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Abstract: Water depth estimation in seaports is essential for effective port management. This paper
presents an empirical approach for water depth determination from satellite imagery through the
integration of multiple datasets and machine learning algorithms. The implementation details of
the proposed approach are provided and compared against different existing machine learning
algorithms with a single training set. For a single training set and a single machine learning method,
our analysis shows that the proposed depth estimation method provides a better root-mean-square
error (RMSE) and a higher coefficient of determination (R?) under turbid water conditions, with
overall RMSE and R? improvements of 1 cm and 0.7, respectively. The developed method may be
employed in monitoring dredging activities, especially in areas with polluted water, mud and/or a
high sediment content.

Keywords: ensemble learning; classifier fusion; support vector machine; random forest; multi-
adaptive regression spline; neural networks; port; bathymetry

1. Introduction

Bathymetry or measurement of water depth in coastal areas is crucial in many fields
such as coastal shipping, dredging activity monitoring, coastal ecosystem management,
fishery development, mineral exploration, natural disaster management, as well as coastal
research and modeling [1,2]. Moreover, the availability of accurate water depth data is
also critical for the stability and safety of beaches and waterfront buildings. Bathymetric
measurements are also necessary for the exploration, development, protection and manage-
ment of natural resources, especially coastal environments [3]. Furthermore, dredging and
maintenance of wharves and waterways are crucial for ensuring proper ship navigation
and safe operation of port infrastructure and facilities. In fact, most seaports have channels
that can suffer from sedimentation, which reduces the water depth and hence impedes
navigation [4]. Thus, maintenance and dredging are needed to improve and facilitate
navigation; deeper port drafts are sought to accommodate bigger ships; and marine and
river environments should be developed and maintained [5,6]. In order to minimize the
efforts and costs associated with dredging operations, the seabed water level must be accu-
rately estimated. Conventional methods for water depth estimation require ship-enabled
detailed measurements which are time-consuming, expensive, and sometimes dangerous.
In addition, these methods are difficult to apply in remote areas. Also, echo detectors
are usually used to measure water depth [7]. In fact, the single-beam echo sounder is
the most commonly used technique for measuring the water depth in seaports. Other
common techniques utilize echo generators. Currently, multi-beam echo detectors and
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light detection and ranging (LiDAR) devices are usually used for high-resolution water
depth estimation in shallow waters. However, these devices have high operating costs;
their use requires many safety precautions; and they are more applicable only in small
areas [8,9].

The aforementioned considerations have motivated the exploitation of emerging
remote-sensing technologies in order to achieve more reliable water depth estimation at
a lower cost [10]. For example, the combination of an echo sounder and remote-sensing
satellite data leads to enhanced water depth estimation. The remote-sensing bathymetry
methods generally can be categorized into physics-based methods and empirical methods.
The physics-based methods simulate the interactions of light through water columns, while
the empirical methods seek to build regression models between the spectral radiation
patterns and the in situ calibration data [11,12]. Nevertheless, the accuracy of the remote-
sensing bathymetry methods is typically limited for water depth estimation in shallow
areas. The decline in accuracy is essentially due to the limited coverage and space of these
methods, as well as the wide variations in water clarity.

Machine learning methods have been also considered for constructing more general
models for water depth estimation. These methods could be employed to better exploit
the multi-dimensional characteristics of multi-spectral sensor data. Although inferring
and explaining the relationship between the water depth and these characteristics is
quite challenging especially under different observation conditions, the machine learning
methods can be effectively employed to face this challenge through different numerical
models and hence provide superior solutions [13]. In recent years, water depth estimation
has been addressed through various machine learning methods including those based on
neural networks [14], random forests [15], support vector machines [16], and others [16,17].
Traditionally, training and optimizing a water depth model is carried out with one set of
multi-spectral images and a single machine learning algorithm [16]. A prominent example
of port bathymetry is the work of Mateo-Pérez et al. [16], who used a support vector
machine and Sentinel-2 satellite imagery data of 2020 to find interval estimates of the
water depths at the Spanish ports of Candds and Luarca as 0-4.5 m and 0-12 m, with
corresponding root-mean-square error (RMSE) values of 0.37 m and 0.44 m, respectively.
In 2021, Mateo-Pérez et al. [17], obtained further depth estimates at the port of Candas
with RMSE values of 0.33 m and 0.46 m for random-forest and RBF-kernel SVM techniques,
respectively. Since multiple water depth control points are required for model training,
the model accuracy depends on the number of control points and hence the performance
outcomes of different models are not easily comparable.

