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Abstract: Some recent articles have revealed that synthetic aperture radar automatic target recogni-
tion (SAR-ATR) models based on deep learning are vulnerable to the attacks of adversarial examples
and cause security problems. The adversarial attack can make a deep convolutional neural net-
work (CNN)-based SAR-ATR system output the intended wrong label predictions by adding small
adversarial perturbations to the SAR images. The existing optimization-based adversarial attack
methods generate adversarial examples by minimizing the mean-squared reconstruction error, caus-
ing smooth target edge and blurry weak scattering centers in SAR images. In this paper, we build
a UNet-generative adversarial network (GAN) to refine the generation of the SAR-ATR models’
adversarial examples. The UNet learns the separable features of the targets and generates the adver-
sarial examples of SAR images. The GAN makes the generated adversarial examples approximate
to real SAR images (with sharp target edge and explicit weak scattering centers) and improves the
generation efficiency. We carry out abundant experiments using the proposed adversarial attack
algorithm to fool the SAR-ATR models based on several advanced CNNs, which are trained on
the measured SAR images of the ground vehicle targets. The quantitative and qualitative results
demonstrate the high-quality adversarial example generation and excellent attack effectiveness and
efficiency improvement.

Keywords: adversarial attack; adversarial example generation; UNet; generative adversarial network
(GAN); synthetic aperture radar (SAR); automatic target recognition (ATR)

1. Introduction

As an active imaging sensor, synthetic aperture radar (SAR) has the advantages
of collecting all-time, all-weather, high-resolution images [1–3]. SAR-automatic target
recognition (ATR) is a vital method to extract remote sensing information and plays an
essential role in earth monitoring, military and homeland security [4–7]. In the field of
SAR-ATR, deep convolutional neural networks (CNNs) have been proven powerful tools
due to their hierarchical feature extraction ability [8–12]. However, several works have
revealed that some security problems exist in these SAR-ATR models.

Szegedy et al. [13] first discover that by injecting well-designed tiny perturbations
into image samples, adversarial examples can be intentionally produced to cause the recog-
nition model to misclassify. This process of generating adversarial examples is named
as “adversarial attack”, which has become a recent study trend [14–19] in the research
field of remote sensing, radar, radio, etc. In radar signal processing, [14,15] verify that
high-resolution range profile (HRRP) and SAR image target recognition models can be
attacked successfully by well-designed adversarial examples. A faster C&W adversarial
attack algorithm [16] is proposed to effectively fool deep CNN-based SAR target classifiers
and meet real-time requirements. In the field of remote sensing, Li et al. [17] provide
abundant experiments and insightful analysis on the adversarial attack of the deep CNNs-
based remote sensing image scene classification. The work [18] systematically analyzes the
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influence of adversarial examples on classification results of remote sensing scene classi-
fiers based on deep neural networks (DNNs), which also demonstrates that the defense
capability of the classifiers to the adversarial examples can be significantly improved by
adversarial training. In terms of radio propagation, white-box and black-box adversarial
attack methods are explored in [20], showing the vulnerability of radio signals classification
based on DNNs to adversarial examples. Due to the openness of wireless communication,
the end-to-end learning communication system based on auto-encoders can be easily de-
stroyed by the well-designed adversarial perturbations [21]. Although several adversarial
attack algorithms have been proposed to generate adversarial examples, generating them
with high efficiency requires more exploration.

Various adversarial attack algorithms have been proposed in recent years. For ex-
ample, as a gradient-based method, the fast gradient sign method (FGSM) [22] produces
adversarial examples by taking a one-step update of the original image along with the
sign of the gradient of the cross-entropy classification loss function. The basic iterative
method (BIM) [23] and projected gradient descent (PGD) [24] are the iterative versions
of FGSM, which utilize the multiple steps gradient information to obtain better attack
effectiveness. The DeepFool [25] finds the closest distance from the input image to the
target classification boundary and performs an iterative attack to perturb the original image
beyond the classification boundary. However, the defensive distillation algorithm [26]
can defense against these existing adversarial attacks except the C&W attack [27]. As
an optimization-based method, the C&W attack [27] models the adversarial examples
generation as an optimization process that maximizing the confidence of the adversarial
examples labeled as a wrong category while minimizing the power of the adversarial
perturbations (mean-squared reconstruction error (MSE) loss). The C&W has acquired
excellent adversarial attack performance. According to the attributed scattering center
model, a SAR image of a target can be regard as the sum of the responses from various
individual scattering centers in different range-Doppler cells [28]. Hence, the C&W’s MSE
loss function is not suitable for SAR image adversarial example generation tasks, which
will cause smooth target edge and blurry weak scattering centers in SAR image adversarial
examples. Moreover, it is not appropriate for the adversarial attack task requiring an instant
response, since its iterative optimization process costs a lot of time.

To efficiently generate adversarial examples of SAR images with sharp target edges
and explicit weak scattering centers, in this paper, we propose to train a generator and
discriminator in an adversarial way. We build a UNet [29] to realize the generator, which
can extract the separable features of the targets from the whole SAR images to influence
the recognition results. Moreover, it concatenates the low-resolution and high-resolution
feature maps and learns the basic component scattering center information to generate a
more refined SAR image adversarial examples. The discriminator aims to encourage that
the generated adversarial examples are approximate to the real SAR images in sense of
data distribution. In general, we apply the generative adversarial networks (GANs) [30]
to efficiently produce high-quality adversarial examples for SAR images in white-box
condition by adversarial training.

Our contributions are listed as the following.

(1) We leverage a generator to generate adversarial examples through fast network map-
ping rather than the iterative optimization in the previous optimization-based meth-
ods. Therefore, the proposed adversarial attack algorithm provides the SAR-ATR
system with real-time attack capability.

