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Abstract: In recent years, deep learning-based models have produced encouraging results for hyper-
spectral image (HSI) classification. Specifically, Convolutional Long Short-Term Memory (ConvLSTM)
has shown good performance for learning valuable features and modeling long-term dependencies
in spectral data. However, it is less effective for learning spatial features, which is an integral part of
hyperspectral images. Alternatively, convolutional neural networks (CNNs) can learn spatial features,
but they possess limitations in handling long-term dependencies due to the local feature extraction
in these networks. Considering these factors, this paper proposes an end-to-end Spectral-Spatial 3D
ConvLSTM-CNN based Residual Network (SSCRN), which combines 3D ConvLSTM and 3D CNN
for handling both spectral and spatial information, respectively. The contribution of the proposed
network is twofold. Firstly, it addresses the long-term dependencies of spectral dimension using 3D
ConvLSTM to capture the information related to various ground materials effectively. Secondly, it
learns the discriminative spatial features using 3D CNN by employing the concept of the residual
blocks to accelerate the training process and alleviate the overfitting. In addition, SSCRN uses batch
normalization and dropout to regularize the network for smooth learning. The proposed framework
is evaluated on three benchmark datasets widely used by the research community. The results
confirm that SSCRN outperforms state-of-the-art methods with an overall accuracy of 99.17%, 99.67%,
and 99.31% over Indian Pines, Salinas, and Pavia University datasets, respectively. Moreover, it is
worth mentioning that these excellent results were achieved with comparatively fewer epochs, which
also confirms the fast learning capabilities of the SSCRN.

Keywords: 3D ConvLSTM; hyperspectral image classification; 3D CNN; spectral-spatial feature
extraction; residual network; deep learning

1. Introduction

It is now possible to acquire hyperspectral images (HSIs) with numerous contiguous
spectral bands due to the advancement of imaging technology and hyperspectral sen-
sors [1]. A hyperspectral image includes hundreds of small spectral bands with 2D spatial
information of different land covers. The abundant spectral information enables HSIs to be
successfully applied in various research fields, such as change detection [2], urban plan-
ning [3], precision agriculture [4], geology and mineral resources [5,6], national defense [7],
and environment monitoring [8]. For these research domains, an important step is a robust
and accurate image classification, which aims at identifying the unique category of each
pixel. The HSI is a 3D data cube that combines spectral and spatial information, where
the spatial resolution is shallow compared to the spectral resolution. It can only provide
fewer details on the geometric relationship between image pixels. Therefore, spectral
information is more important to identify the variety of ground materials accurately [9].
As an important research topic, HSI classification has received a great deal of attention,
and several techniques have been proposed over the last few decades. However, due to

Remote Sens. 2021, 13, 4348. https://doi.org/10.3390/rs13214348 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5040-7656
https://doi.org/10.3390/rs13214348
https://doi.org/10.3390/rs13214348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214348
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214348?type=check_update&version=1


Remote Sens. 2021, 13, 4348 2 of 21

the complex nature of HSIs and the scarcity of labeled samples, it remains a challenging
task [10].

Early classification techniques were mainly based on two steps: traditional hand-
crafted feature engineering followed by generic trainable classifiers [9]. Firstly, the most
representative features were obtained by utilizing handcrafted feature descriptors and re-
ducing the dimensionality of HSI [11]. Secondly, the traditional machine learning classifiers
were trained through a non-linear transformation using the extracted features [12]. Support
vector machines (SVM) and random forest (RF) are typical examples of these classifiers [13].
In this direction, a number of spatial feature descriptors such as local binary patterns
(LBP) [14], Markov random fields (MRFs) [15], extended morphological profile (EMP) [16],
spatial filtering [17], and 3D Gabor features [18] were employed to achieve suitable feature
representation. However, due to the separation of feature extraction and classification
processes, the adaptability between features and classifiers was not optimal [19,20]. More-
over, these methods had a limited capability to represent spectral and spatial information
together due to the curse of dimensionality [10]. Consequently, the need for more robust
feature extraction and classification methods was prevalent for better performance.

In recent years, deep learning-based approaches have superseded the traditional
handcrafted feature-based methods for HSI classification. They have attracted a great deal
of attention for employing an end-to-end strategy for feature extraction and classification
that reduces the chances of information loss during the pre-processing of of HSI and
improves the classification results [10,21,22]. Beside HSI classification, CNN-based tech-
niques have also been employed for several tasks such as speech emotion recognition [23],
human activity recognition [24], coin recognition [25], and music classification [26]. Ini-
tial deep learning-based methods employed 1D networks such as stacked autoencoder
(SAE) [27], deep belief networks (BDNs) [28], recurrent neural networks (RNNs) [29],
and CNNs [30]. These methods achieved better accuracy than their predecessor hand-
crafted approaches; however, due to 1D input requirements, these models suffered from
spatial information loss.

Consequently, several 2D CNN-based methods were introduced for HSI classifica-
tion [31]. In contrast to the previous methods, image patches were considered as inputs,
and a weight-sharing mechanism was introduced to acquire the spatial and spectral infor-
mation for classification. Along these lines, a CNN model with three convolutions and
one fully connected layer was proposed by Zhao et al. [32]. Due to its simpler structure,
this model learned spatial features but could not use spectral information. Another deep
feature extraction approach based on the Siamese CNN that included a margin ranking loss
function to ensure high interclass variability and low intraclass variability was reported
in [33]. One of the significant challenges in the CNN-based model is learning the spectral
features and combining them with spatial features. In this direction, Lee et al. [31] pre-
sented a deep contextual CNN technique to predict the label of each pixel by utilizing local
spectral–spatial features. The spectral and spatial features were extracted from multi-scale
filters using 2D CNN and then merged to produce a combined spectral–spatial feature
map. However, 2D CNN-based techniques cannot effectively use spectral and spatial
information at the same time, and chances of information loss are high during the feature
learning process [34]. Another method [35] proposed a hybrid architecture based on 1D
and 2D CNN layers to learn spectral and spatial information, respectively.

