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Abstract: The Fabry–Pérot interferometer (FPI) and meteor radar are two important techniques
for measuring the horizontal wind field in mesopause region, the observations of which still lack
comprehensive comparison. Kunming Observatory (25.6◦N,103.8◦E) has deployed both instruments
in recent years and provides collocated meteor radar and FPI observations. The meteor radar
measures the horizontal wind fields over 24 hours every day continuously, whereas the FPI can only
work during the night with clear air condition. FPI horizontal wind data from the 892.0-nm airglow
emission (with a peak height at ~87 km) from 26 January to 8 February 2019 were comparatively
analyzed with simultaneous meteor radar observations, which cover the range between 80 and 90 km
with a vertical resolution of 1.8 km. It was found that the temporal variations in the horizontal
wind fields observed by the FPI and meteor radar were generally consistent with one another,
with the highest 2-D correlation coefficients of 0.91 (0.88) at 88 (87) km for the meridional (zonal)
wind, which agreed with the peak height of OH airglow emission observed by the TIMED/SABER
instrument. In addition, the correlation coefficient for the weighted meteor radar horizontal wind
by OH concentration between 86 and 88 km and 85 and 89 km increased slightly from 0.91 (0.89) to
0.92 (0.89) for the meridional (zonal) wind, which indicated the contribution of OH concentration
beyond the peak height to the FPI wind observations. We also found that the absolute horizontal
wind values detected by two instruments were linearly correlated with a slope of ~1.3 for both wind
components, and meteor radar wind observations were usually larger than the FPI observations.

Keywords: mesospheric horizontal wind; FPI; meteor radar

1. Introduction

The mesosphere and lower thermosphere (MLT) region lies between 60 and 140 km
above the Earth, where many atmospheric waves amplify and break [1]. The wave–mean
flow interaction maintains the momentum and energy equilibrium in the MLT region,
which shows a pole-to-pole residual circulation from the summer to winter hemisphere [2].
The detection of the meteorological field is, thus, significant to the dynamic research in the
MLT region [3–6], because neutral wind and temperature play vital roles in the dynamics
and energy transmission [7,8].

The use of meteor radar equipment is one of the most effective methods to measure
the neutral wind in the MLT region between 70 and 110 km according to the Doppler
shifts of a coherent signal, which effectively represent the radial velocities and positions of
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meteor trails. Meteor radar is capable of operating day and night all year round, regardless
of the weather conditions, and, thus, is broadly utilized in mesospheric dynamic stud-
ies [9–12]. Currently, the horizontal wind observations from meteor radar are extensively
utilized in the study of dynamics in the MLT region between 80 and 100 km. For example,
meteor radars in Mohe, Beijing, and Wuhan were utilized to study the quasi-10-day waves
(Q10DW) in the MLT area during the SSW in February 2018 [13], and the authors found
that the enhancement of Q10DW was intimately related to the SSW event. Additionally, the
nonlinear interaction between the quasi-2-day wave and tides was also investigated with
meteor radar observations at Maui (20.8◦N, 156.4◦W), which showed clear child waves
with periods between 16 h and 9.6 h [14].

The FPI is a passive optical detection instrument that is sensitive to light [15], which
can only work at night with clear air condition. The FPI can measure the wind field at the
height of the airglow radiation by recording the Doppler shift of a specific wavelength.
For example, the 557.7-nm and 630.0-nm airglow emission from O1 could be utilized to
track the neutral wind at ~97 and ~250 km, respectively. Moreover, the 892.0-nm airglow
emission from OH reflects the neutral wind at ~87 km. The FPI thermospheric wind
fields from the 630.0-nm airglow emission over the Asian and American continents were
compared [7] and the authors found that the reversal time of the zonal wind was earlier
at Millstone Hill (42.6◦N, 71.5◦W) than at Kelan (38.7◦N, 111.6◦E). The authors of [16]
studied the influences of sudden stratospheric warming and planetary waves on the MLT
temperature and neutral wind based on the 557.7-nm channel FPI observations, which
were found to be equally strong. Moreover, the semiannual and triannual oscillations were
identified by the FPI observation at a mid-latitude location (53.5◦N, 122.3◦E) [17].