(2) We utilize the UNet to learn the separable features of the targets to cause the misclassi-
fication of the recognition model. The UNet can also fuse the multi-resolution feature
maps, benefiting the generation of SAR image adversarial examples.

(3) By introducing a discriminator, we can train the generator to produce higher-quality
adversarial examples for SAR images by adversarial training, which can possess
sharper target edges and more explicit weak scattering centers and achieve better
attack performance.
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The rest parts of this article are arranged as follows. Section 2 describes the problem
definition of adversarial attack and our proposed algorithm in detail. In Section 3, we
evaluate our proposed models and report experimental results. Conclusions and future
works waiting to be explored are in Section 4.

2. Preliminaries
Adversarial Attack for SAR-ATR

Supposing X is the SAR image dataset. xn ∈ RW×H is the n-th SAR image sample
and yn is the corresponding ground truth category label of xn in the dataset X , where
W and H denote the width and height of the SAR image, respectively. F(·) is a target
recognition model that provide a correct category prediction of a SAR image. For a
commonly used deep CNN recognition model F(·) with a softmax output layer, given
an input SAR image sample x, the output of F(x) is p ∈ RS denoting the probability
distribution of the predicted categories, where ps ∈ [0, 1], ∑S

s=1 ps = 1 and S denotes the
number of the total target categories. The index of the predicted target category is an
integer C(x) = arg maxs(F(x)s) ∈ [1, 2, ..., S].

The aim of an adversarial attack for SAR-ATR is to generate the corresponding ad-
versarial example x̃ and make the SAR-ATR model misclassify. Meanwhile, x̃ needs to be
approximate to the original SAR image x under some distance metric so that their differ-
ences would not be perceived easily, where x̃ = x + δ, and δ is the added tiny adversarial
perturbation. The whole frameworks of SAR-ATR and adversarial attack for SAR-ATR are
shown in Figure 1.
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Figure 1. The whole framework of the SAR-ATR and the adversarial attack for SAR-ATR. (a) SAR-
ATR, (b) adversarial attack for SAR-ATR.

The commonly-used adversarial attack modes are introduced below.
Targeted attack: If there is a SAR image x and a designated category t 6= y, targeted

attack aims to find an adversarial example x̃ which is similar to x, subject to C(x̃) = t.
Namely, the targeted attack can cause the SAR-ATR model to mislabel the adversarial
example as the designated category.
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Non-targeted attack: If there is no designated category for the adversarial example,
the adversarial attack is reduced to a search for the adversarial example x̃ which is similar
to the original SAR image x, subject to C(x̃) 6= y, which is called a non-targeted attack.

3. Method

According to the attributed scattering center model, a SAR image of a target can be
regard as the sum of the responses from various individual scattering centers in different
range-Doppler cells [28]. The existing adversarial attack methods in SAR-ATR obtain the
adversarial examples by minimizing the mean reconstruction square error, which will lead
to the smooth target edge and the blurry weak scattering centers in the generated SAR
image. These generated adversarial examples are obviously different from the real SAR
images and possess poor deception. Therefore, to produce the adversarial examples with
the characteristics of SAR images (with sharp target edges and explicit weak scattering cen-
ters), we propose an Attack-UNet-GAN algorithm to improve the quality of the generated
adversarial example.

3.1. Attack-UNet-GAN

The overall architecture of our proposed Attack-UNet-GAN algorithm is shown in
Figure 2b, which is consisted of three modules: a generator G(·), a discriminator D(·)
and a SAR-ATR model F(·). In the optimization-based adversarial attack algorithms,
the adversarial examples of the test SAR images are generated by re-optimizing the loss
function iteratively, which is of high time cost. Therefore, to construct the fast mapping
from the original SAR images to the adversarial examples, we build the generator G(·).
The input of G(·) is the original SAR image x and its output is the adversarial example
x̃ = G(x). G(·) aims to learn the basic component scattering center information in the SAR
images and encourage the generated adversarial examples to be indistinguishable from the
original SAR images for the discriminator D(·). Furthermore, to generate more realistic
adversarial examples with the characteristics of SAR image, the generated adversarial
example x̃ is then sent into the discriminator D(·), whose function is to distinguish the
generated adversarial example x̃ from the real SAR images x as possible. Thus, G(·) and
D(·) are trained in an adversarial way and strengthen each other. To achieve the task of
attacking the SAR-ART model, we should first have a high-accuracy SAR-ART model F(·),
which takes the adversarial example x̃ as input and outputs its predicted target label.
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Figure 2. The comparison of the algorithms’ frameworks: (a) C&W and (b) Attack-UNet-GAN.
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3.1.1. The Design of Loss Function

Targeted Attack: According to Section 2, we can describe the process of a targeted
attack as the following constrained optimization problem:

min
x̃
Ldis(x̃, x), s.t. C(x̃) = t, x̃ ∈ [0, 1]W×H (1)

where Ldis is the distance metric used for the similarity measurement between the original
SAR image and the adversarial example. In this way, the differences between x and x̃
are limited to be as small as possible. Due to the non-differentiable characteristic of the
constraint C(x̃) = t, (1) is difficult to be solved, so some mathematical transformations are
needed. Here, we construct a function g1(·) to make C(x̃) = t and g1(x̃) ≤ 0 equivalent [27].
In this paper, the following expression of g1(·) is used:

g1(x̃) =
(

max
s 6=t

(F(x̃)s)− F(x̃)t

)+

, (2)

where s denotes the integer index of the target category. F(x̃)t denotes the predicted
classification probability of the designated category t. The (z)+ is a shortened form of
max(z, 0). Thus, we replace (1) by the following:

min
x̃
Ldis(x̃, x), s.t. g1(x̃) ≤ 0, x̃ ∈ [0, 1]W×H . (3)