To address the limitations of 2D CNN based networks, 3D CNN models were adopted
to obtain spatial–spectral features directly from raw HSI [36]. In this direction, a 3D
CNN model was proposed in [37], where 3D image patches were considered as input to
learn the spatial–spectral information from HSI. Li et al. [38] proposed a variation to this
model to obtain spectral–spatial features simultaneously using spatial filtering to take
full benefit of structural properties of 3D HSI data. However, 3D CNN approaches have
many parameters and quickly lead to overfitting, particularly when training samples are
limited. Zhong et al. [39] developed spectral and spatial residual blocks to alleviate the
declining accuracy due to overfitting and learned the discriminative features from spatial
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contexts and spectral signatures. As a variation to this method, Song et al. [40] introduced a
deep feature fusion network based on residual learning to smooth the training of the deep
model. Further, a densely connected 3D CNN (3D-DensNet) [41] was proposed to learn
more robust spatial–spectral features. Lui et al. [42] introduced a content-guided CNN
(CGCNN), which adaptively adjusts its kernel shape according to the spatial distribution
of land covers. Another heterogeneous model based on CNN and graph convolutional
network (GCN) was proposed in [43] to learn complementary spectral–spatial features
at pixel and super-pixel levels. Other methods extended the 3D CNN by employing the
concepts of attention mechanism [44], multi-scale convolution [45], and active learning [46]
to improve classification accuracy. The major concern with the 3D CNN-based method is
the degradation of accuracy due to very deep models as architectures become gradually
complex with the growing number of hyper-parameters. Moreover, CNN-based models
cannot handle long-term dependencies in spectral data [47].

Long Short-Term Memory (LSTM) [48] has proved its stability and strength in handling
long-term dependencies in numerous computer vision tasks such as HSI classification [49]
and speech emotion recognition [50]. Since HSIs are intensively sampled from the whole
spectrum, dependencies between various spectral bands are expected. In this direction,
Ienco et al. [48] proposed an LSTM-based model to perform classification tasks over multi-
temporal satellite images. Further, Zhou et al. [49] introduced a spectral–spatial LSTMs
(SSLSTMs) consisting of two independent LSTMs: spectral LSTM (SeLSTM) and spatial
LSTM (SaLSTM). However, LSTM is limited in dealing with spectral–spatial and spatial–
temporal data because it requires converting the input data into a 1D form, which causes a
loss of essential spatial information. To overcome these limitations, Shi et al. [51] replaced
the 1D data operation of each gate in LSTM with multi-dimensional processing and intro-
duced convolutional LSTM (ConvLSTM). In ConvLSTM, 2D and 3D convolution filters
can be used to construct the ConvLSTM2D and ConvLSTM3D, respectively. Motivated by
this, Liu et al. [52] developed a model for obtaining spatial–spectral characteristics for HSI
classification based on Bidirectional-Convolutional LSTM. Further, a spatial–spectral Con-
vLSTM2D neural network (SSCL2DNN) was introduced in [53] to manage the long-term
dependencies and to obtain more discriminative features. Furthermore, ConvLSTM3D was
used to simulate spatial and spectral information more efficiently.

Although deep learning-based approaches demonstrated encouraging performance
for HSI classification, there are still several challenges that need to be addressed to achieve
excellent performance. These include but are not limited to an imbalance between the high
dimensionality of the data and the scarcity of training samples, the existence of mixed
pixels in the data, and the integration of spectral and spatial information [54]. In addition
to this, due to the high-dimensionality of hyperspectral data, techniques developed for
low-dimensional spaces are not effective for HSI analysis. One possible solution could
be to reduce the dimensionality of HSI data and then apply the classification techniques.
However, this may cause a loss of crucial information [55]. These challenges are critical for
the development of robust and efficient techniques for this purpose.

To overcome the abovementioned challenges, and motivated by the CNN-based resid-
ual learning and advanced ConvLSTM models, a novel spectral–spatial 3D ConvLSTM-
CNN based residual network for HSI classification is introduced. The proposed SSCRN
has two key modules: a 3D ConvLSTM spectral module and a 3D CNN spatial residual
module. The 3D ConvLSTM module is directly applied to the original HSI to avoid losing
crucial information and learn more discriminative spectral features. The 3D CNN spatial
residual module is adapted to learn robust spatial information. The major contributions of
our proposed SSCRN framework are as follows:

• The proposed framework SSCRN can learn both spatial and spectral feature repre-
sentations jointly, without using any dimensionality reduction technique. The 3D
ConvLSTM is exploited to learn the robust spectral feature representations, and the
3D CNN residual network is used to learn spatial features from HSI. This combination
yields excellent performance.
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• To the best of the authors’ knowledge, this is the first time that 3D ConvLSTM and 3D
CNN networks with skip connections are combined to build an end-to-end framework
for HSI classification. This framework adopts residual connections to accelerate the
training, mitigate the decreasing accuracy phenomenon, and improve the classifica-
tion accuracy.

• The performance of the proposed framework is evaluated on three challenging bench-
mark datasets. The results confirm that SSCRN outperforms existing methods with
limited labeled training samples.

The rest of the paper is organized as follows. Section 2 presents the background
related to the core building block of the proposed model; Section 3 presents the proposed
model; experimental results are given in Section 4; Section 5 offers the discussion; and
finally, the paper is concluded in Section 6.

2. Background

In this section, a brief overview of CNN, LSTM, and ConvLSTM are presented; these
models are the core building blocks of the proposed framework.

2.1. CNN

Typically, deep CNN includes three types of layers: convolutional, pooling, and fully
connected layers. In convolutional layers, a set of learnable filters is convolved over the
image to detect specific features and patterns in the image. Then, pooling layers reduce
the number of parameters learned by convolutional layers by reducing the size of feature
maps. The feature maps obtained from the pooling layers are transformed into feature
vectors for classification using fully connected layers. The hyperspectral image is a cube
consisting of multiple channels. For example, X is an input cube with a dimension of
w× h× s, where w× h is the spatial size of the image and s is the number of channels.
Then, outputs are obtained by convolving filters over the entire image, and bias terms are
added to these outputs. Finally, an activation function is applied to generate activations as
shown in Equations (1) and (2). These activations from layer 1 act as the input for the layer
2, and so on.

Z[l] = W [l] ∗ a[l−1] + b[l] (1)

a[l] = g(z[l]) (2)

in this equation, Z[l] is the output of the current convolution layer, W([l]) are weights of the
current layer, a[l−1] is the activation of the previous layer, and b([l]) is the bias of the current
layer, whereas a([l]) is the activation of the current layer, and g is the activation function.