Comparisons between the wind observations by FPI and meteor radar have been reported
in recent years. For example, the FPI wind observations over Kelan (38.7◦N, 111.6◦E) were also
compared with meteor radar wind observations over Beijing (39.98◦N,116.37◦E) [18,19]. The
authors found that the correlation coefficient between these two types of winds reached
0.95 and 0.90 at 87 km for meridional and zonal wind, respectively, which is slightly larger
than the correlation coefficients at 97 km. The authors of [20,21] further compared the FPI
and meteor radar at King Sejong Station in the Antarctic Peninsula (62.22◦S, 58.79◦W),
which also showed correlation coefficients between 0.8 and 0.95 for the OH 892.0-nm
airglow emission, but varied from year to year. Additionally, the amplitudes of the FPI
wind observations were ~0.71 and ~0.78, as large as the amplitudes of the meteor radar
wind observations at 87 km for zonal and meridional components, respectively.

However, the comparisons between the FPI and meteor radar wind at low latitude
have not been performed. In this paper, we compared the neutral wind data observed
by an FPI at a low-latitude location (25.6◦N,103.8◦E) with that simultaneously measured
by a collocated meteor radar, which contributes to the previous works performed for the
high-latitude King Sejong Station (62.22◦S 58.79◦W) [20,21] and mid-latitude Kelan Station
(38.7◦N, 111.6◦E) [18,19] FPI observations. Additionally, both the temporal variations
and the absolute values between these two instruments were comparatively investigated.
The FPI and meteor radar instrument data sets are described in Section 2. A comparative
analysis of the two observations is presented in Section 3, followed by a summary in Section
4.

2. Date Descriptions
2.1. Meteor Radar

The Kunming Stratospheric–Tropospheric (ST) meteor radar has been operating since
2008, at a frequency of 53.1 MHz and peak power of 40 kW, which is similar to that
described by previous work [22,23]. The Kunming meteor radar is operated by the China
Research Institute of Radio Wave Propagation (CRIRP), belonging to the ATRAD meteor
detection radar (MDR) series, and is essentially the same as that described by [24]. The
system parameters are summarized in Table 1.
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Table 1. Main operation parameters of the Kunming meteor radar.

Frequency 53.1 MHz

Peak power 40 kW

Pulse repetition frequency 430 Hz

Coherent integrations 4

Range resolution 1.8 km

Pulse-type Gaussian

Pulse width 24µs

Duty cycle 15%

Detection range 70–110 km

Figure 1a shows the number of meteors detected by the meteor radar at the Kunming
Observatory from day 26 to 39 in 2019. Meteors were detected from 74 km to 98 km, but
the area with the most meteors was distributed from 78 to 90 km. Figure 1b is the average
number of meteors at various altitudes during this period. Generally, the peak meteor
height distribution observed by the 53.1-MHz meteor radar during the winter was close to
87 km [23,25]. The average numbers of meteors from 76 to 98 km were more than 10 per
hour, and the average number of meteors at 86 km reached ~43 per hour.
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Figure 1. (a) The number distribution of meteors detected by meteor radar in the height range of
70–102 km with a temporal resolution of 1 hour, (b) the average number of meteors at each altitude
during this period.

Figure 2 shows the meridional wind measurements from 80 to 90 km observed by
the Kunming meteor radar from 26 January to 8 February. The southward wind was
from 4:00 to 20:00 UT every day at ~90 km and reached a maximum value of 150 m/s on
29 January. The phases of the southward wind propagated downwards over time. The
northward wind at 90 km appeared between 20:00 and 4:00 UT every day, and its phase
also propagated downward over time. Figure 2b shows the zonal wind, which was the
strongest at ~90 km and 0:00 UT every day. The maximum zonal wind reached as large
as 130 m/s. Additionally, the eastward and westward winds reached their maximum at
approximately 6:00 and 20:00 UT every day, respectively.
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Figure 2. (a) is the meridional wind from 80 km–90 km height observed by meteor radar in Kunming
Observatory from 26 January to 8 February 2019, and (b) is the zonal wind.

