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Abstract: Monitoring of land use, land-use changes, and forestry (LULUCF) plays a crucial role in
biodiversity and global environmental challenges. In 2015, the Food and Agriculture Organization of
the United Nations (FAO) launched the Global Forest Survey (GFS) integrating medium- (MR) and
very-high-resolution (VHR) images through the FAO’s Collect Earth platform. More than 11,150 plots
were inventoried in the Temperate FAO ecozone in Europe to monitor LULUCF from 2000 to 2015.
As a result, 2.19% (VHR) to 2.77% (MR/VHR) of the study area underwent LULUCF, including
a 0.37% (VHR) to 0.43% (MR/VHR) net increase in forest lands. Collect Earth and VHR images
have also (i) allowed for shaping a preliminary structure of the land-use network, showing that
cropland was the land type that changed most and that cropland and grassland were the more
frequent land uses that generated new forest land, (ii) shown that, in 2015, mixed and monospecific
forests represented 44.3% and 46.5% of the forest land, respectively, unlike other forest sources, and
(iii) shown that 14.9% of the area had been affected by disturbances, particularly wood harvesting
(67.47% of the disturbed forests). According to other authors, the area showed a strong correlation
between canopy mortality and reported wood removals due to the transition from past clear-cut
systems to “close-to-nature” silviculture.

Keywords: land-use change monitoring; forest monitoring; disturbance monitoring; temperate FAO
ecozone; Collect Earth platform; Global Forest Survey

1. Introduction

Monitoring of land use, land-use changes, and forestry (LULUCF), as well as their
disturbances, plays a crucial role in the response to global environmental challenges such
as climate change (CC) mitigation and diversity conservation. LULUCF can disturb the
biosphere–atmosphere exchange of carbon, water, and energy fluxes, can modify the ozone
concentration [1], or can become a driving force of land and biodiversity degradation [2].
In this regard, land-cover disturbances associated with extreme events and CC, such as
wildfires and insect outbreaks, can lead to carbon storage losses in a feedback pattern [3].
Therefore, land-cover disturbances, land-use changes, and CC are interrelated [4]. Forest
mitigation capacity has been specially recognized in the second commitment period of the
Kyoto Protocol and the Paris Agreement on CC [5] because it involves relevant carbon
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storage. National and international carbon reporting systems require terrestrial assessment
systems such as forest inventory data combined with carbon estimation methods [6].
In addition, LULUCF inventory data play a crucial role in biodiversity assessment and
ecosystem conservation [7].

LULUCF patterns and cause–effect processes are not fully defined in Europe since most
studies of landscape consider medium-term timescales and local spatial scales. Moreover,
most of the studies analyzed only one case study area and one spatial scale, among other
factors. However, LULUCF are compromising the landscape’s environmental sustainability
and its capacity to deliver ecosystem services [8]. Furthermore, LULUCF datasets are
critical for integrating socioeconomic, political, cultural, and environmental factors that
influence land-use decision making [9].

Therefore, updated LULUCF resource inventories and indicators are required, i.e.,
forest extent and stock species composition [7,10]. This information is especially necessary
at the forest level to encourage pan-European harmonization [11]. Additionally, forest-type
monitoring may address other forest biodiversity conservation issues, e.g., the level of
protection/landscape fragmentation of different forest types [12]. Therefore, accurate
LULUCF monitoring, at appropriate scales and during significant periods, is essential to
understand impacts on biodiversity, landscape ecology, and/or CC predictions [13].

Remote sensing performs a significant role in monitoring LULUCF [14]. The 30 m
pixel Landsat image series has been a reference source for several land-cover mapping
products at different scales. Thus, in the European Union (EU), from 1985, the European
CORINE Land Cover (LC) project, based on photointerpretation of false-color Landsat
scenes, has been the standard pan-European land monitoring system [15]. More recently,
GlobeLand30, based on a pixel-object-knowledge operational approach over Landsat
images, has provided global land-cover type maps for 2000 and 2010 [16].

However, medium-resolution (MR) images, such as the 30 m Landsat resolution
and Sentinel 2A resolution (i.e., 10 m), may be insufficient for monitoring heterogeneous
forests, mapping forest types, and recording LULUCF. In addition, there are few operative
approaches with very-high-resolution (VHR) images to map mixed stands across forest
landscapes, e.g., some studies focused on a European Forest Type classification approach
or mapping forest type and tree species using VHR images [7,17].

The EU and other international institutions are looking for new land-use monitor-
ing strategies. The European LUCAS project has implemented a comprehensive ground
observation system that, every 3 years since 2006, has provided land-cover and manage-
ment information based on the number of field points surveyed (i.e., 500,000 in 2012)
and photo-documented by field surveyors [18]. However, the LUCAS original dataset
needs harmonization to overcome some inconsistencies related to “subjectivity in legend
interpretation, and complexity of the field survey because of the large number of surveyors
(>700), complex documentation for the enumerators, and translations to 20 languages” [19].

In this framework, the 2015 Data Revolution proposal launched by the United Nations
boosted the Global Forest Survey (GFS) project developed by the Food and Agriculture
Organization of the United Nations (FAO) and supported by its Collect Earth open tool
based on VHR and MR image integration [20,21]. The FAO aims to collect and release forest
ecosystem data at the global level to potentially increase our understanding of forest health
and has features that should facilitate global policies for CC mitigation. The first successful
milestone of the GFS and Collect Earth approach has been monitoring 1327 million hectares
of dryland around the world, which led to finding 467 million hectares of forest (equivalent
to the size of the Amazon tropical rainforest) that was never previously reported. This
finding could mean an increase of at least 9% over previous estimations of global forest
cover, although this estimate is being debated [22].

In the framework of the GFS project in the EU, Martín-Ortega et al. [23] used the
Collect Earth tool, supported by VHR/MR image integration, for monitoring 14,957 plots
(0.5 ha) located in the drylands of the European Mediterranean region from 2000 to 2015.
These authors concluded that only 0.97% of the study area changed from one land use to
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another. The net increase in forest was 0.02% in this region, in contrast with other studies,
such as the Global Forest Resources Assessment (FRA) of FAO [24], which reported an
increase of 0.93% in these Mediterranean forests.

