these
AUVs have sufficient processing power to run perception algorithms during data collection,
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and to alter their own behaviour in situ, in response, for example, to ATR results [4]. The
employment of robotic systems has required fundamental changes to the execution of
mine hunting, shifting from a process where one vessel conducts search, classification,
identification, and neutralization to one where robotic and human systems work collabora-
tively [5,6]. Thus, tasks are now usually accomplished in a different order and are often
undertaken concurrently.

In the initial search phase of modern mine hunting, AUVs survey a potential threat
area using high-resolution SLS to detect and classify mine-like contacts (MILCOs) in
acoustic images of the seafloor. These contacts are then reacquired using a remotely
operated vehicle (ROV), diver, or AUV to be identified using optical sensors, as either a
MINE or a NOMBO (Non-mine mine-like bottom object). The most common technique for
neutralizing the threat of an identified mine is to set it off with a small explosive charge
deposited by an ROV, a diver, or a mine disposal weapon. Explosive neutralization can be
verified either by observing the detonation’s effect on the sea surface or by re-inspecting the
object’s location (visually or with sonar). The size of the explosion that results from mine
neutralization provides the indirect evidence that the mine was disabled; however, it is
possible that the deposited charge disables the mine without actuating it. If neutralization
failure is suspected, further inspection (by diver, ROV or AUV) can reveal whether the
mine was really destroyed, or a new charge can be laid to repeat the neutralization attempt.

The modern approach of executing the individual phases of mine hunting indepen-
dently provides advantages, from protecting humans from harm in the minefield, to
mapping areas where low risk transit is possible [7]. On the other hand, it poses significant
challenges to the fusion of platform, sensing, and perception performances to determine
the overall effectiveness of the process. Reliable estimates of mine hunting effectiveness are
essential, both for planning further MCM efforts in the area and for quantifying the risk
remaining to subsequent traffic. Traditionally, quantifying that risk has been the primary
role of MCM evaluation [8]. The operational differences between ship-based and robotic
mine hunting systems necessitate a revision of the prevailing methods and metrics used
for effectiveness evaluation [9].

The traditional Bayesian models used in MCM evaluation within the NATO alliance
rely on an index of effectiveness called the percentage clearance [8]. This metric measures
the average probability of clearing a given mine over the entire minefield area. It depends
mainly on the effectiveness of the search sonar in the environment. As an overall average,
the percentage clearance can conceal a lot of local variation [9]. Furthermore, traditional
models required all phases of mine hunting to be completed in order to estimate the
residual risk [8].

The ability of modern systems to record large amounts of geo-referenced sensor data is
well suited to a new approach to MCM evaluation that provides high-fidelity performance
estimates during mission execution. This new approach is called through-the-sensor (TTS)
evaluation. The idea is to measure the local performance of the SLS sensors in situ by
processing their own measurements to derive meaningful performance indices. The TTS
approach is of greatest value when relevant conditions vary rapidly in space or time. The
result of this technique is encoded in a georeferenced grid, providing a high-resolution
view of the phase performance.

Several studies have addressed the data-driven evaluation of SLS survey performance
using the probability of mine detection and classification, pDC, and the probability of false
alarm, pFA [3,10–12]. Because complex dependencies make it difficult to derive the two
performance indices directly from the sonar image data, most methods calculate a set of
latent parameters within small image windows, and then apply a learned mapping to
get from these parameter values to pDC and pFA. The various approaches differ in both
the choice of latent parameters and the training of mapping functions using real and/or
simulated sonar data.

To produce a complete metric of MCM performance, the uncertainties and perfor-
mances of all executed phases must be fused. A recent study [5] derived Bayesian for-
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mulations to extend grid-based TTS evaluation of the search phase to include the contact
identification and mine neutralization phases, and introduced a new MCM metric, the
probability of a remaining mine in the given cell. Comparable formulations were also
presented in [6], although these did not consider mine neutralization as explicitly. To
compute this local probability, one approach involves embedding a probabilistic model
into each cell of a detailed geographical grid. This model can then evaluate the outcomes
of the MCM effort within the grid cell and estimate the probability that a mine remains
there [5]. The key contribution of this paper is to have Bayesian networks provide that
probabilistic model within each cell, facilitating more complex reasoning than in [5,6].

Bayesian networks are graph-based probabilistic models that have been used ex-
tensively for the development of decision making and expert systems. They are seeing
increasing use in geographical applications [13], such as the mapping of mining poten-
tial [14], cliff erosion [15], or flooding [16]. They are considered to have improved envi-
ronmental risk mapping [17], a field in which there are a large number of applications
like [18], many more of which are reviewed in [19]. The applications of Bayesian networks
to spatial mapping have grown so common that a recent doctoral thesis categorizes them
into several approaches, under the label of spatial Bayesian networks [20]. Under the
proposed categorization, the current application would be classed as one in which “spatial
units are represented as instances of the network”. The other categories are “spatial units
represented by network nodes” and “network with a spatial node”. The doctoral thesis
contains helpful figures illustrating the difference between these approaches.

Bayesian networks can effectively encode causal relationships and inherently have
an ability to reason under uncertainty over multiple random variables [21]. These net-
works permit the consideration of evidence related to mine neutralization provided by
explosions and by verification efforts. Such evidence has not previously been considered
in MCM evaluation.