2.2. FPI

The Kunming FPI observes airglow emissions to measure neutral winds from the
upper mesosphere (~87 km) to the middle thermosphere (~250 km) with clear air conditions.
Due to the strong background sunlight during the day, the FPI can only work at night.
FPI is mainly composed of a sky scanner, a filter wheel, an etalon chamber, a focal lens,
a CCD, and a thermostat. The scanning turntable is the scanning control part of the sky
scanner. The horizontal azimuth and elevation angles are adjusted by a stepping motor
automatically controlled by the software to generate a total of five azimuths, including east,
west, north, south, and up. The elevation angle is 45◦ for the east, west, north, and south.
It takes ~10 min, ~10 min, and ~20 min for channels of 892.0 nm, 557.7 nm, and 630.0 nm,
respectively. The wind fields, thus, have a time resolution of ~40 min. The airglow signal
enters the front-end optical receiving system through the turntable channel and enters the
filter wheel after collimating the optical path. The filter wheel is equipped with three filters,
which can pass light of 557.7 nm, 630 nm, and 892 nm that correspond to ~97 km, ~87 km,
and ~250 km, respectively. The filter wheel rotates to make the three filters work in cycles.
The etalon is mainly composed of two parallel high-reflectivity smooth glasses. The optical
signal enters the etalon after passing through the filter and continuously reflects between
the two parallel glasses to form an interference ring. The thermostat is responsible for
maintaining the temperature of the etalon and reducing the deformation of the etalon due
to temperature changes. After the optical signal passes through the etalon, it is converged
on the CCD to obtain the final interference ring image. The wind speed can be inverted by
calculating the radius of the interference ring in each image.

Figure 1 shows that the detection of the Kunming meteor radar between 80 and
90 km is nearly continuous for 24 hours every day. This paper will only compare the
meteor radar horizontal wind observations with the 892.0-nm FPI observations, since the
892.0-nm FPI observations measure wind velocities at 87 km on average. Figure 3 shows
the 892.0-nm FPI observations from 26 January to 8 February with the meridional and
zonal wind observations exhibited by Figure 3a,b, respectively. Figure 3a shows that the
meridional wind was a northward wind throughout the 27th day of 2019. The northward
wind speed was approximately 10 m/s at 13:00 UT, and then increased, reaching 72 m/s at
21:00 UT. On the 31st day, at 13:00UT, the southward wind was 25 m/s, after which the
wind speed decreased to 0, and then turned to a northward wind at approximately 14:00
UT and continued to increase, reaching the maximum value of 125 m/s at 18:00 UT. The
wind speed then decreased, dropping to 43 m/s at 23:00 UT. The meridional wind field
changes in the remaining days were similar to the 31st day: All were southward winds
at 13:00 UT, and then the wind speed decreased to 0, turning into a northward wind and
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increasing continuously, reaching the peak at approximately 19:00 UT, after which the wind
speed continued to decrease.
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Figure 3b shows the zonal wind observations during days 26–39 by the FPI 892.0-nm
channel, which represents the wind at ~87 km with a temporal resolution of ~40 min. The
observed zonal wind at 87 km showed a decreasing tendency, firstly, which then increased
after a minimum value. For example, the eastward wind speed was approximately ~50 m/s
at 13:00 UT on day 26, which dropped to ~2 m/s at 17:00 UT. The wind speed started to
increase after that and reached the maximum value of 50 m/s at 23:00 UT. The trend of
the zonal wind on day 27 was mostly similar to that on day 26. The eastward wind speed
was ~29 m/s at 19:00 UT and then decreased to a minimum value of 11 m/s at 19:00 UT.
After that, the wind speed kept rising and reached 94 m/s at 23:00 UT. Nevertheless, the
zonal wind exhibited day-to-day variabilities. For example, the zonal wind decreased
and increased repeatedly on days 28, 36, and 38. The eastward zonal wind reached the
greatest value of ~75 m/s on day 31, while it was only ~10 m/s on day 29. The westward
wind reached a minimum value of ~-75 m/s on day 33, while the zonal wind was always
eastward on days 26, 27, and 36. We compare the horizontal wind observations by the
FPI 892.0-nm channel with the meteor radar observations during the same time in the
next section.