Regarding European temperate forests, they are relevant ecosystems with a positive
impact on socioeconomic aspects. These forests play a prominent role in timber production,
nature protection, water conservation, erosion control, and recreation [25]. However, their
interactions with global CC and their resilience to disturbances such as storms, floods,
fires, and diseases are not well known. [26]. García-Montero et al. [27] monitored the
“trees outside forests” (TOFs) in the Temperate FAO Ecozone in Europe. TOFs are an
important sustainable source of ecosystem services and products, with significant impacts
on forests and landscape management. These authors used a photo-interpretation approach
supported by VHR images and the Collect Earth platform. Thanks to these technologies,
they concluded that TOFs accounted for 22% of the inventoried area.

In this framework, the main objective of the present study is the temporary monitoring
of LULUCF in the Temperate FAO Ecozone in Europe [28], using the Collect Earth tool
supported by VHR and MR image integration. The development of this objective was in
the framework of the GFS project to improve approaches to monitoring European LULUCF.

Raši [29], the LUCAS Inventory [30], and the Common Agriculture Policy [31,32]
show differences in the European forest cover, with values ranging from 33% in 2015 to
41.1% in 2018. Moreover, the distribution of these forests is heterogeneous, i.e., Sweden,
Finland, Spain, France, Germany, and Poland take up two-thirds of the EU’s forested
areas. According to the EC [33], the European forest area has increased by 9% over the
past 30 years. However, Barbati et al. [11] highlighted that the net growth rate of the
European forest area has slowed, increasing by around 0.2% per year in the period 2000–
2010. These authors also indicated that new approaches to improve the monitoring of
forest biodiversity are urgently needed. The reason is that biodiversity is at risk due to
intensive silviculture, higher wood prices, higher harvests (notably for energy use), and
the CC-related degradation of forest resources.

Senf et al. [34] analyzed the forest canopy mortality of temperate forests in Europe
between 1984 and 2016. They concluded that forest mortality had doubled since 1984,
mainly associated with land-use changes and CC. Biotic (insects, pathogens, and wildlife
herbivory) and abiotic (wildfires, storms, floods, and drought) disturbances can also alter
the forest ecology and ecosystem services [35]. Cohen et al. [36] highlighted that, in recent
decades, patterns of forest disturbance have begun to shift both regionally and globally.
However, monitoring these forest disturbance impacts is limited by a lack of reliable and
timely disturbance data at large spatial scales [35].

In this context, the specific objectives of the present work, which is supported by VHR
and MR image integration through Collect Earth (in the framework of the GFS project),
were (i) to monitor the surface and temporary evolution of LULUCF in the Temperate FAO
Ecozone in Europe, (ii) to analyze forest type diversity and disturbances that are altering
these forests, and (iii) to propose a methodology to explore the LULUCF network structure
in this study area.

2. Materials and Methods
2.1. Study Area

The study area comprised over 2.9 M km2 between 38◦ and 54◦N latitude and between
8◦E and 28◦W longitude (Figure 1). As part of the GFS sampling design, the sampled area
mainly covered the European Temperate FAO Ecozone: 45% of the surface belonged to the
temperate oceanic forest FAO ecozone, 40% belonged to the Temperate Continental Forest
FAO ecozone, and approximately 15% belonged to the Temperate Mountain System (7%)
and Mediterranean areas equivalent to the Subtropical Dry System FAO Ecozone (8%) [27].
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Figure 1. Study area. Temperate FAO Ecozone sampled in Europe, including temperate oceanic area (45%), temperate
continental area (40%), temperate mountain systems (7%), and Mediterranean areas (8%) [27]. This figure is based on the
global image of the Earth by Google Earth in July 2016 (38–54◦N latitude and −8◦ to 28◦W longitude) [20,22].

According to the FAO [24,28], in the European Temperate FAO Ecozone, “the tem-
perate domain, equivalent to Koppen–Trewartha climatic groups, is characterized by an
average temperatures above 10 ◦C in 4–8 months of the year. Particularly in European
temperate oceanic areas, the average monthly temperature is always above 0 ◦C and annual
rainfall may vary from (400) 600 to 800 (1700) mm, with up to 2000–3000 mm in lowlands
on windward lower coastal mountain slopes. More specifically, this average annual temper-
ature ranges from 7 to 13 ◦C, while, in coastal areas, the temperature of the coldest month
does not fall below 0 ◦C; however, the inland mean temperature is locally below 0 ◦C. The
climate is influenced by the Gulf Stream and the proximity to the ocean, but their influence
decreases inland. Various types of beech forests (Fagus sylvatica) and mixed beech forests
are the dominant vegetation. In oceanic areas, Ilex aquifolium is a characteristic species of
the shrub layer. On nutrient-poor, acidic soils, beech is partly mixed with Quercus robur
and Q. petraea in the canopy. These stands are poor in species.”

In European temperate continental areas, however, “winters are colder, with at least
1 month having average temperatures below 0 ◦C. Rainfall generally decreases with dis-
tance from the ocean and also at the higher latitudes. More specifically, summers are warm,
and winters are cold in most of this region. Mean annual temperature is about 6 to 13 ◦C in
the west and decreases to 3 to 9 ◦C in the east. The temperature of the coldest month ranges
from below 0 ◦C in Scandinavia and around 0 ◦C in the Balkans to below−10 ◦C in the Ural
Mountains. In the northern areas, more than 2 months of the year have a mean temperature
below 0 ◦C. Owing to less influence of the Gulf Stream, annual rainfall gradually decreases
from the west/northwest (greater than 700 mm) to the east/southeast (about 400 mm).
Locally, in the foothills of the Caucasus, rainfall is very high. The zone has various forest
types, distributed along local and regional gradients of climate and nutrient availability.
In the northern parts, mixed coniferous broad-leaved forests form a belt parallel to the
circle of latitude. Spruce forests (Picea abies) constitute most of the forest cover. On more
acidic and drier soils, pine forests replace spruce. Further south, deciduous broad-leaved
forests are represented by mixed oak–hornbeam, dominated by Quercus robur, Q. petraea,
Carpinus betulus, and Tilia cordata, as well as associated species such as Fraxinus excelsior
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and Acer campestre. To the east of mixed oak–hornbeam forests, mixed lime–oak forests are
found, dominated by Quercus robur and Tilia cordata. In southeastern Europe and the Balkan
countries, Quercus petraea and Balkan oak (Quercus spp.) forests occur mainly, including
mixed forests dominated by Q. cerris and Q. frainetto in central Balkan Peninsula” [24,28].