By leveraging the gridded TTS performance measurement from [3], combined with
mine remaining estimates from the embedded Bayesian networks, this paper will demon-
strate a novel capability for MCM evaluation. It will show that using the new evidence
from the neutralization phase increases the fidelity of performance evaluation. This will be
accomplished by comparing results with those obtained from the methods in [5] and [6] on
simulated datasets.

As the primary aim of MCM evaluation is to quantify the risk to follow-on traffic [8],
the remaining mine probability grid from this work facilitates high fidelity risk maps and
lends itself to the selection of shipping routes to minimize risk [7]. By using Bayesian net-
works to leverage the advanced capabilities provided by TTS evaluation, which considers
platform, sensing, and ATR performance, the proposed method can move beyond post-
mission evaluation to provide situational awareness throughout mine hunting operations.
It can also help prioritize tasks.

The remainder of this work is structured as follows: Section 2 will introduce the use
of Bayesian networks to the MCM problem and illustrate the gridded approach taken;
Section 3 will present the design of the simulation study comparing methods; Section 4
will present the simulation study results; and Section 5 will present conclusions and areas
of future work.

2. Methods

This paper presents a new approach based on Bayesian networks that permits users to
evaluate MCM performance. A Bayesian network is a graphical model of the conditional
dependencies between a set of discrete random variables, each represented by a network
node [22]. Bayesian networks are interactive tools that permit users to enter evidence on
any node or set of nodes. Such evidence consists of a configuration of states for all the
nodes in the evidence set. Once such evidence is entered, Bayesian networks offer three
core capabilities related to that evidence. The first and most used capability is to propagate
the evidence to any other node in the network, computing the marginal probability table
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for that node given the evidence. The second capability is to compute the probability of the
entered evidence. The final capability is to simulate a random configuration of states for
any set of nodes (outside of the evidence set) that is consistent with the entered evidence.
Such consistency means that the configuration is drawn randomly from the joint posterior
probability distribution for the node set, given the evidence. All three capabilities are used
in this paper: the first and third in the pseudocode of Section 2.4, the second in Section 2.3.
The Bayesian networks in this paper were implemented using the (free) demo version of
the Hugin tool [23] and especially its accompanying application program interface.

The following subsections outline the application of Bayesian networks to measuring
MCM performance, with the primary goal being to predict the probabilities of remaining
mines after the execution of MCM effort. These probabilities are a key component of
predicting risk in a geographic area. To accomplish this prediction, a segmentation of the
area will be made, followed by an assignment of a Bayesian network to each cell. Since the
approach is Bayesian, it requires a prior distribution, in this case for the probability of a
mine in each cell. This paper suggests using a uniform prior. Once the prior is set, it allows
for the prediction of the posterior probability of a mine in each individual grid cell from
Bayes’ Theorem.

2.1. Applying a Mine Probability Model to a Spatial Grid of the Mined Area

It is assumed here that the minefield has been divided up into C small grid cells. Each
of these cells is small enough that it may reasonably be taken to contain at most one MILCO
or mine. This one object per cell assumption is more realistic, if the cells are relatively small.
On the other hand, the cells should not be so small that mines would often span multiple
cells. Given these conflicting considerations, a cell size of 2 m × 2 m was selected. This
choice implies the minefield will typically contain many cells: a minefield that was 2 km
long and 1 km wide, for example, would have 500,000 cells.

Let pM denote the probability of there being a mine in a cell. A uniform Bayesian prior
is assigned to pM. As this prior is cut off at max(pM) < 1, it effectively imposes an upper
limit on the number of mines deployed. To set max(pM), consider that it is inefficient for
mine layers to place mines so that their blast radii overlap because the blast from one mine
could render the other ineffective, and hence they could exclude more areas by deploying
the extra mines elsewhere. This paper took the blast radius of mines to be 60 m. Then,
a 2 km long and 1 km wide minefield could contain 128 disjoint disks of radius 60 m, in
8 rows of 16. Thus, this paper used max(pM) = 128/500,000 throughout.

Let the discrete, random variable m(c) be equal to 1, if there really is a mine in cell
c, and equal to 0, if there is no mine present. Let M denote the total number of mines
deployed. In estimation, mines are treated as if they arose from the hierarchical model
shown in Figure 1.
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2.2. Assigning a Bayesian Network to Each Cell

The key idea of the approach here is to assign a Bayesian network to each grid cell
in order to process the local evidence within that cell. The nodes in these networks are
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interpreted as shown in Table 1. The directed acyclic graph (DAG) for each network is
depicted in Figure 2. The DAG represents the causal relationships between the discrete
random variables in the network using arrows. Thus, for example, the probability that
there is a MILCO in a cell, which is represented by the ‘MILCO?’ node, is determined
by whether there really is a mine (as represented by the ‘Mine?’ node). Unlike many
Bayesian network applications, where the direction of the arrows can be uncertain, here the
arrows follow the temporal order in which observations are obtained. First, the MILCOs
are detected, then the selected ones are identified, then some of those are neutralized, after
which there might be explosions and attempts at verification, and so on. Thus, the DAG
model uncertainty is lower than in many other applications of Bayesian networks [24].
Note that the Boolean ‘Mine?’ node is an alias for m(c) in Figure 1.