Then, the method of Lagrange multipliers is applied, and we can derive the loss
function as follows:

L = min
x̃

(Ldis + Ladv)

= min
x̃

(Ldis(x̃, x) + λ · g1(x̃))
. (4)

For the box constraint x̃ ∈ [0, 1]W×H in (3), we use the sigmoid activation function to
solve it, which is described in detail in Section 3.1.3. In this paper, we utilize the l2-norm:

‖v‖2 =

√
∑n

i=1

(
|vi|2

)
to realize Ldis in (4). Then, the optimization problem waited to be

solved is

L = min
x̃

(‖x̃− x‖2 + λ · g1(x̃)), (5)

where g1(x̃) describes the distance between max
s 6=t

(F(x̃)s) and F(x̃)t. Minimizing the value of

g1(x̃) will encourage the perturbed SAR image to be mislabeled as the designated category
t. Minimizing the value of ‖x̃− x‖2 aims to limit the power of the added adversarial
perturbation. Note that the adversarial attack loss Ladv should describe the opposite of the
difference between the predicted probability of the designated category t and the highest
predicted probability among the other categories in the targeted attack, or the difference
between the predicted probability of the ground truth category y and the highest predicted
probability among the other categories in the non-targeted attack [27].

A smaller g1(x̃) means the probability of the input SAR image classified as the des-
ignated category t is higher. If max

s 6=t
(F(x̃)s) is optimized to be just smaller than F(x̃)t, the

optimization of the loss function (5) will be finished. Hence, we introduce a threshold η to
form a soft hinge loss on Ladv as

g1(x̃) = max
(
−η, max

s 6=t
(F(x̃)s)− F(x̃)t

)
, (6)
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which means that the optimization will not be stopped until max
s 6=t

(F(x̃)s) is η smaller than

F(x̃)t. It can elevate the final probability of the input SAR image classified as the designated
category t.

In this way, the loss function in targeted attack mode can be represented as:

L = min
x̃

(
‖x̃− x‖2 + λ ·max

(
−η, max

s 6=t
(F(x̃)s)− F(x̃)t

))
. (7)

Non-targeted Attack: For a non-targeted attack, there is no designated category for
the adversarial examples to be mislabeled as. In this way, the loss function in the non-
targeted attack just aims to realize the misclassification of an adversarial example to a
wrong category. Therefore, we should construct the Ladv in the loss function to describe
the difference between the predicted probability of the ground truth category y and the
highest predicted probability among the other categories [27]. Here, we replace (4) by the
following loss function in the non-targeted attack:

L = min
x̃

(Ldis + λ · Ladv)

= min
x̃

(‖x̃− x‖2 + λ · g2(x̃))
, (8)

where g2(x̃) measures the difference between the predicted probability of the wrong
category and the predicted probability of the ground truth category y. The selected
expression of g2(x̃) is as the following:

g2(x̃) =
(

F(x̃)y −max
s 6=y

(F(x̃)s)

)+

, (9)

where F(x̃)y denotes the probability of the adversarial example x̃ recognized as the ground
truth category y. In order to elevate the robustness of the algorithm and the misclassification
confidences of the adversarial examples, we also introduce a threshold η. Then g2(x̃) can
be written as:

g2(x̃) = max
(
−η, F(x̃)y −max

s 6=y
(F(x̃)s)

)
, (10)

which means that the optimization of adversarial example x̃ will not be stopped, until
F(x̃)y is η smaller than max

s 6=y
(F(x̃)s).

Hence, the loss function for optimizing the adversarial example x̃ in the non-targeted
attack can be written as:

L = min
x̃

(
‖x̃− x‖2 + λ ·max

(
−η, F(x̃)y −max

s 6=y
(F(x̃)s)

))
. (11)

3.1.2. The Introduction of UNet and GAN

To realize the real-time generation of the adversarial example, a generator Gθ(·) is built
as shown in Figure 2, replacing the iterative searching process of the adversarial example
in the C&W algorithm. The input of the generator Gθ(·) is the original SAR image x, and
its output is the adversarial example x̃ = Gθ(x). Therefore, the x̃ in (7) and (11) can be
replaced by Gθ(x̃). Moreover, to generate the adversarial examples with the characteristics
of SAR images, we also introduce a discriminator Dφ(·) to construct an adversarial training
method, as shown in Figure 2. The input of the discriminator is the adversarial example x̃
or original SAR image x, and its output is a scalar indicating whether the input is a real
SAR image. The generator aims to generate the adversarial example x̃ that is similar to the
real SAR image x in the sense of data distribution, so as to deceive the discriminator Dφ(·).
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The goal of the discriminator Dφ(·) is to distinguish the adversarial example x̃ from the
original SAR image x. So the adversarial training loss [30] can be expressed as:

LGAN = Ex log Dφ(x) +Ex log
(
1− Dφ(x̃)

)
= Ex log Dφ(x) +Ex log

(
1− Dφ(Gθ(x))

) , (12)

where we denote the Ex ≡ Ex∼pdata , θ and φ are the parameters of the generative network
and discriminative network, respectively. Note that the adversarial training loss aims to
encourage the data distribution of the generated adversarial examples approximate to
that of the real SAR images, leading to the generated adversarial examples with sharp
target edges and explicit weak scattering centers. Thus, the generated adversarial examples
possess the characteristics of SAR images and are highly deceptive.

Finally, the whole loss function of the algorithm Attack-UNet-GAN can be expressed
as the following:

L = Ldis + λ · Ladv + LGAN, (13)

where λ > 0 is a suitably chosen constant that controls the relative importance of misclassi-
fication loss Ladv.