Apart from ports, the same or similar techniques were also exploited for retrieving
bathymetry in shallow turbid waters in the last few decades [18-20], and many improve-
ments have been made recently [21-24]. In 2002, V. Lafon et al. [18], carried out a simple
method applied to shallow waters of a moderately turbid tidal inlet by using an SOPT
image, and the mean difference between measured depths and computed depths is about
20%. In 2020, Caballero et al. [25], using a Sentinel-2A /B image to estimate bathymetry
with median errors of under 0.5 m for depths 0-13 m when validated with lidar survey. An
alternative approach is to combine ensemble learning methods with multi-spectral imaging
data [25,26]. For example, Mohamed et al. [18], used ensemble learning algorithms and
SPOT-4 images to estimate the water depth at El-Burullus Lake in Egypt as 0.3-1.3 m with
an RMSE value of 0.15 m. Also, Surisetty et al. [19], explored multiple Sentinel-2 image
datasets and machine learning algorithms for high-precision water depth estimation at
Rushikonda Beach in India. A water depth estimation of 0-13 m (with a RMSE of 0.36 m)
was obtained through the combination of the log-linear model (LLM) and support vector
regression (SVR).

The aforementioned methods have generally improved the accuracy of bathymetry
by utilizing remote-sensing images and algorithms. However, the useful information of
the water depth control points has not yet been fully exploited. In order to boost the
accuracy and robustness of the current methods for water depth estimation, adaptive
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exploration of this type of information should be carried out in conjunction with ensemble
machine learning algorithms. In our work, we integrate control-point information of the
water depth along with machine learning methods, use the control points twice to perform
depth regression, and finally obtain water depth estimates. The feasibility of the proposed
approach is demonstrated for a test site.

2. Proposed Machine Learning Algorithms for Bathymetry Mapping
2.1. Neural Networks (NN)

A conventional artificial neural network (NN) mimics the biological processes in
which neurons learn from feedback. A NN architecture consists of an input layer, an
output layer, and some hidden layers. The interconnections between neurons of adjacent
layers are established by weights which are tuned in the NN learning phase. The input of
every neuron is the weighted summation of the total outputs of the previous layer, and
an activation function is used to generate the neuron output. The NN architectures can
be generally divided based on their connection patterns into feed forward and feedback
(recurrent) networks [14].

2.2. Random Forests (RF)

The random forest (RF) model is a supervised ensemble learning model. In this model,
multiple prediction models are simultaneously generated, and the prediction results of
each model are comprehensively analyzed to improve the overall prediction accuracy.
Specifically, a large number of decision trees is generated through data and variable
sampling. For each tree, self-help sampling is carried out, and out-of-bag data samples are
used for error estimation. For decision tree generation, the variables are randomly selected,
and hence the random forests do not experience overfitting with the increase in the number
of trees. The random forest algorithm can still demonstrate good learning performance for
large datasets. Furthermore, for this algorithm, the relative importance of each variable
can be assessed, and the results can be explained [15].

2.3. Support Vector Regression (SVR)

Support vector regression (SVR) is one of the key statistical models for machine
learning. For the linear case, regression is directly performed by the decision function.
For the non-linear case, regression is realized by constructing the decision function in a
high-dimensional space. This enables the construction of a small-sample multidimensional
regression model [11].

2.4. Multi-Adaptive Regression Splines (MARS)

The multi-adaptive regression splines (MARS) algorithm is a non-parametric multiple
regression method that uses adaptively-selected spline functions. Although linearity is
assumed in this method, models can be constructed with coefficients that depend on the
predictor variables.

All models for water depth estimation were constructed in a Python environment [27].

2.5. Bathymetry Mapping

Based on a single image of each study area, a certain number of water depth control
points is usually selected randomly. However, this may not be a reliable method for satellite-
derived bathymetry (SDB), because the water depth estimates may depend on the number
and locations of the control points. Also, high water turbidity can lead to higher reflectivity
values for the visible and near infrared (NIR) channels. This high reflectivity may result in
depth overestimation in shallow water areas (<6 m) and depth underestimation in relatively
deep water areas (6—10 m). These effects typically produce false mappings between the
control points and the reflectivity values, and hence reduce the depth estimation accuracy.
In this paper, water depth retrieval is performed as follows. As Figure 1 shows, first of all,
a remote-sensing image of good quality is selected, where the image is consistent with the
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timing of the captured scene and the measured data. Then, atmospheric correction and
sunlight removal are performed to obtain the corresponding reflectance data. The water
depth is thus estimated using four machine learning algorithms, the tide is corrected, and
hence the accuracy of the water depth estimates is evaluated. Finally, a topographic map is
created based on the obtained estimates and the integrated approach. In our integrated
approach, we estimate the water depths by employing the control points in two steps.
In the first step, four water depth estimates are obtained using the control points and
four machine learning algorithms. In the second step, new depth estimates are obtained
using the existing depth estimates and a new control-point training set. We compared
the estimated depth with the in-situ depth values in order to evaluate the accuracy of
the proposed SDB estimation method. Indeed, our method thoroughly exploits the water
depth control-point information, in order to effectively reduce the depth estimation error
and boost the accuracy of water depth inversion.