The European temperate mountain system includes “areas over 800 m of altitude. As
the highest altitudinal belt of the temperate domain the mountain region is characterized
by generally greater precipitation and lower temperature, and the climate is extremely
varied. Precipitation varies from <500 mm to >3000 mm. The average annual temperature
ranges from−4 to 8 ◦C (12 ◦C) and the average January temperature at the highest altitudes
fluctuates between −10 and −4 ◦C. Beech (Fagus spp.) forests, particularly mixed beech
forests with Abies alba, Picea abies, Acer pseudoplatanus, Fraxinus excelsior, and Ulmus glabra,
comprise the vegetation of the lower belt in this region. As in the oceanic region, pure
beech forests at higher altitudes are relatively dense. At higher altitudes, other tree species
become more prominent. To the east, Fagus sylvatica (subsp. sylvatica) is replaced by F.
sylvatica subsp. moesiaca and, further eastward, by F. sylvatica subsp. orientalis. At even
higher altitudes, fir and spruce forests (Abies alba, A. borisii-regis, A. nordmanniana, Picea abies,
P. orientalis, and P. omorika) replace the beech forests. Either Abies or Picea may dominate.
Pinus sylvestris, Fagus sylvatica, some Quercus robur, and pioneer species such as Sorbus
aucuparia, Populus tremula, and Betula pendula play a minor role. Around the timberline, pine
scrub (Pinus mugo) or Rhododendron spp. may occur. This scrub and krummholz transitions
at higher altitudes into alpine grasslands, various dwarf shrub vegetation, and rock and
scree vegetation of the alpine to nival belt. In the Urals, the altitudinal zonation starts with
lime–oak forests (Quercus robur, Tilia cordata) at the lowest level, followed by herb-rich
fir–spruce forests (Abies sibirica, Picea obovata) with broad-leaved trees such as Ulmus glabra
and Tilia cordata, as well as pine forests (Pinus sylvestris) with Larix sibirica” [24,28].

2.2. Data Collection

The data were collected through a stratified systematic survey in the Temperate FAO
Ecozone in Europe under the GFS framework [28]. The Forest Assessment, Management,
and Conservation Division (FOM) of the FAO designed this survey on the basis of the
methodology proposed by Bastin et al. [22]. The grid in the systematic sampling was of the
same order as that used in forest assessments by FAO and in national forest inventories (see
Figure 2 in [27]). The aim of the survey was to map vegetation and land uses in this area
of Europe. The international land-use guidelines set by the Intergovernmental Panel on
Climate Change (IPCC) were used to assign the type of land use to each plot. The sample
consisted of 11,159 plots of 0.5 ha (70 × 70 m) (Figure 2). Half a hectare is the minimum
plot size that the FAO-FRA indicates in its definition of a forest [24]: “Forests are lands of
more than 0.5 hectares, with a tree canopy cover of more than 10%, which are not primarily
under agricultural or urban land use, as well as areas in which tree cover is temporarily
<10% but is expected to recover”.

Twenty-five master’s and PhD students and two professors of Forestry and Agricul-
tural Engineering and Environmental Sciences were involved in the survey implemented
in Collect Earth in July 2016 [20,37,38]. Collect Earth is a system developed by the FAO to
collect and analyze georeferenced data using Google geospatial tools, including free VHR
images. It allows for free access to several remote sensing databases such as DigitalGlobe,
SPOT, Sentinel 2, Landsat, and MODIS imagery, and it provides graphical representations
of vegetation evolution indices from Landsat and MODIS imagery in Google Earth Engine
(GEE) [20,39]. These features ensure robust land-use assessments by interpreting MR and
VHR satellite imagery [40].
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Figure 2. Two examples of the location of the sample plots of 0.5 ha (70 m × 70 m) that were assessed by means of a
stratified systematic sampling design: (a) Spanish plot of cropland; (b) Portuguese plot of plantation linked to forest land.



Remote Sens. 2021, 13, 4344 7 of 20

2.3. Data Processing

The data sources mentioned above were automatically geosynchronized in each 0.5 ha
plot to allow researchers to record several parameters. The chosen parameters were IPCC
land-use types, land-use change, and types of disturbances. Each plot was assigned to one
of the six IPCC land-use types: cropland, forest, grassland, settlement, wetland, and other
land [41]. The assigned land-use type was that use whose surface was more than 0.1 ha and
fulfilled a hierarchy rule that established the following order: (1) settlement, (2) cropland,
(3) forest, (4) grassland, (5) wetland, and (6) other land, following a conservational principle:
(i) less conservational land use results in a higher rank; (ii) if the forest area is more than
0.1 ha, then this land use is inconsistent with another dominant non-forest activity [42].

According to the IPCC classification, land-use forest subtypes were identified using
VHR images (where available), which included: mixed conifers and broadleaf, conifers,
broadleaf, mixed deciduous broadleaf, plantation, riparian forest, and gallery forest. In ad-
dition, different kinds of disturbances, i.e., tree felling, pastoralism, wildfire, and flooding,
according to the FAO–FRA [43,44], were also inventoried.

The authors also evaluated land-use change following the same “predominant land
use” criterion and using the available imagery stored in the Google Earth platform. The
comparison between 2015 VHR imagery with the oldest 2000 (MR images) and 2000–2014
(VHR/MR images) information available on land-use changes (in this case, medium-
resolution images, such as Landsat) allowed us to identify land-use changes. Potentially
inconsistent plots were automatically identified through semiautomated data cleaning
and manually reassessed by FAO members [22,27]. The data associated with the 11,159
plots were analyzed with open-source data visualization and by querying the tool SaikuBI,
which is integrated with the Collect Earth platform [20].