For the optimization of the networks Gθ(·) and Dφ(·), we solve the min-max game
arg minθmaxφL by alternating the iterative optimizations of Gθ(·) and Dφ(·). When we
fix the parameters φ and optimize minθL = minθ(Ldis + λ · Ladv) + minθ(LGAN), the
optimization of the first term minθ(Ldis + λ · Ladv) can make the target recognition model
misclassify and the added adversarial perturbations imperceptible. The optimization of
the second term minθ(LGAN) = minθ

(
Ex log

(
1− Dφ(Gθ(x))

))
can make the output of

Dφ(Gθ(x)) approach 1, that is, Gθ(·) can make the generated adversarial examples Gθ(x)
similar to the real SAR images. When we fix the parameters θ and optimize maxφL =
maxφ(LGAN) = maxφ

(
Ex log Dφ(x) +Ex log

(
1− Dφ(Gθ(x))

))
, the optimization of it can

make the output of Dφ(x) approach 1 and the output of Dφ(Gθ(x)) approach 0, that is,
Dφ(·) can make the discriminator distinguish the real SAR images and the generated
adversarial examples as possible. Thus, the generator and discriminator can be optimized
in an adversarial way. The whole training process is outlined in Algorithm 1. Once Gθ(·)
is well-trained on the training SAR image data and SAR-ATR model, it can produce an
adversarial example for each test SAR image through the one-step network mapping
instead of the iterative optimization of the adversarial perturbations.

Algorithm 1 An example for the training process in Attack-UNet-GAN algorithm

1: Train a high-accuracy deep CNN-based SAR-ATR model F(·).
2: Build a generator Gθ(·) and a discriminator Dφ(·).
3: Initialize generator parameters θ and discriminator parameters φ.
4: Set the appropriate mini-batch size, learning rate and network parameters and so on.
5: for number of training iterations do
6: Sample a mini-batch of m SAR images

{
x(1), ..., x(m)

}
from the training dataset,

whose corresponding ground truth labels are
{

y(1), ..., y(m)
}

;
7: Feed the mini-batch of SAR images into the generator Gθ(·) to generate the adversar-

ial examples
{

x̃(1), ..., x̃(m)
}

and get the loss function Ldis;
8: Feed the generated adversarial examples into the SAR-ATR model F(·) to output the

prediction probability for each category and get the loss function Ladv;
9: Feed the generated adversarial examples and original SAR images into the discrimi-

nator Dφ(·) alternately and get the loss function LGAN;
10: Update the parameters θ and φ by SGD alternately on the whole loss function

arg minθmaxφL in (13)
11: end for
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3.1.3. The Detailed Network Architecture

The discriminator D: The detailed network architecture of the discriminator D is
shown in Figure 3. Its input is the adversarial example x̃ or original SAR image x with
the size of 128× 128. There are five blocks in the discriminator, each of which contains
a 4× 4 convolutional layer with the stride size of 2 and padding size of 1 followed by a
batch-normalization layer. The activation function between each block is a leaky ReLU
function. The output layer is a sigmoid layer and outputs a scalar indicating whether the
input sample is an original SAR image.

512@4 4

32@64 64

64@32 32

128@16 16

256@8 8
1@1 1

1@128 128

Cov 4×4, Stride 2, Padding 1;
Leaky ReLU

Batch-Norm

Cov 4×4, Stride 1;
Sigmiod

Figure 3. The network architecture of the discriminator D in detail.

The generator G: In this paper, we introduce a UNet to realize the generator G and
generate the adversarial examples. The UNet is initially proposed for the task of medical
image segmentation [29]. It is a symmetric U-shaped deep CNN, which is consisted of an
encoder and a decoder. The encoder is a stack of convolution, activation and pooling layers
learning the separable features and basic component scattering center information. The
sizes of the extracted feature maps are reduced by the encoder, which are then progressively
expanded by the decoder. The decoder realizes the SAR image adversarial example
generation with transposed convolutions. It combines the different resolution feature
maps by a sequence of up-convolutions and the concatenation with corresponding feature
maps of the same size from the encoder. This combination causes more sufficient feature
information to be propagated to the higher resolution layers of the decoder, which can
benefit the precise SAR image adversarial example generation.

The detailed UNet architecture is illustrated in Figure 4. The network architecture
is symmetric for the encoder and decoder. The size of the input SAR image is 128× 128.
The number of layers, the resolution of each feature map and the number of feature map
channels are also shown in Figure 4. The block of the encoder is consisted of two 3× 3
convolution layers followed by a 2× 2 max-pooling layer. The block of the decoder contains
a 2× 2 up-convolution layer followed by two 3× 3 convolution layers. The output is the
adversarial example, whose size is equal to that of the input SAR image. Note that we take
the sigmoid layer as the output layer of the UNet, to restrict the values of the generated
adversarial examples to the range of [0, 1].



Remote Sens. 2021, 13, 4358 9 of 20

1 64 64

1
2

8

1
2

8

1
2

8
128 128

6
4

2

6
4

2

6
4

2

256 256

3
2

2

3
2

2

3
2

2

512 512

1
6

2

1
6

2

1
6

2

1024

8
2

8
2 8
2

1024

1
6

2

512

1
6

2

1
6

2

256

3
2

2

3
2

2

512

128

6
4

2

6
4

2

256

6
4

2

64 64

1
2

8

1
2

8

1
2

8

1

1
2

8

128

conv 3×3, ReLU

copy and crop

max pool 2×2

up-conv 2×2

conv 1×1

3
2

2

c1

c2

c3

c4
u6

u7

u8

u9

c6

c7

c8

c9

c5

Figure 4. The network architecture of the generator G (UNet) in detail.