2.2. LSTM

The recurrent neural network is a sequential deep learning model that effectively
handles long-term dependencies in sequential data. The sequential data have sequences of
timesteps, and the computation of the current timestep depends on the previous timestep.
However, the major limitation of the RNN is its incapability to handle the problem of
vanishing and exploding gradients. LSTM [56] was developed to solve this issue, which
replaced a recurrent hidden node through a memory cell, functioning as an accumulator
of state information. Various self-parametrized controlling gates can retrieve, update,
and clear data from this cell. One of the primary advantages of employing gates and
the memory cell is that they allow for the regulation of information flow, such that the
gradient may travel over multiple timesteps without exploding or vanishing. The LSTM
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unit is composed of four essential sub-units—the input gate it, output gate ot, forget gate
ft, and memory cell ct—which are computed as follows:

it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)
ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct + bo)
ht = ot ◦ tanh(ct),

(3)

where tanh and “σ” are activation functions, xt, and ct−1, ht−1 denote the input of the
current cell, state, and output of the cell, respectively. b f , bi, bc, bo are bias terms. The weight
matrices are Wxi, Wx f , and Wxo, indicating the weights of the input, forget, and output gate,
respectively, and “◦” is a dot product.

2.3. ConvLSTM

The major shortcoming of LSTM is its incapability to handle spatio-temporal data
effectively due to its fully connected architecture, which provides input-to-state and state-
to-state transitions. To address this issue, ConvLSTM, an extended version of LSTM, was
proposed [51]. In ConvLSTM, input-to-state and state-to-state transitions are performed
using convolutional structures. The matrix multiplication is replaced with the convolution
operation at each gate in the LSTM cell. There are two major variations of convolutional
LSTM—i.e., ConvLSTM2D and ConvLSTM3D—which have different convolution struc-
tures and can be employed to model long-range dependencies in the spectral and time
domains. The inner structure of ConvLSTM is illustrated in Figure 1. Where X1, . . . , Xt
inputs, C1, . . . , Ct cell outputs, H1, . . . , Ht hidden states and it, ft, ot gates of the ConvLSTM
are 3D tensors. Moreover, the mathematical formulation of ConvLSTM is similar to LSTM
as described in Equation (3), except for the convolution operation which needs to be added
in the case of ConvLSTM.

Figure 1. The inner structure of ConvLSTM.

ConvLSTM includes three gates that complete data processing and transmission,
making it more convenient to use spectral information of HSI. In contrast to CNN, which
uses a sliding window to extract spatial information, the ConvLSTM implements the
intra-layer data processing in addition to inter-layer processing. This is another significant
difference from the CNN [53]. The unique design allows ConvLSTM to extract more
powerful feature representations from sequential data.

3. Proposed Methodology

This section presents the proposed spectral–spatial 3D ConvLSTM-CNN based Resid-
ual Network (SSCRN) for HSI classification. The SSCRN takes into account both spectral
and spatial domains and the universality of the HSIs. Precisely, the proposed architecture
consists of two modules; i.e., 3D ConvLSTM and 3D CNN. The 3D ConvLSTM plays a
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role in learning robust spectral features, while 3D CNN aims to learn rich spatial features.
The proposed architecture is shown in Figure 2 and explained in the subsequent sections.

Figure 2. The proposed spectral–spatial 3D ConvLSTM-CNN-based Residual Network (SSCRN). An HSI image is decom-
posed into a sequence of patches used as input to the ConvLSTM cell. The <t> represents the output/activation of the
current cell/layer of the ConvLSTM , while <t−1> represents the output/activation of the previous layer.

3.1. 3D ConvLSTM Spectral Module

HSIs have many spectral bands, and some earlier methods [40] applied unsupervised
principal component analysis (PCA) to acquire spectral features but could not obtain good
results due to insufficient discriminative features [57]. On the other hand, 2D ConvLSTM
can perform reasonably well for addressing the issue of long-term dependencies; however,
it cannot handle 3D data cubes properly. Moreover, 2D models do not preserve the intrinsic
structure of the 3D cubes when taking each band as an input for the corresponding memory
cell [53]. This motivates us to employ 3D ConvLSTM for discriminative spectral feature
extraction and preserve the intrinsic structure of the data. Generally, a 3D ConvLSTM is
considered the extension of 2D ConvLSTM: it has three gates where 3D data w× h× s is
taken as input for each memory cell of the 3D ConvLSTM. Moreover, the convolutional
kernel in 3D ConvLSTM is of shape f 1× f 2× d, where f 1, f 2 and d are the kernel size and
depth of the convolutional filter, respectively. The structure of the 3D ConvLSTM layer is
shown in Figure 3. The equations of 3D ConvLSTM cell are written as

C̃<t> = tanh(
(
Wc ∗ a<t−1> + Wc ∗ x<t>)+ bc)

i<t> = σ (
(
Wi ∗ a<t−1> + Wi ∗ x<t> + Wi ◦ C<t−1>)+ bi)

f<t> = σ (
(

W f ∗ a<t−1> + W f ∗ x<t> + W f ◦ C<t−1>
)
+ b f )

o<t> = σ (
(
Wo ∗ a<t−1> + Wo ∗ x<t> + Wo ◦ C<t>)+ bo)

C<t> = i<t> ◦ C̃<t> + f<t> ◦ C<t−1>

a<t> = o<t> ◦ tanh
(
C<t>) ,

(4)

where i<t>, f<t>, o<t>, and C<t> are the input, forget, output gate, and memory cell,
respectively. x<t> and a<t> are the input and output of the current memory cell, while
C<t−1> and a<t−1> are the state and output of the previous memory cell. C̃<t> is a
candidate for replacing the memory cell. “σ” and tanh are activation functions, “∗” is
a convolution operator, and “◦” is a dot product, and b f , bi, bc, and bo are bias terms,
as introduced in [51,58].
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Figure 3. The internal structure of 3D ConvLSTM.