3. Comparison and Discussion

Figure 4 compares the meridional wind at ~87 km observed by the FPI 892.0-nm
channel and meteor radar during days 26–39. The temporal variations in the meridional
wind observed by FPI and meteor radar were generally consistent with each other. For
example, the meridional winds reached the maximum value on days 27, 29, 31, 33, and
36. The meridional wind was mostly northward at midnight, and the strongest meridional
wind occurred at ~02:00 UT. We note that the meridional wind observations of the meteor
radar were relatively larger than those observed by FPI regardless of the wind directions.
In the zonal direction, the temporal variations in the FPI and meteor radar observations
were also generally similar. The FPI observations were also smaller than the meteor radar
observations, which were exhibited by the meridional wind from 13:00 to 17:00 UT on days
29, 31, 33, and 37, and at 23:00 UT on days 28, 29, 30, 31, and 32.
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To study the relationship between the temporal variations in the FPI and meteor radar
horizontal winds, we performed a two-dimensional correlation analysis on the wind data
sets presented in Figures 4–6 shows the temporal correlation coefficients between the FPI
and observations and meteor radar observations during days 26–39 at different heights.
Note that the meteor radar has a vertical resolution of 1.8 km, and the wind values at
every height are estimated by accounting for all the meteors in a 1.8-km grid. In the zonal
direction, the correlation coefficient between the FPI and meteor radar winds reached
a peak of 0.88 at 87 km, which is only slightly larger than the correlation coefficient of
0.87 at 86 km. The correlation coefficients decreased significantly below 86 km and above
87 km with values of only 0.77, 0.83, and 0.78 at 85, 88, and 89 km, respectively. In the
meridional direction, the correlation coefficient reached the highest value of 0.91 at 88 km,
which is slightly higher than the peak height of 87 km for the zonal component. At 87 km,
the correlation coefficient for the meridional wind was ~0.9, which is also larger than
the value of 0.88 for the zonal component at the same height. Moreover, the correlation
coefficients for the meridional wind component at 85, 86, 89 km were ~0.75, ~0.84, and
0.86, respectively. The meridional wind component had a better correlation relationship
than the zonal component. Generally speaking, our results are similar to those achieved
by the authors of [20], who compared the FPI and meteor radar observations at a high-
latitude observatory (King Sejong Station (KSS), (62.22◦S, 58.79◦W)). They showed that the
correlation between the meteor radar and FPI at KSS were 0.88 and 0.92 for the meridional
and zonal wind components, respectively, which generally agrees with our analysis results.
However, the authors of [21] showed that the correlation coefficients were only 0.28 for the
zonal wind and 0.36 for the meridional wind at 87 km at KSS by analyzing the FPI and
meteor radar observations during 2017, which is much smaller than the coefficients in our
analysis. Currently, we are not sure about reasons for the discrepancy.
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Figure 6 shows that the horizontal wind observations from the 892.0-nm OH airglow
emission were most relevant to the meteor radar neutral wind observations at 87 or 88 km.
This is possibly because the 892.0-nm airglow emissions peaked at heights between 87 and
88 km. The SABER instrument on board the TIMED satellite can measure the OH emissions
at two channels, 1.6 µm and 2.0 µm [26]. The authors of [27] pointed out that the emission
peak heights of different vibration levels were different, and the bands originating from
higher vibration levels had higher emission peak heights. Figure 7 shows the concentration
distribution of the 1.6- and 2.0-µm OH emissions on days 27 and 34, from which we can see
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that the OH emission at these two channels peaked between ~86 and 88 km. The peak height
of the 892.0-nm OH emission is, thus, also likely to be close to between 86 and 88 km.
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Considering that the neutral wind observations by ground-based FPI represent the
average wind fields of the entire airglow layer, we also wanted to calculate the weighted
wind values of the meteor radar horizontal wind observations. To be exact, we used the
concentration of the OH airglow emission at every height, which is shown in Figure 7, as
the weight of the wind observations from meteor radar and calculated the weighted meteor
radar wind between 85 and 89 km. Figure 8 shows the correlation coefficient between the
892.0-nm FPI wind observations and the meteor radar wind at 87 km, the weighted meteor
radar wind between 86 and 88 km, and the weighted meteor radar wind between 85 and
89 km, respectively. All the observations during days 26–39 were utilized in the analysis. In
the meridian direction, the correlation coefficient between the FPI wind and meteor radar
wind increased from 0.90 to 0.92 when all the OH airglow emissions between 85 and 89 km
were counted. In the zonal direction, the coefficient between the 892.0-nm FPI observations
and the weighted wind speed of the meteor radar between 85 and 89 km is ~0.89 also
showed an increase compared with the correlation coefficient between FPI observations
and meteor radar observations at 87 km. This clearly showed that the neutral winds of the
entire OH emission layer all contributed to the ground-based FPI wind observations, but
the wind at the OH peak height accounted for most of the ground-based observations. The
FPI observations are thus presentative for the neutral wind at ~87 km.
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Figure 8. Correlation coefficients between FPI neutral wind and original meteor radar winds at
87 km, weighted meteor winds between 86 and 88 km, and weighted meteor radar winds between 85
and 89 km. The (a) meridional and (b) zonal components are exhibited by Figure 8a,b, respectively.