4. Experiment

In this section, we use the well-trained SAR-ATR models on the public measured SAR
image data to verify and test our proposed adversarial attack algorithm. We compare its
attack performance with others competitive adversarial attack algorithms by attacking
these deep CNN models. The experiments prove our algorithm’s competitive effectiveness,
excellent efficiency and high-quality adversarial example generation.

4.1. Dataset and Experimental Setup
4.1.1. Dataset

The famous public measured SAR image data of the ground vehicle targets, the moving
and stationary target acquisition and recognition (MSTAR) dataset [31,32], is utilized in
our experiment. It is provided by the Air Force Research Laboratory and the Defence
Advanced Research Projects Agency (AFRL/DARPA) [31]. This SAR image dataset is
acquired leveraging the X-band HH polarization “STARLOS” spotlight SAR platform with
the resolution of 0.3 m × 0.3 m. As the significant dataset for SAR-ATR performance
evaluation, it contains abundant SAR images of vehicle targets and ground clutter. There
are ten categories of vehicle targets in the dataset, such as BTR70, BTR60, BRDM2 and
BMP2 (armored personnel carrier); 2S1 (rocket launcher); D7 (bulldozer); ZIL131 (truck);
T62 and T72(tank); ZSU234 (air defense unit) [33], which are indexed by category labels 1,
2, ..., 10, respectively. These SAR images in each category cover all target-aspect angles in
the range of [0◦, 360◦] with a relative flat grass or exposed soil background. The adjacent
target-aspect angle intervals are within [1◦, 2◦]. Notice that all targets are stationary targets.
The optical images and corresponding SAR images of the targets are displayed in Figure 5.

We rescale the collected SAR images as 128× 128 pixels and obtain 5950 slice images.
Each slice image is labeled as one of the ten kinds of targets. In addition, we carry out the
amplitude normalization pre-processing to guarantee that the value of each SAR image
pixel is limited within the range of [0, 1]. To validate the proposed algorithm’s general-
ization capability, the target-depression angles of the training and test SAR images are
different. The target-depression angles and the numbers of the training and test images
before the data augmentation are also listed in Table 1. In the training phase of the SAR-
ATR models, the commonly used training data augmentation techniques [10], such as pose
synthesis, translation and speckle noising, are also applied to alleviate the effects of overfit-
ting and get the high-accuracy SAR-ATR models. Specifically, we first use one SAR image
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to produce 10 synthesized pose SAR images (rotating the SAR images). Then, they are
translated by five times randomly. Finally, we perform the speckle noising augmentation
operations on each translated SAR image with the parameter a (the maximum intensity of
noise samples) set as 0.5, 1.0 and 1.5 [10].

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. SAR images of all the ground targets in the MSTAR dataset and their corresponding optical
images. (a) 2S1, (b) BMP2, (c) BRDM2, (d) BTR60, (e) BTR70, (f) D7, (g) T62, (h) T72, (i) ZIL131,
(j) ZSU234.

Table 1. The Numbers and target-depression angles of the training and test SAR images for SAR-ATR
before the data augmentation.

Training Testing

Class Depression Angles Number Depression Angles Number

2S1 15◦ 196 17◦ 233
BRDM2 15◦ 196 17◦ 233
BTR60 15◦ 196 17◦ 232

D7 15◦ 195 17◦ 256
T72 15◦ 274 17◦ 299

BMP2 15◦ 274 17◦ 298
BTR70 15◦ 274 17◦ 299

T62 15◦ 273 17◦ 299
ZIL131 15◦ 274 17◦ 299
ZSU234 15◦ 274 17◦ 299

4.1.2. Baselines and Experimental Setup

The following adversarial attack algorithms are the baselines compared with our algo-
rithm:

• Fast Gradient Sign Method (FGSM) [22]: Adversarial examples are generated by
taking one-step update of the input along with the sign of the gradient of the cross-
entropy loss function.
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• Basic Iterative Method (BIM) [23]: It is an extension of the FGSM by running a finer
optimization for multiple iterations.

• Project Gradient Descent (PGD) [24]: It is an iterative version of the FGSM, which
takes multiple small steps iteratively while randomly adjusts the updating direction
after each step.

• DeepFool [25]: It finds the closest distance from the original image to the classification
boundary and performs an iterative attack to perturb the original image beyond the
classification boundary.

• Carlini and Wagner’s Attack (C&W) [27]: The adversarial examples are generated by
maximizing the probability of the adversarial example labeled as a wrong category
while minimizing the power of the adversarial perturbations.

For the attacked SAR-ATR model, we use the standard deep learning classifiers,
AlexNet [34], VGGNet16 [35] and ResNet32 [36], which are trained on the MSTAR dataset
and have a classification accuracy of over 96%. The generator G is realized by a UNet [29]
making the output and input SAR image size the same, whose detailed architecture is
shown in Figure 4. For the discriminator D, the deep CNN [37] shown in Figure 3 is utilized
to achieve it. For the distance metric function in this paper, we choose the l2-norm. To
optimize the generator and discriminator parameters, we adopt the Adam optimizer [38]
with the learning rate 10−4, the hyperparameter β1 = 0.5, β2 = 0.999, and the training
batch size 64. We carry out all experiments in a Python program on a personal computer
with a 3.7 GHz CPU, a 64 GB RAM, and a 24 GB NVIDIA Geforce RTX 3090 GPU.

4.2. Evaluation Measurements

Suppose that there are N test SAR images that can be classified correctly by the SAR-
ATR model in total. The adversarial examples are generated from these N SAR images in
the test dataset.

Targeted Attack: The attack success rate in the targeted attack mode is calculated by
the following formula:

Acctargeted = ∑N
n=1 I

(
C(x̃n) = t(n)

)/
N, (14)

where I(·) denotes the indication function, C(x̃n) is the predicted category of the adversarial
example x̃n, and t(n) is the designated category of the n-th adversarial example.