Table 1. The nodes of the Bayesian network.

Node Description

Detect Explosion? TRUE if a big explosion is detected after mine neutralization
ID Result Either ‘Mine’, ‘NOMBO’, or ‘Unidentified’
Identify? TRUE if attempt made to identify MILCO in cell

Neutralize Again? TRUE if another neutralization will be attempted
MILCO? TRUE if MILCO in cell

Mine Still There? TRUE if mine remains after all neutralization attempts
Mine? TRUE if there is a mine in the cell (this is another name for m(c))

Neutralization Strategy Either ‘Kill with ID Robot or Diver’, ‘Send Another Robot or
Diver’, or ‘Leave’

Neutralized Mine? TRUE if mine neutralized

Place Charge? TRUE if a charge is placed in the cell to detonate any mines
present

Remaining Mine? TRUE if mine remains after 1st neutralization attempt or no
neutralization attempted

See Intact Mine? TRUE if an intact mine is seen during efforts to verify
neutralization

Verify Neutralization? TRUE if attempt made to verify that the mine was neutralized

Watching? TRUE if mine warfare officers are watching for explosions during
a given neutralization effort

Table 2 provides a list of the parameters needed to turn the DAG in Figure 2 into a
Bayesian network. These are used to create conditional probability tables. The details of
where these parameters appear in these tables are given in Figures A1–A3 (Appendix A).
The parameters above the solid line in Table 2 have to do with the performance of sensors
and processes, while those below predict the decisions of mine warfare officers. Only the
parameters above the line affect MCM evaluation results. Those below are only important
for the purpose of simulating datasets (consider skipping those on first reading). The
Bayesian networks are almost the same in each cell. The only difference between them is in
the probability table for the ‘MILCO?’ node. As shown in Figure A1 (Appendix A), this
table reflects the local pDC and pFA values that are measured through the sensor within
each grid cell (see Table 2). All the other probability tables are identical in each cell.
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model inference within each grid cell and the causal relationships between them (represented with arrows). The graph
forms the basis of a Bayesian network. That network uses the convention that Boolean random variables have names ending
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Table 2. This table provides a glossary of network parameters. Those above the solid line control the performance of sensors
and processes, while those below are used to predict the decisions of mine warfare officers (in simulation). These decisions
concern which MILCOs to identify, which identified mines to neutralize (and how to do it), whether to investigate further
and whether to retry neutralization (when it might have failed).

Parameter Value Description

eW 90% The probability that a neutralized mine will provide an explosion detectable on the surface, given
that this explosion is being actively watched for. Neutralized mines do not necessarily explode.

eS 10% The probability that a neutralized mine will provide an explosion detectable on the surface, even
though this is not actively watched for (it is that big and loud).

eFAW 1%
The probability that a mine that is not successfully neutralized yields an explosion (from the
neutralization charge) that is detected on the surface, assuming that such an explosion is actively
watched for (it would be a much smaller explosion).

eFAS 0.1%
The probability that a mine that is not successfully neutralized yields an explosion (from the
neutralization charge) that is detected on the surface, assuming that such an explosion is not actively
watched for (it would be a much smaller explosion).

pDC Varies by cell The probability of declaring a MILCO in a particular cell, given that the cell contains a mine. This is
an output of TTS processing.

pFA Varies by cell The probability of declaring a MILCO in a particular cell, given that the cell actually does not contain
a mine. This is an output of TTS processing.

pI 99% The probability of visually identifying a MILCO as a mine, given that it really is one.

pIFA 2% The probability of falsely identifying a MILCO as a mine, given that there is actually no mine in the
cell in question.

pN 99% The probability of neutralizing a mine.
pRI 95% The probability of reacquiring a MILCO for ID.
pRN 99% The probability of reacquiring a mine for neutralization.
sFA 0.01% The probability that, during verification, a neutralized mine will appear to be intact.

sM 90% The probability that, during verification, a mine that survived neutralization will correctly appear
intact (as opposed to being buried by debris).
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Table 2. Cont.

Parameter Value Description

f I 90% The probability that a MILCO will be selected for identification.

f NA 47.5% The probability that an identified mine will be neutralized by another robot or diver,
after reacquisition.

f NS 47.5% The probability that a MINE will be neutralized by the same system that identified it.
f VE 1% The probability that mine neutralization will be verified, given that there has been an explosion.
f VS 80% The probability that mine neutralization will be verified, given that there has been no explosion.

iNE 60%
This impedance probability is used in Hugin’s NoisyOR expression. A lack of explosion will lead to
a second attempt (i.e., ‘Neutralize Again?’ will be True), unless this dynamic is impeded, with
probability iNE. Impedence probabilities act independently of one another.

iSM 10%

This impedance probability is used in Hugin’s NoisyOR expression. Seeing an intact mine will lead
to a second attempt at neutralization (i.e., ‘Neutralize Again?’ will be True), unless this dynamic is
impeded, with probability iSM. Under NoisyOR, when there is both a lack of explosion and a visible
intact mine, the probability that there will not be another attempt is iSM × iNE

w 95% The probability of watching for explosions given that neutralization was attempted.