More specifically, the input X<t> , the state C<t−1> and C<t>, the output a<t−1> and
a<t>, and gate units i<t>, f<t>, and o<t> are 4D tensors with three spectral and two spatial
dimensions, and the convolutional filters Wi, W f , and Wo are 3D tensors. “∗” is a 3D convo-
lution between 4D input or output and 3D convolution filters. X<t> ∈ Rτt×wt×ht×st is the
input of the 3D ConvLSTM cell, which is the tth component in a sequence decomposed from
the input of the 3D ConvLSTM according to the dimension time− step, and Wi ∈ R f1× f2×d,
where τt, wt, ht, st, f1, f2, and d are the dimension time− step, width, height, number of
the spectral band, kernel size and depth, respectively. Hence, the 3D convolution of X<t>

and Wi can be defined as Wi ∗ X<t>. The output can be defined as outputτt lx ly lz by X<t> at
position (lx, ly, lz) in the input gate described as follows in Equation (5), and the value of τ
is fixed as 1.

Outputτt lx ly lz =
f 1

∑
i1

f 2

∑
m1

d

∑
n1

W jpq
i X<t> τt(lx+i)(ly+m)(lz+n) (5)

As represented above, the proposed spectral module can obtain the spectral features
directly from HSI cubes. The unique structure of this module makes it an appropriate archi-
tecture for learning discriminative spectral features and preserving the intrinsic structure of
data. This module is composed of four 3D ConvLSTM layers. In the first layer, a data patch
of size 7× 7× 200 is taken as an input. Then, 32 convolutional kernels of size 1× 1× 7 with
a stride of (1, 1, 2) are convolved over the HSI patch to generate 32 feature columns with
a size of 7× 7× 97 as shown in Figure 2. Here, the convolution operation is performed
only on the spectral channel, which also mitigates the redundant spectral information.
The activation function for this layer is tanh, which is considered to be one of the most
appropriate activations for LSTM layers with batch normalization. Next, the output of the
first layer is passed to the second layer by applying the “same” padding to keep the input
and output of the same size, while the rest of the settings are the same as the first layer.
The output of the second layer is passed to the third layer, where the same settings are
applied as layer 2. The last layer of the spectral module uses 128 convolution kernels of size
1× 1× 97 in the Indian pines dataset, while for Salinas and the Pavia University, it becomes
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1× 1× 99 and 1× 1× 49, respectively. Finally, the output of the spectral module becomes
the input for the spatial module for training the framework in an end-to-end fashion.

3.2. Deformable Process

The deformation process is required to convert the output of the spectral module into
a 3D cube, making it suitable to be used as an input to the 3D CNN spatial module. In the
spectral module discussed in Section 3.1, spectral feature maps are obtained with a size of
7× 7× 1, 128. Then, these feature maps are reshaped into a 7× 7× 128 cube to be used
as an input to the spatial module, as depicted in Figure 4. The spatial module processes
it further and learns the discriminative and robust spatial features for classification. This
approach enables the effective combination of spectral and spatial information through an
end-to-end framework, as shown in Figure 2.

Figure 4. Overview of deformable process.

3.3. Three-Dimensional CNN Spatial Residual Module

In this module, the 3D CNN layers are adopted as the basic building blocks of SSCRN,
and batch normalization (BN) is applied after each layer. The BN makes the training
process more efficient and smoother. A 3D CNN layer has nk input feature cubes of size
vk × vk × dk with nk+1 filters of size bk+1 × bk+1 ×mk+1, and a stride of (s1, s1, s2) for the
convolutional operation. Then, this layer generates an output of nk+1 feature cubes of size
vk+1 × vk+1 × dk+1, where the spatial width Vk+1 = (1 + (Vk − bk+1)/s1). The 3D CNN
layer with BN can be represented as follows:

Zk+1
i = REL

(
nk

∑
l=1

Ẑk
l ∗Wk+1

i + bk+1
i

)
(6)

Ẑk =
Zk − E (Zk)

Std(Zk)
(7)

where Zk
l ∈ Rv×v×d is the lth input feature vector of (k + 1)th layer, Ẑk is the normalization

result of batch feature Zk in the kth layer, and Std(.) and E(.) represent the standard
deviation and expectation of the input feature vector, respectively. bk+1

i and Wk+1
i denote

the bias and weights of the ith filter in the (k + 1)th layer, “∗” represents the 3D convolution
operator, and REL(.) is the activation function which transforms the negative numbers
to zero.

In the case of a large CNN, the accuracy begins to decrease after a few layers [39]. This
issue may be addressed by creating residual blocks by introducing shortcut connections
between layers [47]. In this direction, two residual blocks are meant to obtain spatial
information, where each block is composed of two convolutional layers, as illustrated in
Figure 5.
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Figure 5. The spatial residual block consists of two successive 3D CNN layers, and a skip connection
to add input feature maps Ar directly to the output feature maps Ar+2.

There are five 3D convolutional layers, including an initial layer followed by two
residual blocks; each layer is supported by batch normalization and the rectified linear
unit (ReLU). This formulation allows gradients in higher layers to propagate back to lower
layers to regularize and smooth the training process. The first convolutional layer receives
an input from the spectral module discussed in Section 3.1, which has an input size of
7× 7× 128. Then, 32 kernels of size 3× 3× q are applied. Here, q is the number of channels
of this layer with a stride of (1, 1, 1), resulting in an output of 5× 5× 1, 32 feature maps.
Then, two residual blocks, each with two convolutional layers, are used to learn spatial
representations using 32 kernels of size 3× 3× q at each layer. Here, the convolution
operations are performed on spatial and spectral dimensions to carry on the complete
information. After these residual blocks, an average pooling is applied to transform the
obtained 5 × 5 × 1, 32 spectral–spatial feature volume to a 1 × 1 × 1, 32 feature vector.
In addition to this, a dropout regularizer is also applied to address the overfitting problem.
Subsequently, a fully connected (FC) layer receives input from the pooling layer and
formulates a feature vector for classification. To validate the output produced by the model,
a categorical cross-entropy loss is used, as shown in Equation (8). Finally, softmax layer
activation is employed for the multi-class classification of different land cover categories.

Loss(Y, Ŷ) = − ∑ (Y. log ˆ(Y)) (8)

where Y is the ground truth and Ŷ is the corresponding predicted value by our pro-
posed model.