Non-targeted Attack: Without the designated category, the attack success rate in the
non-targeted attack mode is calculated by the following formula:

Accnon−targeted = ∑N
n=1 I

(
C(x̃n) 6= y(n)

)/
N, (15)

where y(n) is the ground truth category of the n-th original SAR image.

4.3. Attack Performance Comparison

In this experiment, we attack different SAR-ATR models based on the deep CNNs
(AlexNet, VGGNet16, ResNet32) under the condition of the white-box attack, which means
that the network structures and parameters of the recognition models are known. The
attack success rates of different adversarial attack algorithms for different recognition
models in targeted and non-targeted attack modes are shown in Tables 2 and 3, respectively.
The attack success rates can reflect the effectiveness of the adversarial attack algorithms.

Among these adversarial attack algorithms, FGSM, BIM, PGD and DeepFool are
gradient-based algorithms. C&W and Attack-GAN belong to optimization-based algo-
rithms. BIM has higher attack success rates than FGSM, because it utilizes the multiple-step
gradient information to acquire a more precise optimization result. PGD performs better
than BIM, since it not only takes multiple small steps gradient update iteratively as BIM,
but also randomly adjusts the direction after each step to search for a better adversarial
example. The attack success rates of Attack-UNet-GAN are much higher than those of
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FGSM and competitive with those of the other four baseline algorithms. Attack-UNet-GAN
can attack the SAR-ATR models more successfully than the Attack-UNet (without discrim-
inator D). Due to the introduction of the discriminator D, the adversarial training loss
can improve the data description ability of the generator G to generate better adversarial
examples. In terms of attack success rate, Attack-UNet performs better than Attack-CNN,
whose generator is realized by an 8-layer CNN with 1× 1 convolution kernels, since the
UNet fuses the multiple resolution feature maps’ information and helps the more sufficient
feature information be propagated to the higher resolution layers of the decoder to generate
the better adversarial examples.

Table 2. The performances of different adversarial attack algorithms for different SAR-ATR models
in terms of attack success rate under the condition of targeted attack.

Targeted Attack AlexNet VGGNet16 ResNet32

FGSM 95.34 87.19 75.55
BIM 98.08 97.41 97.84
PGD 98.73 98.01 98.57

DeepFool 97.91 97.02 98.26
C&W 98.59 97.84 98.62

Attack-CNN 94.79 93.86 94.38
Attack-UNet 97.85 97.26 98.11

Attack-Unet-GAN 98.47 97.63 98.39

Table 3. The performances of different adversarial attack algorithms for different SAR-ATR models
in attack success rate under the condition of non-targeted attack.

Non-Targeted Attack AlexNet VGGNet16 ResNet32

FGSM 96.21 88.34 77.62
BIM 98.56 97.53 98.02
PGD 98.91 98.15 98.52

DeepFool 98.31 97.25 98.17
C&W 98.77 97.92 98.69

Attack-CNN 95.03 94.45 94.91
Attack-UNet 97.93 97.14 98.02

Attack-UNet-GAN 98.59 97.74 98.57

4.4. Comparation of the Generation Speed

To compare the calculation efficiency of each adversarial attack algorithm, we generate
adversarial examples of the same test SAR image with 128× 128 pixels under the same
calculation condition and record the running time of each algorithm’s program. The time
cost of generating a 128× 128 pixels SAR image’s adversarial example for different adver-
sarial attack algorithms is shown in Table 4. Among all these algorithms, the algorithms
based on our proposed framework possess the fastest adversarial example generation
speed, since they gain the adversarial example through the fast network mapping of the
generator, rather than the iterative optimization in the C&W algorithm or the multiple cal-
culations of the input test SAR images’ gradients in the BIM or PGD algorithm. Especially,
compared with the C&W algorithm, the generation speed of the adversarial example for
Attack-UNet-GAN is improved hundreds of times.

Table 4. Time complexity of different algorithms for generating an adversarial example for a 128× 128 pixels SAR image.

FGSM BIM PGD C&W DeepFool Attack-CNN Attack-UNet Attack-UNet-GAN

Time (s) 0.0091 0.6152 0.4985 0.8537 0.2863 0.0025 0.0039 0.0039
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4.5. Influence of the Constant λ

To study the influence of the constant λ in (13) on the attack performance, we use
the Attack-UNet-GAN algorithm to attack the SAR-ATR model based on ResNet32 for
the values of λ located uniformly (on the log scale) from λ = 0.001 to λ = 100. We plot
the attack success rates and MSE distances for different values of λ in Figure 6. We can
see that when λ ≤ 0.01, the attack rarely succeeds. The attack success rate gradually
increases to almost 100%, when the value of λ varies from 0.01 to 1. When λ ≥ 1, the
differences between the original SAR images and the generated adversarial examples
become more apparent, but the attack always succeeds. Therefore, in our experiments, we
set the value of λ as 1 to weigh the deception and attack performance of the generated
adversarial examples.

Value of 6
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Figure 6. The influence of the constant λ on the attack performance. We plot the attack success rate
and MSE loss between the adversarial example and original SAR images as a function of λ.