Sentinel-2A/B
Multispectral Images
Atmospheric
.
Sunglint Correction
.
In-situ depths Remote Sensing In-situ depths
(4000 points) Reflectance Rrs(Sr™) (1000 points)
e Vaildation
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v
Machine learning algorithm Depth In-situ depths
(RE/MARS/SVR/NN) (RE/MARS/SVR/NN) (1000 points)
Training
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'
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Figure 1. The general workflow of the proposed system for water depth estimation from satellite images.

3. Experimental Data Collection
3.1. Sentinel-2 Imagery

The experimental work was carried out at Nanshan port (18°18'30"'N to 109°7'00"'E),
located to the south of Hainan Province, China. Nanshan port (Figure 2) and the wharf
there have been the target for large-scale reconstruction and expansion since 2005. This
port is one of the most important in Southeast Asia, but its water is mostly turbid, muddy
and opaque (as its Chinese name implies).
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Figure 2. The geographical location of the study area: (a) Hainan Province, (b) Nanshan port, (c) the data collection area
where the different colors represent the variations of the in-situ depth data.

The Sentinel-2 satellite is currently in orbit, and the data collected by this satellite
is available free of charge under an open license through several portals including the
Copernicus Open Hub. In this work, we explored data collected on 17 July 2021. For
data preprocessing and analysis, we used the sentinel application platform (SNAP) soft-
ware [28], which is an open-source architecture that combines several toolkits provided
by the European Space Agency (ESA). The water depth map at Nanshan port is predicted
based on Sentiel-2 imagery data for several spectral reflection bands (namely, 1, 2, 3, 4, 5, 6,
7,8,8a,9,11 and 12). All spectral images were downsampled to a resolution of 10 x 10 m.
The Sen2Cor software was used to perform atmospheric correction and to convert the
sensor-based reflectance to surface reflectance. Finally, the sunlight effects were removed
through S2 view resampling in the SNAP software.

3.2. In Situ Data

From 11-13 July 2021, two acoustic surveys were conducted in the Nanshan port, using
an R2Sonic 2024 Wideband Multibeam Echo Sounder, an Octans all-in-one gyrocompass
and motion sensor, Trimble Beacon differential global positioning systems (GPS), a Teledyne
Odom surface sound velocity probe, and a sound velocity profiler. In particular, the differ-
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ential GPS modules were used for navigation and positioning in multibeam bathymetry
and sea sweeping (where the positioning system had a nominal dynamic accuracy of £1 m).
The R2Sonic 2024 Sounder is a 5G broadband high-resolution shallow-water multibeam
system (R2Sonic, Austin, TX, USA). In addition, the Octans optical-fiber-equipped compass
and motion sensor represent the only measurement-level compass certified by the Inter-
national Maritime Organization (IMO). This all-in-one device contains three optical-fiber
gyroscopes and three accelerometers, which allow a six-degree-of-freedom motion and
provide the true-north potential angle of the carrier. This device has also a built-in adaptive
heave prediction filter, which can provide real-time accurate and reliable motion attitude
data. During the measurement process, the wind speed was at a level of 2-3 and the wave
height is between 0.1-0.2 m. These conditions satisfied the basic requirements of satellite
bathymetry. Tidal offset correction for the study area was performed based on tidal data
obtained from the China Maritime Service website.

In the topographic map, the water depth is irregularly distributed. Indeed, the water
near the shore is shallow, about 0-2 m, while the water is deep near the wharf. Moreover,
the minimum water depth near the wharf is more than 4 m, while the water depth on
the north side of the wharf exceeds 8 m. In the middle of the investigated area, there is a
channel with water depth above 10 m.

