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Abstract: The detection and characterisation of the radar Bright Band (BB) are essential for many
applications of weather radar quantitative precipitation estimates, such as heavy rainfall surveillance,
hydrological modelling or numerical weather prediction data assimilation. This study presents
a new technique to detect the radar BB levels (top, peak and bottom) for Doppler radar spectral
moments from the vertically pointing radars applied here to a K-band radar, the MRR-Pro (Micro
Rain Radar). The methodology includes signal and noise detection and dealiasing schemes to provide
realistic vertical Doppler velocities of precipitating hydrometeors, subsequent calculation of Doppler
moments and associated parameters and BB detection and characterisation. Retrieved BB properties
are compared with the melting level provided by the MRR-Pro manufacturer software and also
with the 0 ◦C levels for both dry-bulb temperature (freezing level) and wet-bulb temperature from
co-located radio soundings in 39 days. In addition, a co-located Parsivel disdrometer is used to
analyse the equivalent reflectivity of the lowest radar height bins confirming consistent results of the
new signal and noise detection scheme. The processing methodology is coded in a Python program
called RaProM-Pro which is freely available in the GitHub repository.

Keywords: Doppler radar; bright band; melting level; aliasing

1. Introduction

Precipitating hydrometeors undergo various processes as they fall, including water
vapour condensation, coalescence, break-up or evaporation for liquid water and ice nucle-
ation, riming, aggregation or accretion for the solid phase [1]. One of the most important
processes occurs as falling particles cross the 0 ◦C isotherm level, also called melting level,
where solid water particles begin to melt and eventually transform completely into liquid
particles [2,3]. The atmospheric layer where this process takes place is known as the melting
layer and may produce a characteristic radar signature, the so-called radar Bright Band
(hereafter BB), a term originated from the local maxima caused by high reflectivity values
visible in the equivalent reflectivity vertical profile [4]. The BB is caused by differences in
the dielectric constants, shape and terminal fall speeds of liquid and solid hydrometeor
precipitating particles, which lead to abrupt changes of the radar backscattered power
within the BB. The most evident BB signatures are produced under stratiform cold rain
conditions [5,6] as updrafts, and vertical mixing present in convective precipitation do not
provide the proper conditions for BB formation.

The presence of a BB in volumetric operational weather radar observations may
produce local overestimations of rainfall amounts, which has led to the development of
different procedures to detect and correct BB effects [2,7–9]. This is particularly important
for events with rapidly changing characteristics, for example, with quick transitions from
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snow to rain [10–12], or in the development of subsequent robust applications of radar
precipitation estimates, such as hydrological modelling or NWP assimilation [13–15].

Most of the above BB correction schemes for scanning weather radars are based on
more specific studies, typically performed with vertically pointing radars or using the so-
called quasi vertical profiles of polarimetric scanning weather radars [16], not only to detect
but also to characterise, in detail, the BB. The methods proposed include the use of the signal
to noise ratio (SNR), the Doppler velocity profile [3], vertical gradients of equivalent radar
reflectivity or Doppler velocity [17–21], or different polarimetric variables if polarimetric
radars are used [16,22,23]. Other studies examined the relationship between the 0 ◦C dry-
bulb temperature isotherm level and the BB height [24], which requires additional data, i.e.,
the temperature profile, typically obtained from radiosonde observations. Recent research
related to BB effects has examined cases with multiple melting ice particle layers [22], the
relation of BB intensity to surface rainfall rate [25] or BB effects upon spaceborne radar
observations [26,27].

The main objective of this article is to describe a new processing methodology to detect
the BB with single polarisation vertically pointing Doppler radar spectral observations,
based on the use of the third moment of the Doppler radar velocity spectrum, the skew-
ness. The new detection algorithm is implemented for a compact frequency-modulated
continuous-wave (FMCW) vertically pointing Doppler radar operating in the K-band. The
radar model used here is an MRR-Pro, which also provides a processing software that,
among other variables, computes the existence of a melting layer (ML) given by a prob-
ability value (from 0 to 1). The methodology proposed here also provides an alternative
signal processing with an advanced new dealiasing scheme in order to deal with some
cases where the original manufacturer software provides limited results. The equivalent
reflectivity provided by the new signal and noise detection scheme is compared with
co-located Parsivel observations. The proposed BB detection scheme is compared with the
MRR manufacturer ML product and also with co-located radiosounding observations.

The paper is organised as follows. In Section 2, we detail the instrumentation used.
Section 3 describes the methodology and the improvements performed to avoid the aliasing
and the new technique to determine the BB. We show the results in Section 4, a discussion
in Section 5 and in Section 6, we present the conclusions.