4. Experimentations and Results Analysis

The proposed SSCRN is implemented in Keras and Tensorflow deep learning frame-
works using the Python language. The results are generated on a Lenovo Legion Y7000
Intel Core i7-9750H gaming machine equipped with Nvidia GeForce RTX2060-6G and
32G memory. The proposed SSCRN model is evaluated using three evaluation metrics—
i.e., overall accuracy (OA), average accuracy (AA), and kappa coefficient (k)—while the
higher values of OA, AA, and kappa are considered better. Let V ∈ Rn×n represent the
error matrix classification results, where n indicates the number of land-cover categories
and the value of V in position (i, j) represents the number of ith category samples classified
to the jth category. The formulas for these metrics are shown in Equations (9)–(11).

OA = sum(diag(V)/sum(V)) (9)

AA = mean(diag(V)./sum(V, 2)) (10)

Kappa =
OA− (sum(V, 1)sum(V, 2))/sum(V)2

1− (sum(V, 1)sum(V, 2))/sum(V)2 (11)
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where diag(V) ∈ Rn×1 is a vector of diagonal values of V, sum(.) ∈ R1 is the sum of values,
sum(., 1) ∈ Rn×1 is the vector of the column-wise sum of all values, sum(., 2) ∈ Rn×1 is the
vector which shows the row-wise sum of all values, mean(.) ∈ R1 is the mean of all values,
and ./ shows the element-wise division.

4.1. Experimental Data Sets

The performance of SSCRN is evaluated on three well-known benchmark datasets:
Indian Pines, Salinas, and Pavia University. The Indian Pines (IP) dataset was acquired
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over diverse
agricultural and forest areas. In this dataset, the spatial size of the scene is 145× 145 pixels,
and the spatial resolution is 20 m per pixel (mpp). It contains 224 spectral bands across a
wavelength ranging from 400 to 2500. In this experimentation, 200 bands are utilized after
removing 24 noisy and zero-value bands. The land cover scene consists of 16 classes with
10,249 labeled pixels, where each class has different numbers of samples ranging from 20 to
2455. Each class’s samples are divided into training, validation, and test sets, as presented
in Table 1.

Table 1. Train, validation, and test split of IP dataset.

No. Class Name Train Validation Test Total

1 Alfalfa 5 5 36 46
2 Corn-n 143 143 1142 1428
3 Corn-m 83 83 664 830
4 Corn 24 24 189 237
5 Grass-p 49 49 385 483
6 Grass-t 73 73 584 730
7 Grass-p-m 3 3 22 28
8 Hay-w 48 48 382 478
9 Oats 2 2 16 20
10 Soybean-n 98 98 776 972
11 Soybean-m 246 246 1963 2455
12 Soybean-c 60 60 473 593
13 Wheat 21 21 163 205
14 Woods 127 127 1011 1265
15 Buildings-g-t-d 39 39 308 386
16 Stone-s-t 10 10 73 93

Total 1031 1031 8187 10,249

The Salinas (SA) is another important and well-known dataset used for hyperspectral
image classification. An AVIRIS sensor was used to collect this dataset with 224 spectral
bands over the Salinas Valley. Out of 224 spectral bands, 204 bands are utilized. This
dataset has a spatial size of 512× 217 pixels with a spatial resolution of 3.7 mpp with 16
different land cover classes. The training, validation, and test split of samples is shown in
Table 2.

The Pavia University (PU) dataset was recorded by the reflective optics system imaging
spectrometer (ROSIS) sensor over the University of Pavia. This dataset has 115 spectral
bands; 103 bands are utilized after discarding noisy bands. The spatial size of this dataset
is 610× 340. There are nine classes with different numbers of samples, as listed in Table 3.
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Table 2. Train, validation, and test split of SA dataset.

No. Class Name Train Validation Test Total

1 Brocoli_g_w_1 101 101 1807 2009
2 Brocoli_g_w_2 187 187 3352 3726
3 Fallow 99 99 1778 1976
4 Fallow_r_p 70 70 1254 1394
5 Fallow_s 134 134 2410 2678
6 Stubble 198 198 3563 3959
7 Celery 179 179 3221 3579
8 Grapes_u 564 564 10,143 11,271
9 Soil_v_d 311 311 5581 6203

10 Corn_s_g_w 164 164 2950 3278
11 Lettuce_r_4wk 54 54 960 1068
12 Lettuce_r_5wk 97 97 1733 1927
13 Lettuce_r_6wk 46 46 824 916
14 Lettuce_r_7wk 54 54 962 1070
15 Vinyard_u 364 364 6540 7268
16 Vinyard_v_t 91 91 1625 1807

Total 2713 2713 48,703 54,129

Table 3. Train, validation and test split of PU dataset.

No. Class Name Train Validation Test Total

1 Asphalt 332 332 5967 6631
2 Meadows 933 933 16,783 18,649
3 Gravel 105 105 1889 2099
4 Trees 154 154 2756 3064
5 Painted metal sheets 68 68 1209 1345
6 Bare Soil 252 252 4525 5029
7 Bitumen 67 67 1196 1330
8 Self-blocking Bricks 185 185 3312 3682
9 Shadows 48 48 851 947

Total 2144 2144 38,488 42,776

4.2. Experimental Settings

In the experimental setup, dataset division is considered an essential factor for the
system’s performance. For this purpose, a train/validation/test split strategy is selected to
evaluate the proposed model. In the case of SA and PU datasets, 5%, 5%, and 90% split ra-
tios are used for training, validation, and test, respectively, while for the IP dataset, the ratio
was 10%:10%:80%. Further, the detailed information is given in Tables 1–3. Another impor-
tant factor is the proper selection and tuning of hyperparameters of the model. Although all
parameters are not equally important, appropriate values of parameters always lead to a
balanced model. The important hyperparameters used in the proposed model are batch
size, learning rate, regularizers, optimizers, and number of epochs. There are two well-
known strategies for tuning parameters: grid search and random search. A random search
is more suitable for deep learning models due to its capability to explore greater numbers
of relevant parameter values. Therefore, a random search strategy has been adopted to
find appropriate values for the hyperparameters used in the model. The appropriate value
for the batch size is 32 for IP and 64 for SA and PU datasets.

