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Abstract: In recent years, satellite precipitation products (SPPs) have emerged as an essential source
of data and information. This work intends to summarize lessons learnt on using SPPs for drought
monitoring and to propose ways forward in this field of research. A thorough literature review was
conducted to review three aspects: effects of climate type, data record length, and time scale on
SPPs performance. The conducted meta-analysis showed that the performance of SPPs for drought
monitoring largely depends upon the climate type of the location and length of the data record.
SPPs drought monitoring performance was shown to be higher in temperate and tropical climates
than in dry and continental ones. SPPs were found to perform better with an increase in data
record length. From a general standpoint, SPPs offer great potential for drought monitoring, but the
performance of SPPs needs to be improved for operational purposes. The present study discusses
blending SPPs with in situ data and other lessons learned, as well as future directions of using SPPs
for drought applications.

Keywords: drought; Koppen climate; drought monitoring; satellite precipitation products

1. Introduction

Precipitation is one of the major components of the Earth’s hydrological cycle [1].
In recent years, satellite precipitation products (SPPs) have emerged, making SPPs an
essential data source for climatological and hydrological studies [2,3]. SPPs are typically
retrieved from passive microwave, satellite-based infrared, and space-borne precipitation
radar [4]. There are now many SPPs available, such as Climate Prediction Center MOR-
PHing method (CMORPH) [5], Climate Hazards Group infrared precipitation with station
data (CHIRPS) [6], integrated multi-satellite retrievals for GPM (IMERG) [7], precipitation
estimation from remotely sensed information using artificial neural networks—climate data
record (PERSIANN-CDR) [8], tropical rainfall measuring mission (TRMM) [9] and many
others. SPPs have proven to provide data at a high spatial and temporal scale [10]. More-
over, they are capable of producing precipitation data even in inaccessible areas [11–13].

Drought monitoring, defined as tracking the frequency, duration, severity, and where-
abouts of drought, is vital for water resources planning and management [14]. Drought
monitoring information can help reduce the risk and impact of drought if conveyed to the
decision-makers in a timely and correct format [15,16]. In recent years, drought events have
become more frequent and severe due to increased water demands and climate change [17].
One of the consequences of climate change is an increase in the frequency and occurrence
of extreme events [18,19]. Among these extreme events, droughts have the most prolonged
and severe effects and are one of the least predictable [20]. In recent years, several drought
events have impacted tropical, temperate, and dry regions worldwide [21,22]. In addition,
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numerous studies have indicated that precipitation is the precursor of drought onset and
persistence [15,23,24]. Thus, accurate and timely detection and monitoring of drought
are the need of the hour. SPPs can offer a new perspective for drought monitoring. With
their high spatial resolution (up to 0.04◦), high temporal resolution (up to hourly), and
comprehensive range coverage (up to 50◦ NS), SPPs have become one of the potential ideal
sources for drought monitoring.

In the last few years, the accuracy of SPPs for drought monitoring has been tested
across the globe. Until now, two long-term SPPs, CHIRP (having a data record from 1981)
and PERSIANN-CDR (having a data record from 1981), are the most popular SPPs used
in drought monitoring due to their long-term data record. These two SPPs (CHIRPS and
PERSIANN-CDR) have been developed by combining the long-term historical in situ
observations with infrared information [25]. Multiple studies have proved that PERSIANN-
CDR and CHIRPS performed well across the globe [12,26,27]. In addition, short-term SPPs
(having data record less than 30 years), including TRMM, CMORPH, and IMERG, have
also been tested and proved to have the potential for drought monitoring [28–30]. However,
these past studies have indicated that the performance of SPPs depends upon the climate
type, topography, and other factors. Therefore, it is essential to assess the performance of
various SPPs to guide future applications of SPPs in drought monitoring.