As the variables in this study express the frequency of qualitative variables, the
sampling error was calculated according to the following expression [45]:

e = zα/2

√
p̂q̂
n
(1− f ), (1)

where zα/2 is the inverse standard normal cumulative distribution function for a confidence
level of 1 − α, p is the proportion of the number of plots with a specific characteristic, q = 1
− p is the proportion of plots without that characteristic, n is the size of the sample, and f is
the sampling intensity in terms of the area sampled compared to the total area.

The sampling errors of each IPCC type in 2015 were 0.009, 0.009, 0.006, 0.005, and
0.002 for forest land, cropland, grassland, settlement, and wetland, respectively. All were
statistically acceptable at less than 0.05 [27].

We shaped a preliminary structure of the plots’ land-use change from 2000–2014
to 2015. The social network analysis (SNA) approach was applied. In the network, the
land-use structure matrix was filled with the number of plots that changed from the land
use in the first column of the matrix to the land use in the first row to develop a directed
weighted network [46]. The SNA application calculated the parameter density, degree,
average degree, in-degree, out-degree, weighted degree, and average weighted degree to
characterize the network. Density describes the portion of the potential connections in
a network that are actual connections. A potential connection is a connection that could
potentially exist between two nodes regardless of whether it exists (see Equation (2)).

Density (G) =
K

N(N − 1)
= ∑

LUi, LUj ∈ G
LUSMLUi, LUj/N(N − 1), (2)

where G is the network, K denotes the existing relationships, N is the total number of land
uses (nodes) in the dataset, and LUi and LUj are the interrelated land uses in the land-use
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structure matrix (LUSM). The degree of a node is the number of relations (edges) it has,
whether it is an in or an out relationship (see Equation (3)).

Degree(LUi) = ∑
LUj∈G

LUSMLUi−LUj, (3)

where LUi is the land use and LUj is the j-esimo LUi interrelated land use in the LUSM. The
average degree is the average number of edges per node in the graph (see Equation (4)).

AvD =
∑N

i=1 Degree(LUi)

N
, (4)

where Degree(LUi) is the degree of land use I, and N is the total number of land uses (nodes).
The in-degree of node i is the number of relations (edges) from any other node of the
network to this node (see Equation (5)).

InDegree(LUi)
= ∑

LUj∈G
LUSMLUj→LUi, (5)

where LUi is the InDegree land use, and LUj is the j-esimo LUi interrelated land use in the
LUSM with a directed relationship between node j and node i. The out-degree of node i
is the number of relations (edges) from this node to any other node of the network (see
Equation (6)).

OutDegree(LUi)
= ∑

LUj∈G
LUSMLUi→LUj, (6)

where LUi is the OutDegree land use, and LUj is the j-esimo LUi interrelated node in the
LUSM with a directed relation from node i to node j. The weighted degree of a node is
the number of edges for a node, multiplied by the weight of each edge. In this work, the
weights are the number of plots that change for every pair of land uses (see Equation (7)).

WDegree(LUi)
= ∑

LUj∈G
WLUi−LUjLUSMLUi−LUj, (7)

where LUi is the weighted degrees land use, G is the network, LUj is the j-esimo LUi
interrelated land use in the LUSM, and WLUi−LUj is the number of plots interchanged
between land uses LUi and LUj. The average weighted degree is the average number of
weighted edges per node in the graph (see Equation (8)).

AvWD =
∑N

i=1 W_Degree(LUi)

N
, (8)

where W_Degree(LUi) is the weighted degree of land use I, and N is the total number of
land uses (nodes). Gephi 0.9.2 software was used to obtain the network and parameters.

3. Results

Table 1 shows the 2015 results of integrated VHR and MR images in Collect Earth
used to analyze the distribution of IPCC land-use types in the study area. The predominant
land-use types were forest and cropland, which accounted for 77.48% of the inventoried
area, while grassland and settlements covered 19.48%. On the other hand, for 2000, Table 1
shows the results of MR images used to analyze the distribution of IPCC land-use types.
Other predominant land-use types were forest and cropland, which accounted for 78.43%,
while grassland and settlements covered 18.64%.
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Table 1. Number of plots (and %) for IPCC land-use types in GFS for the Temperate FAO Ecozone in Europe, in both 2000
(using MR images) and 2015 (integrating VHR and MR images).

IPCC Land Use Plot Count (2000) Plot % (2000) Plot Count (2015) Plot % (2015) Total Net Increase in
No. of Plots, TCL

2 (%)

Forest land 4568 40.94 4617 1 41.37 1 0.43
Cropland 4184 37.49 4030 36.11 −1.38
Grassland 1289 11.55 1323 11.86 0.31
Settlement 791 7.09 850 7.62 0.53
Wetland 154 1.38 158 1.42 0.04

Other land 173 1.55 181 1.62 0.07

Total 11,159 100 11,159 100 2.77 3

1 Data published in García-Montero et al. [27]. 2 Percentage net increase in no. of plots in each land use, TCL, between 2000 and 2015
compared to the initial value calculated by TCL = (bL − aL)/11,159 × 100, where bL is the number of plots counted in 2015, and aL is the
number of plots counted in 2000 for a specific land use. 3 Land-use change frequencies observed in the study area, between 2000 and 2015
(calculated as a sum in absolute value).

LULUCF from both years were detected by analyzing all the plots, using the MR
images in 2000 compared with the integration of VHR and MR images in 2015. The
LULUCF frequencies observed in this data group show that 2.77% of the plots underwent
net changes in land use in those 15 years. Table 1 also shows that there was a 0.43% relative
net increase in forest land plots, as a result of the net balance between these forest lands and
some other land-use types that would have decreased, such as cropland, which decreased
by 1.38% when comparing 2000 and 2015.