4. Experimental Setup and Results

We investigated the accuracy of water depth estimation based on integrating multiple
training datasets of Sentinel-2 images and machine learning algorithms. The performance
of the proposed approach is compared against that of a single training dataset. Note that
the number of samples affects the depth estimation results, and that the higher the number
of training samples, the higher the accuracy. Therefore, we chose a high sample size for
water depth estimation, and randomly selected calibration and verification samples from
the in situ measurements. Each training set has 4000 points; the first layer of the ensemble
training set has 4000 points; and its second layer has a training set of 1000 points. Firstly,
a training set of 4000 points and a machine learning algorithm were used to estimate the
water depth, and a 1000-point training set was used for inversion to obtain the value
of the first layer. The water depth was retrieved based on the control points associated
with the 1000-point training set. Then, this training set was used for inversion to obtain
the final depth results. Finally, the final results obtained by different machine learning
algorithms in the first layer were used to obtain the values of the RMSE and the coefficient
of determination R?.

The experiments were carried out in a Python environment. In order to ensure the
consistency and stability of different algorithms, each experiment was repeated 20 times.
In addition, in order to reduce the influence of the uneven spatial distribution of the
water depth control points, the training and verification points were selected using spatial
uniform sampling instead of equal sampling. Random calibration samples were selected
with the same relative percentage as that of the depth distribution. For each sample, the
RMSE and R? values were calculated between the retrieved and ground-truth water depth
values, and the final result was set as the average value over all samples.

The water depth estimation results varied among the different machine learning
algorithms. As the training dataset size increases, the RMSE value decreases while the
R? value increases (see Figures 3 and 4). Although the number of samples influences
the results, the conclusions are consistent with those of a moderate number of training
samples. For Nanshan port, when one training dataset was used, the regression result
based on random forests was the best while the neural-network-based result was the worst.
However, the neural-network result with two training datasets was significantly better
than that with one training dataset (see Figures 3 and 4).
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Figure 3. Correlation between the in-situ depths and the water depth estimation results based on one training set of satellite
image data and one machine learning method: (a) support vector regression (SVR); (b) neural networks (NN); (c) random
forests (RF); (d) multi-adaptive regression splines (MARS).

15 - T
R?=0.78
RMSE=1.08m 0.8
_10} P : -
g . A 106 E
1 g z
~ St 2
Z . 04 &
2 42
st g - S
0.2
0 : 0
0 5 10 15

m-situ (m)

Figure 4. Correlation between the in situ depths and the water depth estimation results based on
multiple training sets of satellite image data and neural networks (NN).

Collectively, Figure 5 shows a map of the estimated water depth for the study area
with a depth range of 0-12 m. The results show lower accuracies at shallow depths (<0.5 m)
and high depths (>11 m) for Nanshan port, and this is especially true in the vicinity of
the shoreline. However, the depth estimation results are more accurate for the depth
range of 1-10 m. In addition, flare removal is applied only to the visible band (but not the
infrared one), and the depth mapping results have significant noise due to the presence
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of the flare-contaminated infrared band patterns. Compared with the measured data, the
satellite-based topographic map can better reflect the trend of the water depth variability,
except for some minor errors in the details. At 0—4 m, the trend of both is basically the
same, and the area in the upper left corner of the 4-6 m study area is estimated to be very
deep. At depths of 6-8 m, the trend of water depth is similar, and the satellite-based depth
result can reflect the channel in the field survey, but underestimates the actual water depth.
The depth around the wharf has been well estimated (except for the northern part of the
wharf; this might be a result of water conditions, which allow a clear boundary between
images and depth estimation results). The result map shows that the satellite-based water
depth estimation is highly reliable.

18°20'0"N

18°1930°N
Depth (m)

18°19'0"N

18°18'30"N

100°70°E  109°730"E 109°80"E  109°30"E  109°90'E

Figure 5. The water depth map estimated based on multiple training sets of satellite image data and
neural networks (NN).

5. Discussion

No machine learning algorithm or solution can generally perform well on all sets of
data. Therefore, multiple algorithms are usually employed to find the best solution. Here,
we compare bathymetry results for different water depth ranges based on the root-mean-
square errors of the NN, RF, SVM and MARS classifiers as well as the proposed integrating
method (Table 1). These methods enable water depth estimation under different conditions
of human activities, pollution, or sediment accretion. The proposed ensemble method has
the highest overall accuracy with a RMSE that is 0.1 m less than the closest RMSE value
among all other methods. However, the proposed method achieves the best accuracy for
only some water depth ranges, namely the 0-3 m and 6-9 m ranges. At the 3-6 m depth
range, the SVM method shows the highest accuracy, while the RF method has the highest
accuracy at water depths greater than 9 m. Because the machine learning methods exploit
all reflectance data and water-depth training points, only the overall best depth estimates
are obtained, while the locally optimal estimates are ignored.
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Table 1. A comparison of the root-mean-square error (RMSE) errors for different water depths and
machine learning methods.