It is essential to explore the utility of SPPs for effective drought monitoring. Many
studies have limited the investigation of the performance of various SPPs to their com-
parison to ground observations. This leaves a knowledge gap with regard to evaluating
and comparing the performance of different SPPs in drought monitoring, particularly the
influence of climate conditions, time scale, and record length on such performance. In
this article, an evaluation of the application of various SPPs for drought monitoring is
conducted. A thorough literature review was conducted to seek answers to the following
research questions: Q1. How does the performance of drought monitoring using SPPs
vary when applied in different climatic zones? Q2. What is the effect of the length of data
records on the effectiveness of SPPs for drought monitoring? Q3. How is the performance
of drought monitoring using SPPs vary when applied at different time scales? In addition,
the review of the literature helped outline the lessons learned and the way forward of using
SPPs for drought monitoring.

2. Drought Monitoring: The State of the Art

The World Meteorological Organization (WMO) and the global water partnership
have named three primary methods for monitoring drought to guide early warming as-
sessment [31]. These methods can rely on (a) a single indicator or index; (b) composite
indicators; or (c) multiple indicators or indices [32]. The selection of appropriate drought
indicators that are widely acknowledged and suitable for a particular location is the most
crucial step in drought monitoring. The standardized precipitation index (SPI) developed
by McKee et al. [33] was recommend by WMO as the primary index with which to track the
meteorological drought. However, no consensus has been made on the standard index for
other types of drought [34]. A general concept in using a drought index to monitor various
kinds of droughts is shown in Figure 1. There is no ‘one size fits all’ index applied for all
types of droughts [35]. Depending upon the data availability and type of use, different
indicators can be developed to define different drought types, as shown in Figure 1. In
recent times, researchers have tried to develop a hybrid indicator, for example, a multi-
variate standardized index, vegetation drought response index (VegDRI) [36], evaporative
stress index (ESI) [37], and process-based accumulated drought index (PADI) [38] to merge
multiple indicators. The idea is to use the strength of various inputs and yet maintain a
single index for policy and decision-makers [39].



Remote Sens. 2021, 13, 4353 3 of 14
Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Schematic view of the general concept of using drought indices to monitor various types of droughts (SPI: stand-
ardized precipitation index, SDI: streamflow drought index, SSI: standardized soil moisture index; MDSI: multivariate 
drought standardized index). 

This article focused only on meteorological drought, which depends on the precipi-
tation data (as shown in Figure 1) to single out the effect of SPPs. Other types of droughts 
that rely on different sets of data and thus obscure the impact of SPPs are not considered 
for the present study. SPI, an index for defining meteorological drought, has various ad-
vantages over other indices [33], because (a) it requires only rainfall data, which makes it 
suitable for regions that have scarce hydro-meteorological datasets, and (b) it can be com-
puted for different timescales such as 1, 3, 6, 12, 24, or 48 months, which make it possible 
to study different types of droughts. One of the shortcomings of SPI is that it deals only 
with the precipitation deficit and does not consider evapotranspiration of this issue [40]. 
Table 1 shows the drought classification using SPI. A drought event is characterized by 
values of SPI < −1 [33].  

Table 1. Classification of droughts based on the SPI value [33]. 
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search followed a structured method for screening and selecting manuscripts (Figure 2). 
Below is an outline of the process: 

Step I Identifying: A preliminary search was carried out to identify relevant articles. 
The present study starts by performing a simple search in Google Scholar, ScienceDirect, 
IEEE, Microsoft academic, and Semantic scholar, using the search keyword “Drought” 
“Satellite Precipitation product” “monitoring” and limiting the year of publication to 

Figure 1. Schematic view of the general concept of using drought indices to monitor various types of droughts (SPI:
standardized precipitation index, SDI: streamflow drought index, SSI: standardized soil moisture index; MDSI: multivariate
drought standardized index).