Table 2 shows the frequency of subtypes for the IPCC land-use types, using only VHR
images in Collect Earth in 2015 and during the period 2000–2014. Regarding the 2000–2014
data, the scarcity of VHR imagery in the study area made the results not applicable or
comparable to the 2015 data. Table 2 shows that, in 2015, most of the plots classified as
forest land belonged to mixed conifers and broadleaf (13.3% of the study area) and conifers
(11.3% of the study area), followed by forest land plots classified as broadleaf (7.5% of
the study area) and mixed deciduous broadleaf (4.9% of the study area). However, the
most abundant land use relative to the total number of plots in our study area was rainfed
farming (29.28% of the study area), also highlighting the grassland (10.02% of the study
area) and irrigated crop (5.02 % of the study area) types.

Regarding forest biodiversity, Table 2 shows that, in 2015 (VHR), all forest types were
significantly represented in the study area. Mixed conifer and broadleaf forests covered
32.4%, conifer forests covered 27.6%, and broadleaf forests covered 18.9% of the forest land
use; the surface of other forest types was mixed deciduous broadleaf forests and gallery
forests, which accounted for 11.9% and 0.9% of the forest land use, respectively.

We also integrated VHR images from 2015 and a number of interpretable MR/VHR
images from 2000–2014 to see the specific LULUCF through Collect Earth. Table 3 and
Figure 3 allow us to see this LULUCF evolution in 6948 plots (62.3% of the plot sample).
Changes were detected by analyzing all the plots, using available and interpretable images
from 2000–2014 and 2015. The land-use change frequencies observed in this data group
show that 2.19% of this analyzed territory underwent LULUCF in those 15 years. Table 3
also shows that 0.71% of plots of some land-use types generated new forest land areas,
although, simultaneously, 0.34% of forest land areas were changed into other land uses.
Therefore, if we use Collect Earth, comparing 2000–2014 (interpretable MR/VHR images)
and 2015 (VHR images), 62.3% of the plot sample showed a net increase of 0.37% in
forest lands.
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Table 2. Number of plots of IPCC land-use subtypes in 2015, and number of plots of subtypes that showed changes
regarding the 2000–2014 period (only VHR images), in European Temperate FAO Ecozone.

Temperate FAO Ecozone Type of Land Use Plot Count (2015) Plot Count (2000–2014)

Forest land

Mixed conifers and broadleaf 1488 7
Conifers 1266 15
Broadleaf 835 9

Mixed deciduous broadleaf 548 6
Plantation 1 307 3

Riparian forest 42 -
Gallery forest 4 -

Other plantations 2 53 3
Plantation of poplars (Populus) 3 33 -
Plantation of eucalyptus trees 3 16 -
Total forest land subtype plots 4592 43

Non-forest land use

Rainfed farming 3265 77
Pastureland 1117 71

Irrigated crops 560 9
Village 329 1

Urban area 240 -
Scrubland 229 8
Orchard 182 4

Infrastructure 144 2
Rocks 130 4

Built area 120 2
Lake or permanent pond 85 -

Permanent river or inland delta 37 -
Snow or glacier 32 -

Cultivation in flood zone 21 -
Mine 17 -
Sand 11 3

Riparian vegetation 9 -
Swamp in inorganic soil 4 8 -

Seasonal river 7 -
Delta coastal 6 -
Seasonal lake 3 -

Rice plantation 2 -
Peat 1 -

Plantation of acacia trees 3 1 -

Available data 11,148 224
No data 11 10,935

1 Plantation = plant forestation linked to the existing forests (Figure 2b); 2 other plantation = plant forestation different to the existing
forests; 3 plantation sp. = plantations of eucalyptus, poplar, or acacia (tree species that could be identified by VHR images); 4 swamp in
inorganic soil = swamp without peat or riparian vegetation.

Table 3. Land-use structure matrix with the number of plots changed (using only VHR images) from the land use in the
first column (2000–2014) to the land use in the first row (2015), designed to build a network of land use changes.

Number of Plots Forest Land Grassland Cropland Settlement Wetland Other Land

Forest land 0 14 0 10 0 0
Grassland 22 0 0 22 1 0
Cropland 21 18 0 25 3 0
Settlement 2 0 0 0 6 0
Wetland 0 0 0 0 0 0

Other land 4 2 0 2 0 0
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Figure 3. Graph of preliminary structure of network of the land-use interchange. The width of the lines is proportional to
the weight (number of plots); the black lines indicate from which land use to which the plots changed, while the number of
plots is indicated on the lines. The color of the nodes indicates the weighted degree.

The development of preliminary analyses (limited by the VHR availability) of the
land-use network allowed us to identify which type of land uses present more changes and
greater influence. Using only VHR images, Table 3 shows a land-use structure matrix based
on the number of plots that changed land use, comparing 2000–2014 and 2015, designed
to build the network of the land-use interchange. On the other hand, Figure 3 shows the
network of these land uses (nodes), where the arrow width is proportional to the number
of plots that changed from one use to another. The network density (0.46) indicates that
fewer than half of the potential interconnections between land uses exist (14 out of 30). The
average degree per node (4.65) shows that the network is minimally connected on average.

In the Temperate FAO Ecozone sampled in Europe, grassland, forest land, cropland, and
settlement are the land uses with more frequent changes (see “weighted degree” in Table 4). In
Table 4, the “degree” shows that forest land, grassland, and settlement are the types with more
direct connections; thus, they have the highest impact on land-use management. However, no
land-use type is connected with all the potential land uses. “In degree” values show that forest
land and settlement have the highest value, 4; hence, there were plots from four different
land-use types that changed into these two types. Most of the plots assigned to forest land
use in 2015 were previously cropland or grassland. However, cropland is the land use whose
initial plots changed into a higher number of land-use types (four), equally to grassland,
forest land, and settlement. Regarding the “weighted degree” in Table 4, grassland shows
the highest value; therefore, it is the type of land use with the highest number of plots that
either changed from any other land use into grassland or from grassland into any other land
use, followed by forest land. These are, thus, the land uses with the highest probability of
changing their surface. Lastly, the results show that other land and wetlands have a small
influence on the land-use change process observed in the study area.