RMSE
Training
Method 0-3m 3-6m 6-9 m >9m Overall
(127 Points) (367 Points) (433 Points) (73 Points) (1000 Points)
NN 1.74 1.47 1.08 2.86 1.51
RF 0.81 1.06 0.98 2.50 1.17
SVR 0.86 0.81 1.07 2.86 1.20
MARS 1.21 1.08 1.02 2.83 1.29
Integrating 0.62 0.87 0.95 2.56 1.08
method

Although the normalized RMSE is greatly affected by the distribution of verification
points, it is still an important index with which to measure the accuracy of water depth
retrieval. As shown in Figure 6, the normalized RMSE with different water depth range
of different methods was plotted. At 0-3 m, the accuracy of the integration method is the
highest and that of the neural network is the worst. However, at 3-6 m, the error of the
integration method is higher than that of SVR, which is not the optimal method. The error
of the integration method is the smallest at 6-9 m, and the error of RF is the smallest in the
range greater than 9 m. It can be seen that the optimal algorithms in different water depth
ranges are different, but in conclusion, the error of the integrated method is the smallest,
and this result from Figure 6 is consistent with Table 1, which means the integrated method
can be used in the water depth retrieval of the port.

l T T 1 1 T
——SVR
09r ——NN 7
RF
08k ——MARS i
' —— Integrating method
W i
E
Bo6f .
2
=05 i
&
s
g 04t 1
z
03 .
02} /\ |
0.1F / .
0 1 1 1 1 1

0 2 4 6 8 10 12
Water depth (m)

Figure 6. The normalized RMSE with different water depth ranged of different methods.

As Nanshan port is an open port, the ambient water environment is significantly
affected by other factors, especially the sediment content. Although no turbidity measure-
ments are available on site, the geographical environment and the remote-sensing image
data indicate that Nanshan port is particularly and greatly affected by sedimentation. In
fact, the water depth estimation errors of all methods are relatively large, where the RMSE
is typically more than 1 m. This RMSE is much higher than the 0.44 m RMSE value of
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Luarca port at the depth range of 0-12 m [16], and is also much higher than the 0.44-m
RMSE value of the turbid waters studied in [19], (where the RMSE was obtained using
WorldView-2 data and the Lyzenga method). Due to the availability of a large number of
bathymetric in situ data sets for our study, the selected verification and training points
do not coincide completely. This eliminates the autocorrelation problem that typically
occurs in other machine learning methods for bathymetric estimation. The first set of
machine learning results also affect the water depth estimation. The learning parameters of
all models are all set up appropriately. In fact, different parameter settings could lead to
different estimation results. However, the depth inversion results based on the ensemble
training are still better than the single-model ones. Meanwhile, the water depth mapping
results are also affected by the image quality and the processing methods.

6. Conclusions

In this paper, a water depth estimation method is proposed for turbid seaport environ-
ments. This method combines several training datasets and machine learning algorithms.
The results obtained from a single training dataset are compared with those obtained
using multiple datasets. Because all spectral bands are affected by water attenuation and
reflections of the seabed, the band ratio method is not suitable for water depth estimation.
Moreover, the machine learning algorithms show clearly different estimates of water depth.
By contrast, the ensemble learning methods can combine such algorithms to further im-
prove the depth estimation accuracy and generally reduce the RMSE by 0.1 m. The depth
estimates obtained based on multiple datasets are better than those based on individual
datasets, with lower RMSE values and higher R? values. The experimental results show
that the proposed method can improve the depth estimates to a certain extent with a
RMSE of 1.07 m for the depth range of 0-13 m. The inversion accuracy for all water depth
levels is very high, except for the water channel were the depth exceeds 9 m. This drop in
performance can be ascribed to the fact that the water quality conditions are similar, the
water depth is very large, and the remote-sensing reflectance data cannot then correctly
reflect the change in the water depth. Although the number of training samples has a
visible impact on the depth estimation performance, the overall trend is largely unaffected.
Since there is no clear relationship between the observed results and the estimated physical
parameters, the proposed method can potentially be extended to estimate other physical
parameters (including water turbidity and sediment content) based on remote-sensing
image analysis.

In summary, the proposed method combining multiple training datasets and machine
learning methods is effective in estimating water depth from satellite images, and this
method is indeed better than those based on individual training datasets. Due to the non-
parametric nature of the machine learning method, it can successfully retrieve the water
depth from the observed satellite images with a relatively higher degree of coherence and
consistency compared to the depth estimates made by the acoustic method. In future work,
the water depth estimation accuracy can be improved through atmospheric correction
algorithms for high-resolution remote-sensing images. These algorithms can be applied
with ensemble learning to deal with different depths of coastal turbid water.
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