This article focused only on meteorological drought, which depends on the precipita-
tion data (as shown in Figure 1) to single out the effect of SPPs. Other types of droughts that
rely on different sets of data and thus obscure the impact of SPPs are not considered for the
present study. SPI, an index for defining meteorological drought, has various advantages
over other indices [33], because (a) it requires only rainfall data, which makes it suitable
for regions that have scarce hydro-meteorological datasets, and (b) it can be computed for
different timescales such as 1, 3, 6, 12, 24, or 48 months, which make it possible to study
different types of droughts. One of the shortcomings of SPI is that it deals only with the
precipitation deficit and does not consider evapotranspiration of this issue [40]. Table 1
shows the drought classification using SPI. A drought event is characterized by values of
SPI < −1 [33].

Table 1. Classification of droughts based on the SPI value [33].

SPI Value Classification

>2 Extremely wet
1.50 to 1.99 Very Wet
1.00 to 1.49 Moderately wet
−0.99 to 0.99 Near Normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry

<−2.0 Extremely dry

3. Review Methodology
3.1. Methodology for Selection and Screening of Articles

In order to find relevant literature on the use of SPPs for drought monitoring, the
search followed a structured method for screening and selecting manuscripts (Figure 2).
Below is an outline of the process:
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Figure 2. Flowchart of the methodology for selection and screening of articles (n = number of articles).

Step I Identifying: A preliminary search was carried out to identify relevant articles.
The present study starts by performing a simple search in Google Scholar, ScienceDirect,
IEEE, Microsoft academic, and Semantic scholar, using the search keyword “Drought”
“Satellite Precipitation product” “monitoring” and limiting the year of publication to 1980–
2021. Step II Initial Screening: For the first level of screening, the title and abstract of the
papers were independently screened. Only papers with title and abstract dealing with
drought monitoring using SPI and one of the following SPPs: “CHIRP, PERSIANN CDR,
CMORPH, TRMM, and IMERG,” were considered for the next step. Due to the limited
resource, publications in languages other than English were excluded. All publications
with the same title and authors’ names and published in the same journal are removed.
Abstract only papers were also excluded. Step III Relevance Screening: The present study
considers the standardized precipitation index as an index to characterized drought. Thus,
in cases where other indices were used in the study for consistencies of comparison, these
studies were excluded. If the data were represented in graphical format, the authors
checked for supplementary files or contacted the corresponding authors. Where there was
no supplementary materials or the corresponding authors did not reply, the papers were
excluded from the analysis. Step IV Final Shortlist: In the final steps, essential information
such as the type of SPPs used, location of the study, number of years of the data record,
climate type, etc., were recorded. Studies that were conducted on a larger geographical
area (e.g., covering different climatic zones) were counted in each area, making the total
number of studies surpass the actual number of the article reviewed (36 articles). Finally,
a database was created using the extracted data from these selected publications. The
database included essential basic metrics to allow for an overall initial evaluation of the
performance of SPPs in drought monitoring.
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3.2. Performance Analysis of SPPs in Drought Monitoring
3.2.1. Effect of Climatic Zones on the Performance of SPPs in Drought Monitoring

The present study used the Koppen climate classification [41] to evaluate the effect
of the climatic zone on the performance of SPPs in drought monitoring. Koppen climate
classification consists of five major groups and multiple subtypes within each main group.
This study focuses only on the main five major groups to evaluate SPP’s performance. The
Koppen climate type of the study location is directly extracted from the paper if mentioned;
otherwise, the latitude and longitude of the study location are overlayed on the shapefile
of the World Koppen climate map in ArcGIS to obtain the climate class type of the study
location. Figure 3 shows the flowchart of the methodology used to evaluate the suitability
of SPPs in monitoring meteorological drought across various climate types. SPI 3 and SPI 6,
the two most reported timescales in the selected literature for this study, were considered
for the analysis. The Pearson correlation coefficient (PCC) and the root mean square error
(RMSE) were used as metrics to evaluate the performance of SPPs. These metrics are
expressed as follows:

PCC =
∑
(
Xi − X

) (
Yi − Y

)√
∑
(
Xi − X

)2
∑
(
Yi − Y

)2
, (1)

RMSE =

√
(X − Y)2

n
, (2)

where X refers to the SPI estimates value obtained using the SPPs, X refers to the mean value
of X variable, Y refers to the reference SPI values obtained using rain gauge measurement,
and Y refers to the mean value of the Y variable, respectively. The larger the value of PCC
and the lower the value of RMSE, the higher the reliability of the estimate.
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meteorological drought across various climate types.