In addition to the identified LULUCF, in Table 5, Collect Earth and VHR images show
that, in 2015, 9.06% of plots were affected by different kinds of disturbances in the analyzed
plots in the study area (10,340 plots). In the whole study area, the main disturbances
observed in the plots with historically available data (10,340 plots) were tree felling and
pastoralism, followed by flooding. In 2015, in the overall forest land areas, the disturbances
were mainly tree felling, and, to a lesser extent, pastoralism and flooding, while fires
disturbed very few forests. However, taking into account the IPCC land-use subtypes of
forest land, Table 6 shows that, in broadleaf and mixed deciduous broadleaf forests, both
tree felling and pastoralism had a similar impact. In riparian and gallery forests, the only
disturbance detected was flooding.
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Table 4. Value of the parameters degree, in degree, out degree, and weighted degree for each land
use, and average degree and average weighted degree for the preliminary structure of network.

Land Use Degree In Degree Out Degree Weighted Degree

Forest land 6 4 2 73
Grassland 6 3 3 79
Cropland 4 0 4 67
Settlement 6 4 2 67
Wetland 3 3 0 10

Other land 3 0 3 8
Average per node 4.65 - - 50.66

Table 5. Environmental disturbance kinds observed in the analyzed plots (VHR images) depending
on the IPCC land-use types in the Temperate FAO Ecozone in Europe in 2015.

Type of Land
Use (2015)

Disturbance
Kind Plot Count

% Relative to
the Type of

Land Use (2015)

% Total
Available Data
(10,340 Plots)

Forest land

None 3930 91.89 38.01
Tree felling 237 5.54 2.29
Pastoralism 41 0.96 0.40

Flooding 14 0.33 0.14
Fire 6 0.14 0.06

Mining 5 0.12 0.05
Storm 4 0.09 0.04

Non identified 40 0.94 0.39

Cropland

None 3527 95.66 34.11
Other 66 1.79 0.64

Tree felling 53 1.44 0.51
Pastoralism 30 0.81 0.29

Flooding 9 0.24 0.09
Mining 2 0.05 0.02

Other land

None 163 94.22 1.58
Other 4 2.31 0.04

Mining 3 1.73 0.03
Tree felling 1 0.58 0.01
Pastoralism 1 0.58 0.01

Flooding 1 0.58 0.01

Grassland

None 950 76.18 9.19
Pastoralism 236 18.93 2.28
Tree felling 28 2.25 0.27

Other 21 1.68 0.20
Flooding 11 0.88 0.11

Storm 1 0.08 0.01

Wetland

None 126 85.71 1.22
Flooding 15 10.20 0.15

Other 5 3.40 0.05
Pastoralism 1 0.68 0.01

Settlement

None 707 87.39 6.84
Other 61 7.54 0.59

Tree felling 17 2.10 0.16
Mining 16 1.98 0.15

Pastoralism 8 0.99 0.08

All types Disturbed plots 937 - 9.06
Available data 10,340 - 100

No data 819 - -
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Table 6. Environmental disturbance types observed in the analyzed plots (VHR images) depending
on the IPCC land-use subtypes in the forest lands of the Temperate FAO Ecozone in Europe, in 2015.

Subtypes of Forest Land (2015) Disturbance Kind Plot Count %

Conifers (11.23%) 1

None 1065 91.73
Tree felling 73 6.29

Other 10 0.86
Pastoralism 7 0.60

Fire 4 0.34
Mining 2 0.17
Subtotal 1161 100

Mixed conifers (0.70%) 1
None 68 94.44

Tree felling 4 5.56
Subtotal 72 100

Broadleaf (7.84%) 1

None 765 93.97
Tree felling 22 2.71
Pastoralism 20 2.46

Other 2 0.25
Mining 1 0.12

Flooding 1 0.12
Subtotal 811 100

Mixed conifer and broadleaf
(13.03%) 1

None 1266 93.69
Tree felling 55 4.08

Other 14 1.04
Pastoralism 5 0.37

Flooding 4 0.30
Storm 2 0.15

Mining 1 0.07
Subtotal 1347 100

Mixed deciduous broadleaf
(4.85%) 1

None 464 92.43
Tree felling 24 4.78
Pastoralism 6 1.20

Other 6 1.20
Mining 1 0.20

Flooding 1 0.20
Subtotal 502 100

Plantation of poplars (Populus)
(0.83%) 1

None 26 89.66
Tree felling 3 10.34

Subtotal 29 100

All forest subtypes Available data 4174 -
No data 443 -

Total number of analyzed plots in
the study area - 10,340 -

Subtypes of Forest Land (2015) Disturbance Kind Plot Count %

Plantation of conifers (5.44%) 2

Tree felling 42 21.99
Fire 1 0.52

Other 1 0.52
None 145 75.92
Storm 2 1.05

Subtotal 191 100%

Plantation of Eucalyptus trees
(0.46%) 2

Tree felling 8 50.00
None 8 50.00

Subtotal 16 100%
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Table 6. Cont.

Subtypes of Forest Land (2015) Disturbance Kind Plot Count %

Riparian forest (0.40%) 2
None 35 85.37

Flooding 6 14.63
Subtotal 41 100%

Gallery forest (0.04%) 2
None 3 75.00

Flooding 1 25.00
Subtotal 4 100%

All forest subtypes Available data 4174 -
No data 443 -

Total number of analyzed plots - 11,159 -
1 Percentage related to the total of analyzed plots in the study area, in 2015 (10,340 plots). 2 Percentage related to
the total of analyzed plots (11,159 plots).

4. Discussion

At the global scale, Goldewijk [47] summarized the historical data and patterns of
LULUCF over the past 300 years, showing increases in cropland (5.6-fold) and pastures
(6.6-fold) at the expense of forest lands and natural grassland. Thus, from 1700 to 1990,
OECD Europe and Eastern Europe doubled their cropland area. However, LULUCF have
shown differences between the different global regions and different temporary trends, i.e.,
for the period 1950–1990, the USA, OECD Europe, Eastern Europe, East Asia, and Japan
showed a small decrease in cropland. Later, between 1990 and 2012, Naranjo et al. [9]
described most of the EU territory as cropland, accounting for 35%. However, they also
concluded that European agriculture and other land uses had changed during this period.