In this way, among different optimizers, Adam [59] was selected for optimizing the
model based on the tuning process. During optimization, the learning rate is considered
one of the most important hyperparameters; its appropriate value plays an important
role in the model’s convergence. Consequently, optimal learning rates for IP, SA, and PU
datasets are 0.0003, 0.0001, and 0.0001, respectively. Moreover, batch normalization and
dropout are used during the training process to avoid overfitting. The proposed model
was also assessed with and without regularization methods. The results confirm that
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regularizing methods help to achieve better performance, as shown in Table 4. The network
and parameter settings for the proposed SSCRN framework are summarized in Table 5.
Moreover, the detailed comparison for hyperparameters of the proposed method against
state-of-the-art techniques is presented in Table 6.

Table 4. OA accuracy of SSCRN with different regularizers.

Datasets Dropout BN Dropout & BN

IP 96.90 98.69 99.17
SA 98.42 99.15 99.67
PU 97.97 98.81 99.31

Table 5. Network topology of the proposed SSCRN model.

Layer Name Output Shape Kernel Size No. of Convolutional Kernel Stride Padding

ConvLSTM3D 7 × 7 × 97 × 32 1 × 1 × 7 32 1 × 1 × 2 Valid
ConvLSTM3D 7 × 7 × 97 × 32 1 × 1 × 7 32 1 × 1 × 1 Same
ConvLSTM3D 7 × 7 × 97 × 32 1 × 1 × 7 32 1 × 1 × 1 Same
ConvLSTM3D 7 × 7 × 1 × 128 1 × 1 × 97 128 1 × 1 × 1 N/A

Reshape 7 × 7 × 128 × 1 N/A N/A N/A N/A
Conv3D 5 × 5 × 1 × 32 3 × 3 × 128 32 1 × 1 × 1 N/A
Conv3D 5 × 5 × 1 × 32 3 × 3 × 128 32 1 × 1 × 1 Same
Conv3D 5 × 5 × 1 × 32 3 × 3 × 128 32 1 × 1 × 1 Same

Skip connection

Conv3D 5 × 5 × 1 × 32 3 × 3 × 128 32 1 × 1 × 1 Same
Conv3D 5 × 5 × 1 × 32 3 × 3 × 128 32 1 × 1 × 1 Same

Skip connection

AveragePooling3D 1 × 1 × 1 × 32 N/A N/A 1 × 1 × 1 N/A
Flatten 32 N/A N/A N/A N/A

Dropout 32 0.25 N/A N/A N/A
Dense (Output) N N/A N/A N/A N/A

Table 6. Comparison of hyperparameters with state-of-the-art methods.

Hyper-Parameter 3D-CNN BASSNet 2D-3D CNN SS3FC ADR FFDN-SY TAP-Net SSCRN

optimizer SGD Adam RMSprop Adam - Adam Adam Adam

Learning-rate 0.001, 0.0001 0.0005 0.001 0.01 0.0005, 0.001 0.01 0.01 0.0003,
0.0001

Batch size 10 100 100 - - 200 32 32, 64
Dropout 0.5 0.5 0.3, 0.8 - - - - 0.25

Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU tanh, ReLU
Iterations 100K 1000 5000 40-80 150–300 9000 - 300

Loss-function - Cross-
entropy - Focal

loss softmax - Focal
loss

Categorical
cross-

entropy

4.3. Classification Results

The proposed model is compared with several state-of-the-art models to prove its effi-
cacy, including SVM [60,61], 3D-CNN [31], BASSNet [62], 2D–3D CNN [63], SS3FCN [10],
ADR-3D-CNN [64], FCLFN [65], FFDN-SY [66], and TAP-Net [67]. It is worth noting that
the proposed model achieved superior performance with a smaller or equivalent amount
of training data compared to other state-of-the-art techniques except [65], as presented in
Tables 7–9.
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Table 7. Classification results (%) of different methods on the IP dataset. Bold indicates the best accuracy.

Class SVM 3D-CNN BASSNet 2D–3D CNN SS3FC ADR FCLFN FFDN-SY TAP-Net SSCRN

1 - - - 100.0 40.40 97.96 95.12 - 70.98 100.0
2 72.17 90.10 96.09 98.36 77.89 97.21 99.38 95.09 76.54 98.17
3 67.11 97.10 98.25 97.80 60.74 97.47 100.0 98.98 75.62 99.40
4 - - - 97.20 11.80 99.53 100.0 - 46.83 100.0
5 91.07 100.0 100.0 99.30 67.50 98.88 95.16 99.56 69.78 98.00
6 94.14 - 99.24 99.07 91.95 98.51 99.24 99.67 94.77 99.50
7 - - - 100.0 20.14 95.24 72.10 - 80.40 100.0
8 98.64 100.0 100.0 99.83 81.71 97.73 99.53 99.89 98.95 100.0
9 - - - 92.72 31.67 94.44 88.89 - 70.03 100.0

10 73.65 95.90 94.82 97.34 78.15 97.24 99.54 97.98 84.59 98.43
11 86.23 87.10 94.41 98.23 69.32 97.70 98.64 94.20 80.39 99.53
12 59.43 96.40 97.46 97.66 40.81 97.83 92.68 99.53 76.84 99.58
13 - - - 99.32 93.43 95.81 100.0 - 97.13 100.0
14 97.69 99.40 99.90 99.01 91.77 99.83 99.91 99.25 94.83 99.50
15 - - - 98.60 37.93 96.49 97.41 - 51.70 99.34
16 - - - 92.59 75.19 96.47 97.59 - 92.27 97.29

OA 82.58 93.61 96.77 98.33 71.47 97.89 98.56 96.96 81.35 99.17
AA 82.46 / / / 60.65 97.39 95.94 98.24 78.85 99.29

k 79.42 / / / / 98.72 98.36 96.36 0.787 99.05

Table 8. Classification results (%) of different methods on the SA dataset. Bold indicates the best accuracy.