4.6. Visualization of the Adversarial Examples

In this section, we carry out experiments to show the deception performace of the
generated adversarial examples by different attack algorithms. The generated adversarial
examples and the corresponding adversarial perturbations by different adversarial attack
algorithms in targeted and non-targeted attacks are shown in Figures 7 and 8. The attacked
SAR-ATR model is based on the same ResNet32 for all adversarial attack algorithms.
The predicted categories of the adversarial examples by the high-accuracy SAR-ATR
model and the misclassified confidences to the wrong category for different adversarial
attack algorithms are shown above the corresponding adversarial examples. We can
see that the adversarial perturbations of FGSM, PGD, and BIM cover most parts of the
SAR images. For C&W and DeepFool, the adversarial perturbations are mainly located
on the SAR images’ shadow regions. Attack-UNet and Attack-UNet-GAN can mainly
concentrate the adversarial perturbations on the target regions of the SAR images, because
the target region of a SAR image possesses much more separable information benefiting
the target recognition task than the background clutter and shadow regions. Thus, Attack-
UNet and Attack-UNet-GAN can learn and utilize this separable information through
the generator G to help produce the adversarial examples and fool the SAR-ATR model.
In Figures 7g and 8g, the target edges are sharper and the weak scattering centers of the
target are more explicit than those in Figures 7h and 8h, such as the regions surrounded by
the red ellipses. Because the introduction of the discriminator D can help the generated
adversarial examples approximate to real SAR images in the sense of data distribution
and make them possess the characteristics of SAR images. For the DeepFool attack, there
are some generated adversarial examples that can fool the SAR-ATR model successfully.
However, the added adversarial perturbations are too strong, making the differences
between the original SAR images and adversarial examples conspicuous.
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Figure 7. (a) Original SAR images of the targets. The first row shows the adversarial examples produced by different attack
algorithms in the targeted attack mode; the second row shows the corresponding adversarial perturbations. The predicted
categories and confidences of the adversarial examples are listed above them. The corresponding attack algorithms:
(b) FGSM, (c) BIM, (d) PGD, (e) DeepFool, (f) C&W, (g) Attack-UNet and (h) Attack-UNet-GAN.
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Figure 8. (a) Original SAR images of the targets. The first row shows the adversarial examples produced by different
attack algorithms in the non-targeted attack mode; the second row shows the corresponding adversarial perturbations.
The predicted categories and confidences of the adversarial examples are listed above them. The corresponding attack
algorithms: (b) FGSM, (c) BIM, (d) PGD, (e) DeepFool, (f) C&W, (g) Attack-UNet and (h) Attack-UNet-GAN.

4.7. Display of the Learned Features in UNet

To exhibit the excellent target feature extracting ability of the UNet for the SAR
images, we visualize the hierarchical representations of the SAR image features extracted
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by different CNN layers of the UNet in Figure 9. In the first row of Figure 9, they are the
features from the UNet’s encoder. It can be observed that the closer the layer is to the input
original SAR image, the more specialized the leaned features are. On the contrary, the
farther the layer is to the input SAR image, the more fundamental the leaned features are.
The features of the fourth layer (Figure 9(c4)) in the encoder can be regarded as different
basic strong scatter centers to construct all of the SAR target images. The features of the
third layer (Figure 9(c3)) in the encoder are the component structures used to constitute
the SAR images of the targets, such as spheres, dihedrals, trihedral, corner diffractions,
etc. Further, the features learnt by the first layer (Figure 9(c1)) in the encoder possess more
structure information, we can find different regions of the SAR image, such as the target,
shadow and clutter regions. In the second row of Figure 9, they are the features from
the UNet’s decoder. It can be seen that the closer the layer is to the output adversarial
example, the more specialized the learned feature are, which is symmetric to that of the
UNet’s encoder.

c4 c3 c2 c1

c6 c7 c8 c9

Figure 9. The display of the feature maps learned by the generator (UNet) in different layers. The first row displays the
feature maps learned by the encoder of UNet; the second row displays the feature maps learned by the decoder of UNet.
The corresponding layer indexes of the feature maps in Figure 3 are displayed below each feature map.

4.8. Separability of the Extracted Features

In this section, we represent the separability of the features extracted by the UNet. We
visualize the original SAR images and high dimensional features extracted by the generator
of Attack-UNet-GAN by utilizing T-SNE [39] to map them to the two-dimensional subspace
in Figure 10a,b, respectively. The features are extracted by the last layer in the UNet’s
encoder (the layer c5 in Figure 4). In Figure 10, each dot represents a SAR image or
the feature of a SAR image, and each color denotes a category. It can be seen that the
features learned by the generator are more separable and discriminative than the original
SAR images of the targets. That is, the generator of our model extracts the features with
prominent separability, which can help generate adversarial examples and cause the SAR-
ATR model to misclassify.
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Figure 10. The separability of the original SAR images and features extracted by the generator (UNet) of Attack-UNet-GAN.
The SAR images and the features are mapped to the two-dimensional subspace by T-SNE shown as the dots on the plane.
Each dot represents a SAR image or the feature of a SAR image, and each color denotes a category. (a) the original SAR
images, (b) the features extracted by the UNet.

4.9. Misclassified Category Distributions of the Adversarial Attack

To explore the misclassified category distribution of all adversarial examples, we
calculate the misclassified categories for different adversarial attack algorithms. The
misclassified category distributions show the percentages of the adversarial examples
mislabelled as each of others target categories to all the adversarial examples of the ground
truth label. We find that the misclassified categories are highly concentrated. As shown
in Figures 11 and 12, we use pie charts to visualize the distributions of the misclassified
categories of the adversarial attack algorithms based on the MSTAR SAR image dataset.