3.2.2. Effect of Data Record Length on the Performance of SPPs in Drought Monitoring

To evaluate the effect of data record length on the performance of SPPs in drought
monitoring, SPI values obtained from different record lengths were assessed. The studies
were grouped into three categories: (a) study with a data record length of less than 10 years,
(b) study having data record length between 10 to 20 years, and (c) study with a data
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record length of more than 20 years. PCC and RMSE were used as metrics to evaluate the
performance of SPPs.

3.2.3. Effect of Time Scales on the Performance of SPPs in Drought Monitoring

To evaluate the performance of SPPs for drought monitoring under different time
scales, the present study considered three different time scales: 3, 6, and 12-months
timescales. These timescales were considered to represent different types of drought:
meteorological and hydrological droughts [42]. A 3-months SPI compares the three-month
precipitation over the defined period with the total precipitation of the same three months
for all the years in the historical period. For example, SPI 3 for December of 2000 compares
the total precipitation of October–November–December in the year 2000, with total pre-
cipitation in October–November–December of all the historical years considered for the
analysis. The same is true for SPI 6 and 12, whereby six- and twelve-month precipitation
over a defined period were compared. SPI 3 indicates the short and medium conditions.
Information from SPI 6 and SPI 12 is associated with streamflow and reservoir level [15].

4. Results
4.1. Overall Performance of SPPs in Drought Monitoring

SPPs have been tested and validated against ground-based observation for drought
monitoring across the globe, as shown in Tables 2–4. Infrared based SPPs offer more
frequent interval and high spatial coverage than microwave-based SPPs [43]. On the other
hand, microwave-based SPPs are more accurate than infrared-based SPPs, primarily as
they can penetrate into clouds and better estimate the cloud’s water content [44]. This
is evident in Tables 2 and 3, as the microwave-based SPPs have a better drought perfor-
mance than infrared-based SPPs. Interestingly, Table 4 indicates that the integrated based
SPPs performed better than the infrared and microwave SPPs. The recently developed
IMERG shows the best drought monitoring performance, with PCC values ranging between
0.96–0.99. The IMERG combined TMPA, CMORPH, and PERSIANN algorithms, thus al-
lowing it to take advantage of infrared and microwave information [44]. This feature has
allowed IMERG to strongly depict the intra-annual precipitation changes and the onset and
extension of drought events [45]. However, the length of the IMERG data (2014–present) is
too short for drought monitoring, which is the main challenge of SPPs [46].

Table 2. Infrared based SPPs performance in drought monitoring.

Reference Country Analyzed Period SPP Type Time Scale
SPI In Situ vs. SPI with SPP