Nevertheless, as our results confirm, this decreasing trend of temperate forest area
has been changing, at least in Europe, over the last few decades. The main reasons are
the reforestation of abandoned cropland and woody encroachment resulting from wildfire
suppression, especially in temperate regions [48]. Moreover, to counteract the historical
overexploitation of European forests, in the last century, forestry management has been
improved. This management has led to high growth rates and increased growing stocks in
these forests [25].

In the 21st century, in the Temperate FAO Ecozone in Europe, our monitoring of
15 years of LULUCF using the Collect Earth platform and MR–VHR image integration
has improved our knowledge of the land-use patterns in this region, especially for 2015.
Collect Earth’s efficiency is very high in years for which VHR images are available, such
as 2015. On the other hand, our results have also shown that the Collect Earth platform
has a similar efficiency to other monitoring methodologies when using medium-resolution
images (i.e., the 30-m Landsat resolution).

However, our results showed differences when the image comparisons were based
on (i) MR images (i.e., the 2000 data collection), (ii) VHR/MR integration of images (i.e.,
the 2015 data collection), or (iii) only VHR images (i.e., 2000–2014 data collection and 2015
data collection). In this regard, when Collect Earth integrated MR and VHR images (2000
and 2015 data), the results showed that the percentage of plots that had changed land use
and increased in forest area, respectively, were 0.58% and 0.06% higher (with respect to
the total territory) than the Collect Earth results when using only VHR images (2000–2014
and 2015 data). This comparison should be repeated in the coming years, when more VHR
images are available.

On the other hand, the analysis of only VHR images through Collect Earth also
suggested a preliminary structure of the land-use network structure associated with the
2.19% of the plots whose land uses changed between 2000–2014 and 2015. Thus, cropland
was the land-use type that changed the most, and cropland and grassland were the main
land uses that transformed to new forest lands in the study area in 2015. Notwithstanding
the scarcity of VHR images for 2000–2014, these results at the European scale are consistent
with previous trends found by European national studies, i.e., Václavík and Rogan [49]
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highlighted a 12% decrease in cropland, with 6% of it becoming new forest land and 3.5%
arable land, in the Czech Republic between 1991 and 2001. Kuemmerle et al. [50] also
showed cropland abandonment (at a rate of 21.1%), while forest lands remained stable
from 1990 to 2005 in Southern Romania. Thus, although this land-use network gives
a preliminary structure, because of the limited availability of VHR images before 2015,
our results indicate that this methodology is already showing good LULUCF patterns.
Therefore, in the future, this land-use network will be improved through an increase in
VHR image availability, which will also increase the inputs into the SNA model.

In the European Temperate FAO Ecozone, Collect Earth also indicated that forest land
was the second (VHR images) or third (MR/VHR images) most frequent type of land use
that changed into any other land use. However, the LULUCF balance favored forest lands,
which increased by between 0.37% and 0.43% during this period. This net forest growth
rate was significantly lower than the 2% net growth rate of the overall European forests
proposed in 2000–2010 [11]. Despite this, for 2015, Collect Earth and VHR images showed
that more than 41.37% of the studied Temperate FAO Ecozone in Europe was forested
(Table 1). This value exceeds the estimations of European forest proposed by other authors
for 2015 [29–32].

In 2010, Forest Europe [51] reported that conifers covered 50% of European forests
(excluding the Russian Federation), broadleaf covered 25%, and the remaining part com-
prised mixed conifer–broadleaf stands. When considering an equivalent Europe Temperate
FAO Ecozone extension, the forest-type distribution amounted to 40%, 48%, and 12% for
conifer, broadleaf, and mixed forests, respectively. For 2015, Forest Europe [52] reported
that mixed European forest accounted for up to 70%, and the area of monospecific forests
decreased in recent years. Therefore, there are large discrepancies in the state of Europe’s
forests between 2010 and 2015. These discrepancies are explained by (i) data availability, (ii)
significant differences between national and international definitions of forests available
for wood supply, and (iii) the different interpretations of these definitions by the various
countries in their forest inventory reports [51]. Therefore, Alberdi et al. [5] highlighted that
it is necessary to have harmonized European forest inventory datasets. In this regard, in
the Temperate FAO Ecozone in Europe, using the Collect Earth platform and VHR images
within the GFS framework in 2015, mixed forests represented 44.3% of the forest area, while
monospecific forests (conifer or broadleaf forest) represented 46.5%.

On the other hand, Senf et al. [34] assessed canopy mortality in European temperate
forests, finding that 0.79% of the forest area (240,000 ha) had been affected by canopy
mortality per year since 1984, and this canopy mortality increased by 2.40%·year−1 in 2016.
They indicated that broad-scale processes due to past land use and CC are drivers affecting
the ecosystem dynamics at large spatial scales, which can explain this mortality. These
findings are in line with the annual net increase of forest lands due to the transformation of
cropland and grassland that we found in the study area from 2000 to 2015.

Cohen et al. [36] highlighted that, in recent decades, disturbances affected northern
temperate forests more frequently and with a higher spatiotemporal variability than har-
vesting. They indicated that, across Europe, wildfire, wind, and bark beetle disturbances
have steadily increased since the early 1970s. However, our results, using Collect Earth
and VHR images, confirm that, on average, in 2015, wood harvesting (associated with
tree felling disturbance) was the most frequent forest disturbance in the six forest land
subtypes. This disturbance represented 67.47% of the total forest land in the study area,
with an impact (in terms of extent) six times greater than pastoralism, 13 times greater
than flooding, and 40 times greater than wildfires. These results are consistent with the
conclusions of Senf et al. [34]. These authors found (i) a strong correlation between canopy
mortality trends and reported wood removals, and (ii) harvesting mainly being based on a
transition from past clear-cut systems toward “close-to-nature” silviculture and retention
forestry in the temperate forests of Europe.