The misclassified category distributions of adversarial attack algorithms are shown in
Figures 11 and 12. The ground truth category of all adversarial examples is D7 (bulldozer).
Figure 11 shows the misclassified category distributions of the adversarial examples gener-
ated by six different attack algorithms for the same SAR-ATR model based on ReNet32.
Figure 12 shows the misclassified category distributions of the adversarial examples gener-
ated by the same attack algorithm for three different deep CNN-based recognition models.
In the pie charts, a color denotes a misclassified category. The percentage denotes the ratio
of the number of the adversarial examples misclassified as the corresponding category to
the total number of adversarial examples. In Figures 11 and 12, it can be seen that although
the adversarial examples are generated by different adversarial attack algorithms or for
different attacked recognition models, their major misclassified categories are almost the
same. For example, the BRDM2 (armored personnel carrier) is the major misclassified
category of the adversarial examples for the original SAR images of the D7 (bulldozer). The
reasons for this phenomenon may be the homogeneity and heterogeneity among categories.
As it is found in the work [40] that the misclassified categories of the adversarial examples
are more probably to be the categories that are closer to them in the sample’s feature space.
Meanwhile, it can be observed that the similarity among the SAR images from different
categories can be well reflected by the misclassified category distributions. For example, the
armored personnel carrier is the major misclassified category of the adversarial examples
from the bulldozer, representing that the armored personnel carrier and bulldozer may
possess a strong similarity in the feature space or original SAR image space.
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Figure 11. The misclassified category distributions of the adversarial examples (ground truth category: D7) generated by
different attack algorithms for the same ResNet32-based SAR-ATR model. The misclassified category distributions show
the percentages of the adversarial examples mislabelled as each of others target categories to all the adversarial examples of
D7. (a) FGSM, (b) BIM, (c) PGD, (d) C&W, (e) DeepFool, (f) Attack-UNet-GAN.
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Figure 12. The misclassified category distributions of the adversarial examples (ground truth category: D7) generated by
the same attack algorithms for different SAR-ATR models. The misclassified category distributions show the percentages
of the adversarial examples mislabelled as each of others target categories to all the adversarial examples of D7. The first
row shows the distribution of FGSM; the second shows the distribution of Attack-UNet-GAN. (a) AlexNet, (b) VGGNet16,
(c) ResNet32.
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5. Discussion

The experiment results of Section 4.4 demonstrate the excellent adversarial example
generation speed. Compared with the C&W algorithm, the generation speed is promoted
even hundreds of times. The reason is the utilization of the generative network’s fast
mapping. By utilizing a large number of training SAR images to train the generative
network, it can well learn the basic features existing in SAR images to help build the
mapping from the SAR image space to the adversarial example space. From the experiment
results of Section 4.6, we observe that the introduction of GAN makes the generated SAR
image adversarial examples possess sharp target edges and explicit weak scattering centers,
because the adversarial training forces the generated adversarial examples to approximate
the original SAR images in the sense of data distribution. Thus, the generated adversarial
examples can possess the characteristics of real SAR images and stong deception. The ex-
periment results of Sections 4.7 and 4.8 illustrate the UNet’s powerful extraction capabilities
of separable features and basic component scattering center information, which can benefit
the generation of adversarial examples and cause the SAR-ATR model to misclassify.

From the experiment results of Section 4.3, we can conclude that the Attack-UNet-GAN
algorithm has a competitive performance in terms of attack success rate with the baseline
algorithms, since the baseline algorithms can update the adversarial examples iteratively
leveraging the test data information. However, the Attack-UNet-GAN algorithm utilizes
the well-trained generative network to yield the adversarial example in real-time, which
is suitable for the adversarial attack of the SAR-ATR systems requiring instant responses.
Therefore, we can study the improvement of the attack algorithm’s generalization capability
to make the algorithm has a higher attack success rate on the different test SAR images in
the future. Moreover, the proposed algorithm can be improved further to provide help
for jamming remote sensing monitoring system and deflecting important information
acquisition from remote sensing images.

We also evaluate the attack performance on the measured SAR images dataset, Open-
SARShip. We build the dataset by the SAR images of the ship targets, such as Cargo,
Fishing, Tanker, Tug and Other-type. The numbers of the SAR images of Cargo, Fish-
ing, Tanker, Tug and Other-type targets are 8130, 126, 1618, 172, 942, respectively. We
use the half of each target’s SAR images to construct the training dataset and the other
half to construct the test dataset. The used SAR-ATR model is ResNet32. The average
target classification accuracy is 78.48%. Then we use the baseline attack algorithms and
Attack-UNet-GAN to attack the SAR-ATR model. We find that the generated adversarial
examples are obviously different from the original SAR image of the target. Moreover,
the attack success rates of these attack algorithm are very low. These attack algorithms
do not perform well on the OpenSARShip dataset, probably because the resolutions of
these SAR images are too low and the detailed information of the targets is not obvious.
The adversarial attack algorithm can not make the SAR-ATR model misclassify by only
modifying the original SAR image a little. That is, these attack algorithms are more suitable
for attacking the SAR-ATR models of the high-resolution SAR images.

6. Conclusions

In this paper, an adversarial attack method based on UNet and GAN for deep learning
SAR-ATR models is proposed. For our Attack-UNet-GAN algorithm, once well trained,
the generator can produce adversarial examples efficiently through the network mapping
for the test SAR images, replacing the time-consuming iterative re-optimization. By intro-
ducing the discriminator, the generated adversarial examples possess the characteristics
of SAR images and are more deceptive, with sharper target edges and more explicit weak
scattering centers. Utilizing the measured SAR image dataset, we demonstrate the strong
attack performance of our algorithm in attack success rate, computation efficiency based
on different deep learning recognition models. There are some potential future works to
be explored. In practical applications, the relevant information of the SAR-ATR model
is usually unknown, so it is more practical to propose a black-box adversarial attack al-
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gorithm. We consider using the learning ability of the distillation network to construct
such a black-box adversarial attack model. Moreover, the transferability of the generated
adversarial examples for SAR images needs to be deeply explored. It is expected to propose
an attack algorithm to generate the adversarial examples with strong transferability to
attack more types of SAR-ATR models successfully.
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