Class SVM 3D-CNN BASSNet 2D–3D CNN SS3FC ADR FCLFN FFDN-SY TAP-Net SSCRN

1 82.64 100.0 100.0 99.81 92.36 96.73 98.54 99.96 98.73 99.94
2 86.31 100.0 99.97 99.65 92.58 98.50 99.97 99.96 99.71 100.0
3 98.15 100.0 100.0 99.75 66.35 96.06 95.71 99.61 91.29 100.0
4 96.51 99.30 99.66 99.37 98.13 98.80 95.51 99.88 98.78 98.88
5 97.63 98.50 99.59 98.68 95.63 97.88 95.06 99.80 96.27 100.0
6 98.96 100.0 100.0 99.99 99.30 98.87 99.97 99.77 99.26 100.0
7 98.03 99.80 99.91 99.88 99.43 96.58 99.97 99.80 99.35 100.0
8 95.34 83.40 90.11 98.05 69.27 98.61 99.71 93.77 84.76 99.42
9 90.45 99.60 99.73 99.80 99.67 98.92 100.0 99.75 98.13 99.92

10 82.54 94.60 97.46 99.86 84.07 98.30 99.66 99.43 88.56 99.69
11 83.21 99.30 99.08 98.67 85.31 98.96 94.80 99.98 84.59 99.36
12 82.14 100.0 100.0 99.92 97.98 99.71 99.53 99.95 99.02 99.88
13 84.56 100.0 99.44 99.89 98.45 98.78 98.79 99.85 98.07 100.0
14 86.57 100.0 100.0 99.40 87.32 98.96 95.28 99.90 94.59 99.16
15 92.93 100.0 83.94 97.76 52.31 98.01 98.08 96.63 69.09 99.17
16 - 98.00 99.38 99.88 59.97 98.77 99.16 99.86 90.71 100.0

OA 94.82 95.07 95.36 99.07 81.32 98.29 98.59 98.04 90.31 99.67
AA / / / / 86.13 98.28 98.11 99.24 93.18 99.71

k / / / / / 98.16 98.69 97.81 0.881 99.64

The first experiment was performed on the IP dataset. Some classes have few samples
in this dataset, making it challenging for classification due to the imbalanced class problem.
Therefore, existing methods have either excluded these classes from their experiments or
have shown poor performance, as evident from Table 7. Despite the fact, SSCRN demon-
strated 100% accurate results for these classes, which are “Oats”, “Grass-p-m”, and “Alfafa”.
Moreover, across all evaluation measures—i.e., OA, AA, and kappa coefficient—the SS-
CRN performed better than the compared methods with an OA of 99.17%, as presented in
Table 7.

The second experiment was performed on the SA dataset. The SSCRN achieved
an accuracy of 100% in the “Brocoli_g_w_2”, “Fallow”, “Fallow_s”, “Stubble”, “Celery”,
“Lettuce_r_6wk”, and “Vinyard_v_t” categories. Moreover, across all evaluation measures—
i.e., OA, AA, and kappa coefficient—the SSCRN performed better than state-of-the-art
methods with an overall accuracy of 99.67%, as shown in Table 8.

The third experiment was conducted on the PU dataset. Compared with the IP
dataset, this dataset has a relatively large number of training samples for each category
with nine classes, while the IP has 16 classes. Due to sufficient training samples, many
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deep learning models have achieved better performance on this dataset. However, due
to interfering pixels, extracting discriminative features is still a challenging task for this
dataset. The SSCRN produced excellent results on this dataset, as shown in Table 9.

Table 9. Classification results (%) of different methods on the PU dataset. Bold indicates the best accuracy.

Class SVM 3D-CNN BASSNet 2D–3D CNN SS3FC ADR FCLFN FFDN-SY TAP-Net SSCRN

1 93.84 94.60 97.71 99.42 97.48 98.01 97.03 98.24 95.67 99.88
2 95.88 96.00 97.93 99.93 90.86 98.20 100 98.90 97.61 99.92
3 72.80 95.50 94.95 98.69 58.75 98.15 95.14 98.07 73.08 98.71
4 88.23 95.90 97.80 99.88 84.81 99.23 88.49 97.82 94.23 99.52
5 98.05 100.0 100.0 99.97 94.82 99.31 99.18 99.93 99.48 100.0
6 84.51 94.10 96.60 99.45 23.59 99.41 99.46 99.46 84.17 96.58
7 82.70 97.50 98.14 99.47 61.61 98.92 95.89 99.79 59.92 100.0
8 88.37 88.80 95.46 97.89 88.84 98.08 100.0 98.52 83.60 98.61
9 99.56 99.50 100.0 99.96 88.68 98.06 96.20 99.69 99.33 100.0

OA 91.64 95.97 97.48 99.54 79.89 98.45 98.17 98.78 91.64 99.31
AA 89.33 / / / 76.60 98.60 96.80 98.93 87.45 99.24

k 88.88 / / / / 98.53 97.58 98.36 0.892 99.09

For better understanding, the visual classification results for each dataset are presented
in Figures 6–8 with false color images and their corresponding ground-truth maps. These
maps also confirm the outstanding performance of SSCRN on the three HSI datasets
discussed above. In particular, the SSCRN performed exceptionally well at the edges of
land-cover areas and alleviated the effect of interfering pixels. In addition to this, it also
suppressed spectral variability and produced smooth visual maps.

(a) (b) (c) (d)

Figure 6. Visual classification results on the IP dataset. (a) A three-band color composite image,
(b) the ground-truth image. Classification results of input image patch size (c) 7× 7, (d) 11× 11.
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(a) (b) (c) (d)

Figure 7. Visual classification results on the SA. (a) A three-band color composite image, (b) the
ground-truth image. Classification results of input image patch size (c) 7× 7, (d) 11× 11.

(a) (b) (c) (d)

Figure 8. Visual classification results on the PU dataset. (a) A three-band color composite image,
(b) the ground-truth image. Classification results of input image patch size (c) 7× 7, (d) 11× 11.
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4.4. Impact of Training Ratio

The robustness and generalizability of the SSCRN were evaluated with a varying
number of training samples from each dataset. In this regard, 5%, 10%, and 15% of the
total samples were used from the IP dataset, and 2%, 5%, and 10% for the SA and PU
datasets. The OA of SSCRN using different numbers of training samples is reported in
Figure 9, which shows that a larger number of samples leads to higher accuracy.

(a) (b)

(c)

Figure 9. Accuracy (%) of SSCRN with different training percentages on three datasets: (a) IP, (b) SA,
(c) PU.

4.5. Impact of Spatial Size of the Input Image Patches

The proposed model was also evaluated with different input patch sizes to assess
the impact of input patches and find their optimal size. In this regard, the patch sizes of
5× 5, 7× 7, 9× 9, and 11× 11 were employed. It has been learned that a larger input patch
size results in higher classification accuracy, which is quite reasonable because a larger
spatial size contains more information. The larger patch size provides higher accuracy but
at the cost of computational complexity. In this regard, we selected a spatial size of 7× 7,
which provides a good balance between high performance and computational complexity.
The results with different patch sizes are presented in Figure 10 and Table 10.