2.3. Using a Grid Approach to Estimate pM

The most difficult parameter to estimate is pM because this estimation is not handled
by the Bayesian networks. This paper suggests using a grid approach. To construct the
required grid of pM values, consider the maximum possible value for this parameter,
denoted by max(pM). A grid can readily be formed by creating an array of G evenly spaced
values for pM between 0 and max(pM). Let the distinct values in this grid be denoted by
pM(g), for grid index g running from 1 to G. This paper took the grid length to be G = 129,
since max(pM) = 128/500,000, to facilitate comparison to PESOS results (the ‘Planning and
Evaluation System of Systems’ (PESOS) is based on [6]), which use that same grid.

At each value of pM(g) in this grid, all C of the 2 m × 2 m grid cells are independent
(recall the conditional independence property of the model in Figure 1). Thus, the likelihood
of the evidence in all the cells, conditional on pM(g), is given by the product of the likelihood
of the evidence in each individual cell. This is convenient because the likelihood of the
evidence in a cell is readily computed by the Bayesian network in that cell, provided that
the ‘Mine?’ table is updated to include pM(g).

Table 3 provides some common evidence configurations to enter on the network. In
this paper, a set of evidence in a cell always includes states for all the nodes on the left
margin of Table 3. Hence, a likelihood score is readily computed for each distinct value of
pM(g). Naturally, the final posterior score (s(pM(g))) is given by the product of the likelihood
and the prior evaluated at pM(g), in accordance with Bayes’ theorem.

Table 3. State configurations for the nodes in the left column under a variety of common forms of
evidence. That evidence represents the observations available within a particular grid cell.

Node Non-MILCO Unidentified
MILCO

Non-
Neutralized

MINE

Neutralized
MINE w/
Explosion

MILCO? FALSE TRUE TRUE TRUE
Identify? FALSE FALSE TRUE TRUE
ID Result Unidentified Unidentified Mine Mine

Neutralization
Strategy Leave Leave Leave Kill with ID

Robot or Diver
Verify

Neutralization? FALSE FALSE FALSE FALSE

Detect Explosion? FALSE FALSE FALSE TRUE
Place Charge? FALSE FALSE FALSE TRUE

Watching? FALSE FALSE FALSE TRUE
Neutralize Again? FALSE FALSE FALSE FALSE
See Intact Mine? FALSE FALSE FALSE FALSE
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In a departure from typical Bayesian practice, this paper suggests using a point
estimate for pM, rather than the usual posterior distribution. The reason for this shortcut is
to allow other parameters of interest to be estimated using just a single Bayesian network
in each grid cell, as opposed to having to average results over multiple networks. Using a
single network makes the computations faster (G times faster to be precise) and thus more
interactive for users. Note that it certainly would be possible to satisfy Bayesian purists
by continuing to average results over G networks (one for each value of pM(g)), weighting
each network by its posterior score s(pM(g)), in all subsequent inference, but the loss in
speed is not adequately compensated. The suggested point estimate is as follows:

ˆpM =
∑G

g=1 pM(g) · s(pM(g))

∑G
g=1 s(pM(g))

(1)

In Equation (1), the posterior scores s(pM(g)) are computed as suggested in the previous
two paragraphs. Subsequent estimation results are then computed by entering p̂M in place
of pM in the ‘Mine?’ table (in all the grid cells).

2.4. Using Monte Carlo Simulation to Estimate M

As mentioned above, the Bayesian network depicted in Figure 2 can simulate data
that is compatible with entered evidence. Thus, it can generate a sample of values for
all the nodes in Table 1 that is compatible with any given set of evidence. This Monte
Carlo simulation capability will be used here to estimate the total number of mines initially
deployed, as well as the total number remaining. The process takes several steps, which
are given in the following pseudocode:

1. Create an integer array M[i], indexed by i = 1 to 1000. Initialize this array to all
0 entries.

2. Create an integer array R[i], indexed by i = 1 to 1000. Initialize this array to all
0 entries.

3. Loop over the grid cells, for c = 1 to C, performing steps a and b below:

a. Within grid cell c, enter the evidence e that is available within c on the
local network.

b. For i = 1 to 1000, do steps i, ii, and iii below:

i. Generate a sample s of node values from the Bayesian network that is
compatible with e.

ii. Let M[i] = M[i] + 1, if the value of the ‘Mine?’ node is ‘True’ in the
sample s and make no change to M[i] otherwise.

iii. Let R[i] = R[i] + 1, if the value of the ‘Mine Still There?’ node is ‘True’ in
the sample s and make no change to R[i] otherwise.

Once these steps are complete, the M[i] array provides a sample of size 1000 for the
number of mines initially deployed (in all the cells), while the R[i] array provides a similar
sample for the number of mines remaining.

3. Simulation Study Design

This paper includes a simulation study (not to be confused with using Monte Carlo
simulation to estimate the number of mines deployed, M, as described in Section 2.4),
in which the Bayesian networks were used to simulate 40 partially-processed minefield
datasets. These simulated minefields were usually partially processed because they allowed
for the possibility of leaving a MILCO or an identified mine unprocessed (see the ‘Identify?’
and ‘Neutralization Strategy’ tables in Figure A1 (Appendix A)). The estimation approach
described above (named ‘Bayes Net’) was applied to each of these datasets to see how well
it would do at recovering the simulated value of M. Its performance was compared to that
of other methods based on equations proposed in [5,6], which are referred to as ‘Bayes
Global’ and ‘PESOS’, respectively. Performance was examined primarily in terms of the
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Mean Squared Error (MSE) in estimating M, but posterior mean bias and posterior mode
bias for M were also computed for each method.