Historically, the clearing of forests for firewood and agriculture has been a significant
source of carbon emissions [48], in addition to wildfires and other forest disturbances.
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Thus, burnt areas in temperate forests could lead to a mean reduction in the soil carbon
stock of 35% [53]. Guo et al. [54] confirmed that a burnt area of 5 million ha in Russia
generated 261.82–302.48 Tg of CO2 emissions. On the other hand, a reduction in forest area
and increase in forest isolation led to 20–75% decreases in the abundance of animals and
plants, impacting ecological functions and reducing the ecosystem services of forests, such
as carbon sequestration and nutrient cycling [55]. Therefore, as Goldewijk [47] suggested,
it is necessary to improve land-use inventory methodologies and studies to increase the
availability of LULUCF historical data. This improvement should imply collecting data at
spatial and temporal scales since this is a requirement for validating models of global envi-
ronmental change. In this regard, GFS, based on the Collect Earth platform and supported
by VHR images, seeks to overcome the lack of forest inventory/information harmonization,
as GFS provides a homogeneous sampling scheme independent of national borders.

Our work allowed us to conclude that the efficiency shown by the Collect Earth tool
is clearly linked to its ability to manage free VHR images to analyze changes in land use.
Although we cannot access multispectral bands, these VHR images allow for high-quality,
direct photointerpretation of the analyzed scenarios, which provides greater definition of
the elements and observable changes in the territory compared to the free multispectral
images of lower spatial resolution (i.e., Landsat). However, the main limitation of the
photointerpretation of these free VHR images is that they do not allow for the generation
of spectral indices (NDVI, EVI, etc.). The spectral indices usually facilitate the diagnosis of
certain states and/or ecological processes (humidity, vigor and phenology of plants, etc.)
associated with the observed elements of an area (natural vegetation, crops, soils, etc.).
Therefore, the high efficiency of Collect Earth and VHR images is limited to the inventory
phase and directly observable changes and disturbances. A second limitation of the free
VHR images is their low temporal availability in many areas, mainly in the early 2000s.
However, since 2015, we confirmed a significant increase in the temporary availability
of VHR images in the study area. If more VHR images are available, this will increase
Collect Earth’s capacity to integrate both VHR and multispectral MR images, with the aim
of increasing knowledge about the cause–effect processes associated with the LULUCF
evolution at different area scales.

However, as with the use of any other research tool, the first results obtained by Collect
Earth and VHR images would be conditioned by other aspects of the used methodologies,
such as the sampling procedures or the conceptual frameworks in which each work would
be carried out. Following the example of forests recently located in drylands over the
world (using Collect Earth and VHR images), Bastin et al. [22] suggested a figure of 9%
of new forest, estimated at the global scale; some authors have discussed this estimation
from different conceptual perspectives, e.g., (i) Griffith et al. [56] disagreed with the forest
definition used by the authors [22] because it would not reflect the ecosystem function or
biotic composition, which could have overestimated the extent of forest in the tropics and
could have led to both unwanted changes in their conservation strategies and inadequate
management practices of tropical pastures, (ii) Schepaschenko et al. [57] discussed the
“novelty” of some additional forests located in drylands and thought that not all sources
of uncertainty in the used methodology had been considered because, in Australia, they
observed a 14% discrepancy in the forest/non-forest classification, instead of the 3.5%
reported by the authors of [22], and (iii) De la Cruz et al. [58] disagreed with regard to
the delimitation of dry forest distribution, the conceptual framework of drylands, and the
sampling design used by the authors of [22].

Beyond the methodological problems and conceptual debates linked both to the
diagnosis of cause–effect processes and to the policies of decision-makers on land-use
management, our work highlighted the two main advantages of Collect Earth in moni-
toring European LULUCF. Firstly, they allow users to easily overlay and integrate VHR
image information (with less temporary availability and without multispectral bands) with
multispectral MR images (with lower spatial resolution and high temporary availability),
with the aim of improving the cause–effect diagnoses of LULUCF, disturbances, and forest
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types evolution. Secondly, as suggested by Saah et al. [40], Collect Earth enables researchers
and land-use decision-makers, with a minimal background in remote sensing, to monitor
LULUCF of vast areas.

5. Conclusions

In summary, the FAO’s Collect Earth platform, within the GFS framework, has im-
proved the accuracy of our knowledge of land-use patterns in the Temperate FAO Ecozone
in Europe. Collect Earth supported the monitoring of LULUCF comparing the 2000 and
2015 data, integrating VHR and MR images. Moreover, using only VHR images, it was
possible to build a preliminary structure of the LULUCF network, comparing the 2000–2014
and 2015 data, in 62.3% of the study area. The LULUCF frequencies observed, comparing
the 2000 and 2015 scenarios (VHR/MR images), showed that 2.77% of the territory under-
went net change, including a 0.43% relative net increase in forest land plots. On the other
hand, the LULUCF network comparing the 2000–2014 and 2015 scenarios (VHR images)
showed that 2.19% of the analyzed territory underwent net change, including a 0.37%
relative net increase in forest lands. The preliminary structure of the LULUCF network
showed that cropland was the land-use type that changed most, and both cropland and
grassland were mainly transformed into new forest land. Thus, during this period in the
Temperate FAO Ecozone in Europe, there was a moderate upward trend of forest area,
in contrast with the results found by other authors, who described higher increases in
these forests during comparable periods. In the coming years, the greater availability
of VHR images will improve LULUCF monitoring and network building through the
Collect Earth platform. The analysis of available VHR images also showed that mixed
and monospecific forests represented 44.3% and 46.5%, respectively, of the forest land
area. These results indicate high discrepancies with other forest inventories, highlighting
the need for the homogenization of forest inventories, which the GFS and Collect Earth
could facilitate. Lastly, the analysis of available VHR images also showed that disturbances
affected 14.9% of the study area. Wood harvesting (tree felling) was the most frequent
disturbance (67.47% of disturbed forests), while fires only disturbed 0.14% of forests. How-
ever, considering broadleaf and mixed deciduous broadleaf forests, both tree felling and
pastoralism had a similar impact; in riparian and gallery forests, the only disturbance was
flooding. According to other authors, the study area showed a strong correlation between
canopy mortality and reported wood removal when “close-to-nature” silviculture replaced
the clear-cut system. In conclusion, the GFS project based on the Collect Earth platform
supported by VHR images provides new opportunities for data collection and analysis at
large scales. These data can help validate the models of global environmental change and
guide land-use decision-makers.
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