PCC RMSE

[23] India 1998–2016 CHIRPS SPI 3 0.87 NA
[47] China 1981–2016 CHIRPS SPI 1,3,6,12 0.85–0.89 0.34–0.39
[48] China 1981–2015 CHIRPS SPI 1,3,6,12 0.92–0.94 NA
[4] Nepal 1981–2010 CHIRPS SPI 1 0.57 NA
[3] China 1981–2015 CHIRPS SPI 3,6 0.84–0.89 NA
[49] Tunisia 1981–2019 CHIRPS SPI 12 0.85 0.443
[50] Brazil 1994–2017 CHIRPS SPI 6,12 0.85–0.94 0.33–0.54
[51] China 1983–2015 CHIRPS SPI 3 0.89–0.92 0.23–0.33
[52] Chile 1981–2015 CHIRPS SPI 3,6 0.63–1.13
[53] China 1983–2016 CHIRPS SPI 1,3,12 0.84–0.89 0.25–0.28
[54] Bangladesh 2001–2016 CHIRPS SPI 3,6 0.90 0.43–0.44
[46] China 2003–2017 CHIRPS SPI 1,3,6,12 0.85–0.94 NA
[23] India 1998–2016 PERSIANN CDR SPI 3 0.88 NA
[27] China 1983–2014 PERSIANN CDR SPI 6 0.4–0.9 NA
[51] China 1983–2015 PERSIANN CDR SPI 3 0.94–0.97 0.18–2.8
[50] Brazil 1994–2017 PERSIANN CDR SPI 6,12 0.94–0.96 0.29–0.35
[25] Iran 1983–2012 PERSIANN CDR SPI 3,6,12 0.27–0.80 0.62–1.05
[53] China 1983–2016 PERSIANN CDR SPI 1,3,12 0.95–0.96 0.15–0.18
[46] China 2003–2017 PERSIANN CDR SPI 1,3,6,12 0.85–0.95 NA
[55] Pakistan 2000–2015 PERSIANN CDR SPI 1,3,12 NA 1.29–1.73
[54] Bangladesh 2001–2016 PERSIANN CDR SPI 3,6 0.90–0.91 0.43
[52] Chile 1983–2015 PERSIANN CDR SPI 3,6 NA 0.63–1.06
[56] Iraq 1983–2016 PERSIANN CDR SPI 3,6,12 0.28–0.70 −0.49–0.46
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4.2. Effect of Climatic Zones on the Performance of SPPs in Drought Monitoring

SPPs are more suitable for estimating the tropical and temperate convection rain-
fall pattern than the isolated convention rainfall in dry/arid/semi-arid regions, which
are difficult to estimate due to hot background surface, desert aerosols, and sub cloud
evaporation [49,50,55]. This is also evident in Figures 4 and 5, which show that the SPPs
drought-monitoring performance is higher in temperate and tropical climates than in dry
and continental. CHIRPS provides the finest resolution (0.05◦ × 0.05◦) and long-term data
series (1981–present), as compared to the other SPPs [59]. This feature makes CHIRPS
suitable for various drought applications with less uncertainties and errors [48]. However,
despite its good performance, CHIRPS was also reported to depend upon the location
and hydroclimatic characteristics of the regions [68,69]. This is evident in Figure 4, where
CHIRPS showed a good relationship with the reference data-based SPI, with slight vari-
ation across different climatic types. PERSIANN CDR with a fine resolution of 0.25◦ has
shown great potential for drought monitoring across the world, although it shows discrep-
ancies in areas with dry climate, complex terrain, and sparse gauge network [27]. This
is evident in its drought performance, as shown in Figure 5. The same was noted for
Tropical Measurement Measuring Mission SPPs (TMPA343V7, TMPA3B42V7), where their
performance was influenced by climate type.

Table 3. Microwave based SPPs performance in drought monitoring.

References Country Analyzed Period SPP Type Time Scale
SPI In Situ vs. SPI with SPP