3.1. The Bayes Global and Bayes Global+ Approaches

The Bayes Global technique described in Equation (6) of [5] assumes that all MILCOs
have been identified. If the technique is applied to a minefield dataset in which some of
the MILCOs are left unidentified (as it will be below), these MILCOs will be interpreted as
NOMBOs, thereby biasing estimates of the number of mines deployed, M, downwards.
This paper thus proposes a relatively small enhancement, named ‘Bayes Global+’, to rectify
this negative bias. The description of the Bayes Global+ approach is aided by a quick
review of Bayes Global.

The Bayes Global method estimates M based on average values for the TTS parameters
taken over the minefield grid. These average values are denoted by pDC and pFA, respec-
tively, for the mine detection probability and false alarm rate. It also applies a number of
statistics obtained by adding up results in all the grid cells: the total number of MILCOs
(mDC) and the total of identified mines (mI). The Bayes Global+ enhancement also applies
the total number of MILCOs left unidentified (mL). Finally, Bayes Global uses a number of
parameters defined above in Table 2, namely pI, pRI and pIFA. Recall that the total number
of grid cells is C.

The description of the Bayes Global methods is facilitated by the following notation
for the Binomial probability mass function:

Pb(k, n, p) =
(

n
k

)
pk(1− p)n−k (2)

The Bayes Global method assigns to each possible number of mines deployed (M) a
likelihood score proportional to the following:

t(mDC, mI , pDC, pFA, pI , pRI , pIFA|M) =
mI
∑

i=0

mDC−mI+i
∑

k=i
Pb(k, M, pDC )

×Pb(i, k, pRI pI)× Pb(mDC − k, C−M, pFA)× Pb(mI − i, mDC − k, pRI pIFA)

(3)

The Bayes Global+ method assigns to each possible M a likelihood score proportional
to the following:

t′(mDC, mI , mL, pDC, pFA, pI , pRI , pIFA|M) =
mI
∑

i=0

mL
∑

j=0

mDC−mI+i−mL+j
∑

k=i+j

(
k
j

)(
mDC − k
mL − j

)
Pb(k, M, pDC)× Pb(i, k− j, pRI pI)

×Pb(mDC − k, C−M, pFA)× Pb(mI − i, mDC − k−mL + j, pRI pIFA)

(4)

When all MILCOs are identified (mL = 0), Equation (4) degenerates into Equation (3).
Note that the final scores would be proportional to the product of the likelihood (t or t′)
and the prior assigned to M, in accordance with Bayes’ theorem.

3.2. Details of Minefield Simulation

As mentioned above, the simulation study used the Bayesian network of Figure 2
to simulate a partially processed minefield. This section provides the details of how that
was conducted.

For simulation, pM was taken to be 15/500,000, so there should be approximately
15 mines in each dataset, on average. Simulation handled each grid cell (c) in turn. Values
of pDC and pFA within cell c were drawn randomly from a Beta(18, 2) distribution, for the
former (mean 90%), and from a Beta(1,9999), for the latter (mean 0.01%). The probability
table for the ‘MILCO?’ node (see Figure A1 (Appendix A)) was then edited to reflect those
local values of pDC and pFA. The other Bayesian network parameter values were set as given
in the second column of Table 2. Then, the simulation capability of Bayesian networks was
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used to compute the ground truth in each cell (values for the ‘Mine?’, ‘Neutralized Mine?’,
‘Remaining Mine?’ and ‘Mine Still There?’ nodes), as well as the evidence used in estimation
(values for all the other nodes). Finally, the simulated value of M was determined by
counting the number of grid cells in which the ‘Mine?’ node was in state TRUE.

3.3. Evidence Available in Estimation

The evidence available in estimation varied by the approach used. For the Bayesian
networks, that evidence consisted of values for all the nodes on the left margin of Table
3 in each grid cell. For the PESOS approach, the evidence consisted of whether there is
a MILCO in the cell and, when there was one that was also visually identified, whether
it was identified as a MINE or as a NOMBO. For the Bayes Global and Bayes Global+
approaches, the evidence consisted of the total number of MILCOs and identified MINEs
over all the cells. The Bayes Global+ method also needed the total number of MILCOs
left unidentified (see Equations (3) and (4) above). Note that the PESOS and Bayes Net
estimation models had access to the exact values of pDC and pFA in each cell, while the
Bayes Global and Bayes Global+ methods used the mean values of these parameters. The
Bayes Net approach also had access to all the parameter values specified in the second
column of Table 2. In contrast, the other approaches only needed the values of pI, pRI and
pIFA from that table. The simulation study added a sensitivity analysis for eW, as it was
considered a likely source of Bayes Net advantage.

3.4. Sensitivity Analysis

The simulation study included an investigation of the effects of using incorrect values
for eW in Bayes Net estimation. Recall (from Table 2) that this parameter represents the
probability that a neutralized mine will result in an explosion that is detected at the sea
surface, in the situation that such an explosion is expressly watched for. In the simulated
datasets, explosions were watched for in w = 95% of mine neutralizations. In the simulated
datasets, eW was taken to be 90%. Thus, the study examined the impacts of using incorrect
values of eW = 95% and 80% in estimation, as compared to using the correct value. The
former value would give too much weight to the explosion evidence, while the latter would
give too little.