Table 10. Accuracy (%) of SSCRN under different spatial sizes of the input image patches on different datasets. Bold
indicates the best accuracy.

Spatial Input Size IP (OA) IP (AA) IP (k) SA (OA) SA (AA) SA (k) PU (OA) PU (AA) PU (k)

5 × 5 97.55 98.85 97.78 97.45 98.40 97.16 99.04 98.28 98.72
7 × 7 99.17 99.29 99.05 99.67 99.71 99.64 99.31 99.24 99.09
9 × 9 99.21 99.20 98.83 99.81 99.89 99.79 99.88 99.89 99.84

11 × 11 99.35 99.28 99.13 99.75 99.78 99.65 99.82 99.60 99.76

4.6. Impact of the Number of Convolution Kernels

The number of convolution kernels in a network determines its computational com-
plexity and representation capacity. As illustrated in Figure 2, the SSCRN employs the same
number of kernels in both the spectral and spatial modules. In order to evaluate the effect
of varying numbers of kernels on the accuracy, different numbers of kernels such as 16, 24,
32, and 40 are applied in each layer, as shown in Figure 11. The highest accuracy is achieved
using 32 kernels in each layer in the case of all three datasets. Figure 11a represents the
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detailed classification results on the IP dataset in terms of OA, AA, and kappa. Likewise,
Figure 11b shows the detailed classification results of the SA dataset, and Figure 11c
illustrates the classification results on the PU dataset.

Figure 10. Overall accuracy (%) along with varying sizes of input image patches on IP, SA, and
PU datasets.

(a)

(b)

(c)

Figure 11. Accuracy (%) of SSCRN with different numbers of kernels on three datasets: (a) IP, (b) SA,
(c) PU.
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4.7. Ablation Study

Although the SSCRN in its current form has proved to be effective for discriminative
feature learning and HSI classification, an ablation study was performed to confirm the
proposed model’s robustness and generalization ability with different variations. For this
purpose, the order of spectral and spatial modules was swapped. As a result of this
change, the model first learned the spatial features using 3D CNN with residual blocks
and then spectral features by employing the 3D ConvLSTM. The results confirm that
the model also performed well with this arrangement of modules, but the accuracy was
slightly decreased compared to its original version, as shown in Table 11. Moreover, it can
also be concluded that arranging modules in a spectral–spatial fashion is superior to its
spatial–spectral counterpart.

Table 11. Ablation study of swapping the sequence of spectral and spatial modules of SSCRN.

Sequence Dataset OA AA k

Spectral–Spatial
IP 99.17 99.29 99.05
SA 99.67 99.71 99.64
PU 99.31 99.24 99.09

Spatial–Spectral
IP 98.97 96.82 98.40
SA 99.01 99.14 98.56
PU 99.06 99.03 98.37

5. Discussion

Compared to traditional state-of-the-art approaches, deep learning-based techniques
offer several benefits: automatic feature extraction from HSI data, hierarchical nonlinear
transformation, objective functions that focus exclusively on classification rather than two
independent steps, and the efficient use of computational resources such as GPU [39].
The proposed SSCRN harnesses the potential of 3D ConvLSTM and 3D CNN, which
are considered excellent frameworks for different computer vision tasks, including HSI
classification. However, the proposed SSCRN is significantly different from the existing
techniques. There are four significant differences between SSCRN and other deep learning
models. First, the SSCRN separates spectral and spatial features into two consecutive
modules: 3D ConvLSTM and 3D CNN. The 3D ConvLSTM module aims to learn the
robust spectral feature representations, and the 3D CNN learns spatial features. This allows
for better discriminative features to be retrieved consecutively and reduces the chance
of information loss. Second, the SSCRN employs residual connections to ensure that the
network can work more deeply to enhance classification accuracy and avoid overfitting.
Third, utilizing a BN operation at each layer, the model’s fast learning capability can be
ensured, and the model converges in fewer epochs. Fourth, the proposed SSCRN model
achieved high classification accuracy, especially for the classes with few training samples.
It is worth noting that, in this study, data augmentation [37] was not employed to increase
the number of training samples; still, the model achieved excellent performance, which
confirms the robustness of the SSCRN.

It has been learned that three key factors influence the performance of supervised deep
learning models in terms of HSI classifications: (1) the spatial size of the input image patch,
(2) the number of training samples, and (3) the representation ability of the proposed model.
A greater number of training samples and a larger patch size lead to higher classification
accuracy. Hence, the same number of training samples must be used for a fair comparison.
For further clarification, the performance of SSCRN with different numbers of training
samples and patch sizes were reported for three datasets, as shown in Figures 9 and 10. It
has been observed that the performance in terms of OA declines with a reduction in the
number of training samples and the patch size.
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6. Conclusions

This paper presented a novel supervised deep learning framework consisting of two
modules—i.e., a 3D ConvLSTM followed by a 3D CNN with residual blocks—to learn
discriminative spectral–spatial representations for HSI classification. The input of the 3D
ConvLSTM module was a sequence of local data patches fed into each memory cell to learn
effective features and model long-term dependencies in the spectral domain. The output of
the spectral module was converted into a 3D cube by applying a special transformation
process, making it suitable for the 3D CNN spatial module. The 3D CNN spatial module
was designed to extract robust features in the spatial context. This module employed the
concept of skip connections similar to residual blocks to accelrate the training process
and avoid overfitting. Then, fused spectral and spatial information was used for final
classification. The proposed method achieved excellent results on three benchmark datasets,
with an overall accuracy of 99.17%, 99.67%, 99.31% and the average accuracy of 99.29%,
99.71%, and 99.24% over Indian Pines, Salinas, and Pavia University datasets, respectively.
The major advantage of the SSCRN is that it can be generalized to other remote sensing
problems due to its robust design and in-depth feature learning capacity. However, it
has been observed that the performance in terms of OA declines with a reduction in the
number of training samples and the input image patch size. One of the possible extension
of this work could be to make it computationally lean and achieve better accuracy with a
reduced number of training samples and smaller patch size.
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