PCC RMSE

[57] Mexico 1998–2014 TRMM-3B42 V7 SPI 1,3,6,12 0.06–0.79 NA
[58] China 1998–2013 TRMM-3B42 V7 SPI 3,6,12 0.92–0.97 NA
[59] China 2015–2017 TRMM-3B42 V7 SPI 1,3,6,12 0.23–0.84 0.39–0.56
[46] China 2003–2017 TRMM-3B42 V7 SPI 1,3,6,12 0.64–0.84 NA
[55] Pakistan 2000–2015 TRMM-3B42 V7 SPI 1,3,12 NA 1.10–1.76
[23] India 1998–2016 TRMM-3B43 V7 SPI 3 0.88 NA
[56] Iraq 1998–2017 TRMM-3B43 V7 SPI 3,6,12 0.32–0.90 0.21–0.60
[60] China 1998–2014 TRMM-3B43 V7 SPI 3,6,12 0.92–0.98 NA
[61] Malaysia 1998–2014 TRMM-3B43 V7 SPI 3,6,12 0.42–0.49 NA
[62] China 1998–2014 TRMM-3B43 V7 SPI 3,12 0.89–0.91 NA
[63] China 1998–2013 TRMM-3B43 V7 SPI 1,3,6,12 0.98–0.99 NA
[64] Singapore 1998–2014 TRMM-3B43 V7 SPI 1,3,6,12 0.76–0.80 0.63–0.69
[65] Africa 1998–2010 TRMM-3B43 V7 SPI 3 0.51–0.82 NA
[66] China 1998–2016 TRMM-3B43 V7 SPI 1,3,6,12 0.96–0.98 NA
[54] Bangladesh 2001–2016 TRMM-3B43 V7 SPI 3,6 0.90 0.41–0.42
[67] China 1998–2010 TRMM-3B43 V7 SPI 3 0.93 NA

Table 4. Integrated based SPPs performance in drought monitoring.

References Country Analyzed Period SPP Type Time Scale
SPI In Situ vs. SPI with SPP

PCC RMSE

[46] China 2003–2017 IMERG SPI 1,3,6,12 0.96–0.99 NA
[45] China 2000–2017 IMERG SPI 6 0.96–0.99 0.05–0.07
[55] Pakistan 2000–2015 IMERG SPI 1,2 12 NA 1.12–1.63
[46] China 2003–2017 CMORPH SPI 1,3,6,12 0.92–0.98 NA
[59] China 2015–2017 CMORPH SPI 1,3,6,12 0.84–0.93 0.15–0.56
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4.3. Effect of Data Record Length on the Performance of SPPs in Drought Monitoring

The SPI is a widely accepted index for meteorological drought monitoring. Long-term
and continuous precipitation data are necessary for the calculation of the SPI. Thus, the
longer the length of the precipitation data, the more reliable the SPI value will be [70].
Wu et al. evaluated the effect of data record length on SPI values, and found out that there
is a high correlation between the SPI value and the data record length [70]. This is also
evident in Figure 6, where it was found that the data length affects the SPI estimation
of SPPs. The SPPs value is higher when the data record length is more than 20 years
compared to the shorter data record. The same can be seen in the case of RMSE value. A
lower RMSE value was noted when the data record length is more than 20 years. This
is mainly due to the dependence of precipitation trends on the data record length [71].
Additionally, it is generally accepted that a minimum record of 30 years is necessary for
any hydrological and climatological study [71]. Thus, this is one of the current limitations
of SPPs, as all the SPPs except CHIRPS and PERSIANN-CDR have less than 20 years of
data record length. Interestingly, a study by Jin et al. suggested that the short data length
of SPPs is not the primary source of error in the SPI estimation for drought monitoring;
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instead, larger uncertainties come from the climatic conditions and the complex landscape
of the location [71].
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4.4. Effect of Time Scales on the Performance of SPPs in Drought Monitoring

To obtain the complete picture of the various drought events, SPI is recommended
to be calculated at different time scales [47]. As seen from Tables 2–4, some studies focus
only on a single timescale, while others focus on multiple time scales. The present study
thus evaluates the performance of SPPs for drought monitoring at different time scales.
Multiscale comparison through the Pearson correlation index shows no difference in the
performance of SPPs across different time scales, although a slight improvement was noted
as the time scale increased from 3 to 12 months for all SPPs types (Figure 7). This is further
supported by the analysis of variance (ANOVA), indicating no significant difference among
the different time scales (p > 0.05). These findings suggest that the scale has no large
influence on the effect of SPPs for drought monitoring, as the best performance can be
achieved at multiple time scales of interest [26].
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5. Discussion