The correlation coefficients in Figure 6 represent the temporal consistency between
FPI and meteor radar wind observations, which were between ~0.8 and 0.9 for both the
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zonal and meridional components. Hereafter, we will investigate the relationship between
the absolute values of FPI and meteor radar wind observations. Figure 9 shows the
scatters of the FPI and meteor radar observations, as well as their linear fitting results.
There was a strong linear relationship between meteor radar and FPI results, though the
observation results of meteor radar were larger than that of FPI. The slope of the linear
fitting was between ~1.36 and 1.33 for meteor radar meridional and zonal winds at 87 km,
respectively, which means that the meteor radar observations were ~1.3 times as great
as the FPI observations. The FPI instrument measures the averaged wind values of the
whole airglow layer. For example, the 892.0-nm FPI channel measures the airglow emission
of OH, which lies between 80 and 100 km with a peak value at ~87 km (Figure 7). The
892.0-nm channel FPI wind observation is, thus, the averaged wind value between 80 and
100 km, though we usually take it as the wind value at ~87 km. However, the meteor
measures the wind at every vertical grid, e.g., 85 km, 86 km, and 87 km. The meteor radar
wind observation at 87 km was, thus, larger than that measured by 892.0-nm FPI channel.
Nevertheless, the slopes became smaller when the weighted (by airglow emission) meteor
radar winds were utilized (Figure 10). For example, the weighted meteor winds between
86 and 88 km were ~1.35 and ~1.32 as large as the FPI 892.0-nm observations for meridional
and zonal components, respectively; the weighted meteor wind between 85 and 89 km was
~1.31 as large as the FPI 892.0-nm observations for both meridional and zonal components.
This means that the absolute values of FPI and meteor radar observations become a bit
closer when a much thicker OH layer is considered.
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4. Summary

Both FPI and meteor radar are two important ground-based pieces of equipment
that can measure the neutral wind fields in the mesopause region. The FPI is a passive
optical equipment, while the meteor radar is an active radio equipment. In this paper, we
compared the FPI and meteor radar observations at a low-latitude observatory (Kunming
(25.6◦N, 103.8◦E)) for the first time. Both instruments operated with good condition from
26 January to 8 February 2019, which provided an opportunity for the comparative analysis
of the wind fields observed by meteor radar and FPI. The meteor radar at Kunming works
at a frequency of 53.1 MHz, and could only detect meteors up to 94 km. We, therefore,
only compared the meteor radar horizontal wind observations with the FPI neutral wind
observations from the 892.0-nm channel, which originates from the OH airglow emission
and has a peak height of ~87 km (Figure 7).

We found that the temporal variations in the FPI and meteor radar neutral wind
observations generally agreed with each other, the correlation coefficients of which reached
0.90 and 0.88 at 87 km for meridional and zonal components, respectively. The temporal
coefficients increased slightly when weighted (by OH airglow emission concentration)
meteor radar wind fields between 85 and 89 km were utilized in the correlation analysis. For
example, the correlation coefficients between FPI and weighted meteor radar meridional
(zonal) winds between 86 and 88 km and 85 and 89 km reached 0.91 (0.89) and 0.92 (0.89),
respectively.

Furthermore, we compared the absolute values of the FPI and meteor radar wind ob-
servations. Our analysis results showed that the neutral winds from these two instruments
had a strong linear relationship, though the meteor radar observations were larger than
those of the FPI observations. To be exact, the meteor radar wind at 87 km was 1.36 and
1.33 times as large as the FPI observations for the meridional and zonal components, re-
spectively. Nevertheless, the slopes of the linear fitting decreased to ~1.31 for the weighted
meteor radar wind observations between 85 and 89 km for both meridional and zonal
winds. This means that the absolute values of the weighted winds of meteor radar become
closer to the FPI observations.

The temporal variations in the meteor radar and the FPI wind observations, as well
as the comparison between their absolute values, showed that these two instruments
give consistent mesospheric wind observations. The neutral wind at the OH peak height
contributed most to the 892.0-nm FPI observations. The FPI and meteor radar wind
observations at an Antarctic observatory (62.22◦S, 58.79◦W) showed that the meteor radar
was between 1.2 and 1.4 times as large as the FPI wind observations at the OH emission
peak height [20]. Our current analysis regarding the comparison between FPI and meteor
radar observations at low latitude in the Northern Hemisphere contributes significantly to
the comprehensive comparison between these two instruments. The FPI could measure the
neutral wind fields in the mesosphere and lower and upper thermosphere (~87 km, ~97 km,
and ~250 km) continuously, which facilitates the study of the lower–upper atmospheric
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coupling. The validation of FPI observation with other instruments contributes greatly to
the popularization of FPI instrument in the future.
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