4. Results

Figure 3 gives the scores computed over the grid defined in Section 2.3 using the first
simulated dataset. In that figure, the posterior density for pM evaluated at pM(g) would
be proportional to the score s(pM(g)). Note that this figure also compares the grid scores
to the scores resulting from Equation (2) of [6], under the PESOS label. The scores are
similar but not quite the same. Note that the PESOS approach only uses evidence from the
‘MILCO?’ and ‘ID Result’ nodes (see Section 3.3), whereas the Bayesian networks use all the
evidence from the nodes on the left margin of Table 3, so it is natural that results would
differ. To highlight the source of the difference, the results were recomputed for the Bayes
Net approach (on a second simulated dataset) using only evidence from the ‘MILCO?’
and ‘ID Result’ nodes. In that case, the Bayes Net and PESOS posteriors were identical
(to 13 decimal places), providing reassuring validation. This implies that the difference
between the scores in Figure 3 is a result of using the additional evidence, not a result of
the Bayesian networks themselves.
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4.1. The Effects of Explosions and Verification

The previous section showed that the Bayesian networks provide results practically
identical to those from Equation (2) of [6], when they both use the same evidence. The
aim of this section is to reveal the effects of considering additional evidence, beyond
the MILCOs and identified mines. To suggest how the Bayesian networks handle such
evidence, this paper uses a typical Bayesian network, with values for pM, pDC, and pFA
set at average values for the simulation design outlined in Section 3.2. These values were
pM = 15/500,000, pDC = 90%, and pFA = 0.01%. Other values were as given in Table 2.
Interest centers on the effects of different evidence on the probability that the ‘Mine?’ node
is in state True, described as the mine probability below.

Observing a MILCO in a cell raises the mine probability from 0.003% to 21.26%.
Identifying that MILCO as a mine raises the mine probability further to 93.04%. So far,
these results are in line with the approaches in [5] and [6]. If mine warfare officers decide to
neutralize that target with the same robot that identified it as a MINE and decide to watch
for explosions (so ‘Watching?’ is True), they may see an explosion (probability 82.98%) or
may not (17.02%). If they do see one (‘Detect Explosion?’ is True), the mine probability rises
to 99.92% (it is not quite certain because the observed explosion might just have resulted
from the detonation charge itself rather than from a real mine explosion), but if they do
not, it falls to 59.52%. The lack of explosion casts doubts on whether there was a mine to
begin with, while the explosion all but confirms it (since a neutralized mine would explode
90% of the time). Supposing they don’t see one, they are likely to perform an inspection
to throw additional light on the matter because there is a 45.89% chance that ‘Neutralized
Mine?’ is False. During this inspection, it is quite improbable that they will see an intact
mine (the probability ‘See Intact Mine?’ is True is only 4.88%) because neutralization is 99%
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effective and does not always cause explosions. If they do see one, the mine probability
increases to 99.92%; if they don’t, it falls to 57.45%. Thus, both explosions and seeing
an intact mine during inspection can raise the mine probability to near certainty. The
difference is that seeing explosions is common (after neutralization) while seeing an intact
mine during inspection is rare. Thus, explosions can be expected to have a more significant
effect overall.

The probabilistic results in the previous paragraph are almost entirely insensitive to
the values set for parameters below the line in Table 2. Recall that these are the parameters
that predict the decisions of mine warfare officers. Change any of those parameters, so
long as they are not set to 0 or 1, and the results will be identical. In part, this property
results from the fact that the network has built-in knowledge of mine hunting practices. For
instance, if a target is identified as a MINE, the network knows that ‘Identify?’ must be True
and the target must have been a MILCO to begin with. Mostly, however, it is because the
variables describing the decisions of mine warfare officers are all instantiated with evidence
during estimation (they all appear on the left margin of Table 3). In other words, estimation
is based on the actual decisions of the mine warfare officers, not on the predictions thereof.
This means that the Bayesian networks are much easier to use in estimation than it might
seem from Table 2, as the values below the line can be safely left at their default values.
Those parameters are only important for simulation. They permit the same network to be
used for both simulation and estimation.

4.2. Performance Comparison

Though the PESOS and Bayes Net approaches are similar to the results in Figure 3 (and
are identical when the Bayesian networks are restricted to MINE and MILCO data), the two
approaches differ sharply from that point forward. The PESOS approach then computes a
posterior for M by simply multiplying the horizontal axis (pM) of Figure 3 by the number
of grid cells (C), giving a score grid over mine numbers rather than probabilities. This
shortcut is not well justified in [6], where it is described as an assumption.

Once the steps of the pseudocode in Section 2.4 are complete, the M[i] array provides
a sample of size 1000 for the number of mines initially deployed (in all the cells), while the
R[i] array provides a similar sample for the number of mines remaining. The M[i] array can
be turned into a histogram, as shown in Figure 4. In this figure, the true (simulated) value
is indicated with a solid black vertical line. The results in that Figure are also compared
to corresponding results from the Bayes Global, Bayes Global+ and PESOS methods. The
Bayes Global results are based on Equation (3) above, while the Bayes Global+ results
are based on Equation (4). As expected, the Bayes Global+ results are a bit broader and
less biased downwards than those from Bayes Global, a difference that arises from the
five MILCOs that were left unidentified (recall that Bayes Global assumes all MILCOS are
identified while Bayes Global+ does not). Note that the PESOS results seem broader than
the others.