Precipitation is an important variable for drought monitoring and for the calculation
of many drought indices [20]. In recent years, many researchers indicated that SPPs
performed well in measuring or estimating precipitation rates [72]. More importantly, these
SPPs were able to represent the spatiotemporal variations of precipitation for most parts of
the world with high resolution [3]. However, the accuracy of precipitation provided by
these satellites is affected by many factors. One of the major disadvantages of SPP is the
short data record length. At present, only PERSIANN-CDR and CHIRPS have a long-term
data record of more than 30 years. Thus, many of the conducted studies could only rely on
the available records. Results of the meta-analysis in this investigation revealed that several
past studies have attempted to tackle the limited length of SPPs data by blending the
SPPs with in situ data [55,73,74]. Blending SPPs with in situ data can generate continuous
effective precipitation estimates with high accuracy [74]. This technique combines the
advantage of the long-term in situ precipitation data with the high temporal and spatial
coverage of SPPs [73]. Several techniques such as geographically weighted regression,
Bayesian methods, and machine learning (ML) were used for merging different SPPs
with in situ data [74,75]. The superiority of the blending method over the standalone
SPP has been reported in various studies [76,77]. However, the same studies indicated
that blending SPPs with in situ data is sensitive to the blending method, gauge density,
and other factors [55,73,74]. For example, recent studies have highlighted the limited
efficiency of machine learning and data-driven methods for drought monitoring, unless the
data is pre-processed [24,78]. Pre-processing of in situ precipitation data with techniques
such as wavelet transform and discrete wavelet transform has shown to improve the
drought forecasting performance of machine learning techniques [78]. Thus, research in
blending SPPs with in situ data can also be further investigated and improved by applying
pre-processing tools such as wavelet transform.

The results of the meta-analysis also focused on investigating the impact of SPP type
on its performance in drought monitoring. Results show that this can lead to a significant
difference in drought performance across different climate zones. Bias-correction of SPPs
was proposed as an important step before their applications in drought monitoring across
various climatic conditions [79,80]. Several bias correction methods were attempted on
SPPs, ranging from simple scaling methods to complex mapping [81,82]. The simple
scaling method simply adjusts the monthly SPP value with the gauge rainfall value using a
monthly correction factor [81]. This method does not adjust for the standard deviation of
daily SPP values, whereas advanced methods such as quantile mapping incorporate the
standard deviation of daily SPP data with respect to gauge data in bias correction [81]. The
applicability of various bias correction methods was reported to vary with regions [83]. For
example, in dry and warm climate regions, evaporation of hydrometeors is significant. As
PMW data relies on the actual hydrometeor content, large evaporation may lead to false
alarms and overestimation of PMW SPP [84]. These findings stress the need to further
explore the use of SPPs and bias methods across different climate zones. Additionally,
as the performance of SPPs may be influenced by other factors, more studies should be
designed to block certain factors to be able to elucidate the impact of the applied bias
correction method across different climatic zones.

6. Conclusions and Way Forward

This work reviewed the most prevalent SPPs used in drought monitoring and evalu-
ated the factors that can potentially affect the performance of SPPs. Results of the review
indicated that SPPs had their uncertainties and discrepancies along with their strengths.
Through analyzing data in previous studies, it is evident that the performance of SPPs
in drought monitoring is highly dependent on the climate type and length of the data
record. All these findings indicate the need to further explore the use of SPP to improve
its performance for drought applications. Thus, future studies should move away from
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focusing on comparing the performance of SPPs for drought monitoring and instead be
directed to:

1. Identify the best climatological condition under which SPPs can be successfully used
for drought monitoring.

2. Focus on merging SPPs with other satellite data of high spatial and temporal scale (e.g.,
soil moisture and vegetation water content) to enhance the precipitation estimation
and drought monitoring process.

3. Application of various data processing methods such as wavelet packet transform
(WPT), discrete wavelet transform (DWT), etc., should be attempted in SPPs to
enhance the machine learning performance in blending SPPs with in situ data.

4. Bias correction such as quantile mapping etc. should be applied to SPPs before SPI
estimation to improve their performance.
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