Over the 40 simulated datasets produced by the technique outlined in Section 3.2, the
average number of mines was 14.85, the average number of MILCOs was 64.25, the average
number of identified mines was 12.18, the average number of MILCOS left unidentified
was 4.35, and the average number of detected explosions was 9.25. The performance results
for each of the methods are given below in Table 4. The relatively poor performance of the
PESOS method results more from a lack of precision than from bias. When approximately
5% of MILCOs remain unidentified, the Bayes Global method has a stronger downward
bias than the other methods, a situation that seems at least partially remedied by Bayes
Global+. In terms of MSE, the Bayes Net approach was the top performer in 27 cases out of
40, while the Bayes Global method did best 11 times, the Bayes Global+ method did best
twice and the PESOS method never won. The performance of the top two methods, as
measured by mean MSE (Bayes Net and Bayes Global+), was assessed with a two-sided,
paired Wilcoxon signed rank test (wilcox.test in R) of the null hypothesis that there is
no difference in MSE performance. The results (V = 148, p-value = 0.00025), suggest that
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the superior performance of the Bayes Net approach is not due to chance. The difference
between Bayes Net and Bayes Global MSE is also significant (V = 222, p-value = 0.01063).
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Table 4. Performance results for each approach to estimating M, averaged over the 40 simulated datasets.

Bayes Net Bayes Global Bayes Global+ PESOS

MSE 8.372 12.155 11.210 25.650
Bias Mean −0.504 −1.622 −0.547 0.378
Bias Mode −0.850 −2.025 −0.925 −0.800

When the Bayes Net method used incorrect values for eW (the correct value is 90%)
performance was only slightly affected: using eW = 95% increased the average MSE to 8.569,
while using eW = 80% actually lowered the average MSE to 8.269. In fact, using eW = 80%,
improved Bayes Net MSE performance in 26 cases out of 40, while using eW = 95% only im-
proved Bayes Net performance 16 times out of 40. Thus, in the simulated data, putting less
weight on the explosion evidence seemed to improve performance, but this improvement
was not statistically significant (Wilcoxon signed rank test V = 540, p-value = 0.082).

The Bayes Net approach has a significantly longer run time than the other methods.
Whereas Bayes Global, Bayes Global+ and PESOS have run times of less than a second,
the run time of Bayes Net estimation is approximately 28 min, as implemented with the
sequential processing of grid cells. Processing grid cells in parallel with multiple cores
should shorten the Bayes Net run time significantly, but it is still likely to take considerably
longer than what mine warfare officers are accustomed to.
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4.3. Applying the Method to Sonar Data

This section illustrates the process of constructing a mine probability map from sonar
data and mine hunting evidence. The presented seafloor data was collected in a bay south
off the Elba island (Italy) on 30 September 2013 with a HISAS 1030 sonar mounted on
a HUGIN AUV [25]. First, a geographical grid with cell size 2 m × 2 m is imposed on
the survey area and TTS techniques [3] are used to compute the various performance
parameters within each grid cell. Figure 5a shows the resulting sonar image mosaic using
this grid. The water depth gradually decreases from more than 50 m in the lower right
corner to only 5 m in the upper left corner, as shown in Figure 5b. The seafloor conditions
vary with mostly smooth sediments in the deeper, lower half of the image, followed by a
region covered with seagrass that becomes scarce in the surf zone along the upper image
edge. These environmental factors significantly affect the estimated local mine hunting
performance, as is evident in Figure 6a,b, displaying the mine detection and classification
probability (pDC), and the false alarm probability (pFA), respectively. Figure 6a shows that
pDC is generally high in the smooth area with sediments, somewhat lower and varying in
the seagrass region, and low in the surf zone. Comparison of Figures 5a and 6b reveals that
pFA is high in image areas with significant small-scale texture.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) (b) 

Figure 5. (a) SAS image mosaic from the survey in the bay off Elba island; (b) Measured bathymetry and AUV tracks. 

  
(a) (b) 

Figure 6. TTS performance parameters obtained from processing of the SAS imagery. (a) pDC surface; (b) pFA surface. 

Manual analysis of the full-resolution SAS images (grid size 4 cm × 4 cm) from the 
survey yielded a list of nine MILCOs. The survey did not include optical identification of 
seafloor objects. In order to compute the marginal probability for the ‘Mine Still There?’ 
node of Figure 2, we have thus assumed that two of the MILCOs were identified as mines, 
six as NOMBOs, and the last MILCO was not identified. We further assume no neutrali-
zation was attempted. Figure 7 presents the resulting mine probability map from Bayesian 
evaluation. As individual cells are difficult to distinguish in the full map, the MILCO, 
NOMBO, and identified mine cells have been emphasized by distinct symbols (‘X’, ‘O’, 

Figure 5. (a) SAS image mosaic from the survey in the bay off Elba island; (b) Measured bathymetry and AUV tracks.

Manual analysis of the full-resolution SAS images (grid size 4 cm × 4 cm) from the
survey yielded a list of nine MILCOs. The survey did not include optical identification
of seafloor objects. In order to compute the marginal probability for the ‘Mine Still There?’
node of Figure 2, we have thus assumed that two of the MILCOs were identified as
mines, six as NOMBOs, and the last MILCO was not identified. We further assume no
neutralization was attempted. Figure 7 presents the resulting mine probability map from
Bayesian evaluation. As individual cells are difficult to distinguish in the full map, the
MILCO, NOMBO, and identified mine cells have been emphasized by distinct symbols (‘X’,
‘O’, ‘M’, respectively), which are color coded with the mine probability value of the cell. To
visualize the relatively small variations in the background (non-MILCO cells), the color
scale is logarithmic. The two cells with identified mines both achieve mine probability
values above 90%, while the MILCO cell has a value of 18%. The six NOMBOs cells have
probability values ranging from 0.5–2.8%, due to the geographical variations in pDC and
pFA. Mine probability maps such as Figure 7 provide detailed information for planning
further MCM efforts in the area, quantifying the risk for specific routes and thus selection
of the safest route for follow-on traffic. Figure 8 shows a 150 m × 150 m section of the map
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in Figure 7, centered on two of the identified contacts. The symbols have been omitted
because the individual cells are discernible in this zoom view.
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5. Discussion

The primary focus of this work is on estimating the number of mines remaining
in a mine threat area through the fusion of performance estimates from the detection,
classification, identification, and neutralization phases of mine hunting. The advancement
in robotics, sensing, and perception has allowed for a change in the method by which MCM
is evaluated, moving from a single probability [8] to a surface of probabilities that leverage
high fidelity TTS performance estimates. These surfaces, such as the one demonstrated
in Figure 7, represent the probability of a mine remaining in each geographical grid
cell. While the concept of leveraging through the sensor performance and georeferenced
performance grids has been presented previously in [5], this work employed embedded
Bayesian networks to enable full process estimates that do not require the completion of
each phase of MCM.

The ‘Bayes Net’ approach facilitates the incorporation of additional information from
mine neutralization, including both initial observations (explosions) and the results of
verification. This additional information has not previously been used in evaluation,
and thus is not available to competing methods. The study presented here suggests the
incorporation of this additional evidence improves performance at estimating the number
of deployed mines (M). In this regard, the suggested method performed significantly better
than the PESOS, Global Bayes and Global Bayes+ approaches.

An interesting observation from the representative network in Section 4.1 is that
the explosion evidence is the main driver of this improvement. While the results of
neutralization can be observed due to the sea surface expression of the neutralization,
verification remains the best way to ensure that mines really are neutralized.

In comparing the estimation results, the PESOS method’s performance generally
lagged the other methods, even though it performed comparably to the Bayes Nets up to
the results in Figure 3. The technique used in PESOS to convert the posterior for pM into a
posterior for M is likely the cause of the difference in performance.

The improved performance of the Bayes Net approach was robust to small changes in
the weight placed on explosion evidence. The sensitivity analysis proposed in Section 3.3
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examined the effects of modest changes to parameter eW, taking it from the actual value of
90% to 95% or 80%. Recall that eW is the probability that a neutralized mine will result in
an explosion that is detected at the surface, provided such an explosion is watched for. The
results showed little or no decline in relative estimation performance. Thus, the Bayes Net
performance edge does not require perfect knowledge of explosion probabilities.

The Bayes Net approach might seem challenging to use because of the large number
of parameters to set in Table 2; however, only the parameters above the line in that table
make a difference in estimation. The parameters below the line can remain at default levels.
Those parameters only matter in simulation, as they predict the decisions of human mine
warfare officers. Estimation uses actual decisions not predicted ones, so these parameters
simply have no effect on the probability computations (so long as they are not set to 0 or 1).

Another challenge for the Bayes Net approach is its long run time of nearly 30 min
(as implemented with the sequential processing of grid cells on a mid-range personal
computer). Without a significant improvement in speed, this amount of delay is certain to
strain the patience of mine warfare officers, who are used to sub-second response times
from their planning and evaluation support tools. Fortunately, parallel processing offers
significant potential for speed improvements, depending on the number of computer cores
available, because the Bayes Net approach treats grid cells independently. One might also
replace Equation (1) with an analytic closed form solution that does not rely on Bayesian
networks, but the computations involved are far from straightforward, as there are multiple
paths of inference. Still, the Bayes Net approach is likely to be used only in situations where
users have the option to wait for minutes for a more accurate result. Given that human
lives are at stake, waiting a bit longer for results should often be worthwhile.

While this work provides the capability to use additional information in MCM eval-
uation, it currently only considers one mine type over one area. Typically, MCM risk
evaluations will include multiple mine types, multiple segments, the environment, and
critical features of the vessels transiting the area to compute a risk index. Further work
will consider multiple mine types, as well as the evaluation of mine sweeping techniques.
Through the application of these techniques, in combination with the advanced capabilities
in sensing, perception, and robotics, high fidelity measurements make it possible to predict
the probability of mines remaining more accurately, thereby improving measurements of
follow-on risk, and allowing for the optimized application of further MCM resources.
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Appendix A

The details of how to specify conditional probability tables for the DAG in Figure 2,
based on the parameters given in Table 2, are given here in Figures A1–A3.
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