2. Instrumentation and Data Acquisition
2.1. Instrumentation

The main instrument used in this study was a K-band (24 GHz) Doppler radar, MRR
(Micro Rain Radar) manufactured by Metek Gmbh, model MRR-Pro, located on the roof of
the Faculty of Physics building of the University of Barcelona (41◦23′4.34′′ N, 2◦7′3.05′′ E).
MRR-Pro is an updated version of previous MRR units [28]. The configuration parameters
used in the study (Table 1) provided precipitation observations up to 6.4 km above the
radar level with a vertical resolution of 50 m and a temporal resolution of 10 s.

Table 1. MRR-Pro configuration parameters used in this study.

Definition Parameter Units Values

Number of Doppler bins M – 64
Number of height bins N – 128

Temporal resolution Ti s 10
Height bin resolution ∆h m 50

Nyquist Velocity vny m·s−1 12
Interval of velocity ∆v m·s−1 0.19

An OTT Parsivel-2 disdrometer [29], hereafter Parsivel, co-located with the MRR-
Pro, provided precipitation particle size and fall speed spectra at the radar level. These
parameters allow comparisons between the MRR-Pro and Parsivel for different variables,
such as rainfall rate or radar reflectivity. Finally, on the same roof is located the Barcelona
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radio sounding station (WMO code 08190), which performs two soundings a day (at 00
and 12 UTC) that were also used in this study.

2.2. Data Acquisition

The data files generated by the MRR-Pro manufacturer software are used as input
files for the processing with RaProM-Pro. These files are in netcdf format and contain basic
configuration settings of the data acquisition, the raw data (so-called spectral reflectivity,
or spectrum raw according to the manufacturer) and derived parameters, such as radial
velocity spectra or an estimate of existence of the melting layer. Figure 1 schematically
shows a selection of the content of the files and also indicates which variables are used in the
proposed methodology (shown in green), which are, essentially, configuration parameters
and raw data, from which derived parameters can be calculated.
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The parameters used by RaProM-Pro include, for each time step, a matrix s(n, i) with
the spectral raw values (labelled by the manufacturer as “spectrum raw”) for all vertical
levels n and Doppler frequencies i. The matrix s(n, i) contains the ratio between emitted
and received power after the Fourier Transform is computed by the radar and represent
the intensity of the echo backscattered by the precipitation particles. The spectral values
are processed with the information provided in different arrays, such as “range” (list of
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heights above sea level) or “transfer function”, which allows for correcting them according
to their distance from the radar. Finally, a calibration constant unique to each radar unit is
also provided.

To check the consistency of the new methodology proposed, additional parameters
provided by the manufacturer—see [30]—are also used for comparison. These parameters
include the SNR (signal to noise ratio), or the Doppler radial velocity and spectrum width
and four different versions of radar reflectivity. These versions of radar reflectivity and
equivalent radar reflectivity are computed in two stages. Firstly, without considering
rainfall attenuation effects (in the so-called attenuated version of these variables, Za and
Zea). Then, after the calculation of the drop size distribution (N), an estimate of the rainfall
attenuation is calculated considering the Path Integrated rain Attenuation (PIA), which
then allows the non-attenuated version of the reflectivity and equivalent reflectivity to be
computed (Z, Ze). Finally, three additional parameters are considered for each height level:
an estimate of the Melting Layer (ML)—expressed as a probability, a value between 0 and
1—the Liquid Water Content (LWC) and the Rainfall Rate (RR).

3. Processing Method

The processing software provided by the MRR-Pro manufacturer performs reasonably
well in most meteorological conditions. However, in some cases, the original de-aliasing
method provides limited results, as illustrated in Section 3.2. In order to develop a new
de-aliasing scheme, spectral reflectivity has to be computed, so a new approach is also
considered for the signal and noise processing described in this section.

The proposed processing method starts from the transformation of spectral raw
data values read from the netcdf matrix S, for each level n and Doppler bin i, to their
physical value given by spectral reflectivity (η), as described in two-steps in the following
Equations (1) and (2):

s(i, n) = 10(
S
10 ), (1)

η(i, n) = s(i, n)· CC
TF(n)

·n2·δr, (2)

where CC is the calibration constant, TF(n) is the transfer function, δr is the height resolution,
n is the number of height gates and i is the number of Doppler bins. From the spectral
reflectivity, it is possible to calculate several physical parameters, such as hydrometeor
velocity, equivalent radar reflectivity and the precipitation type classification, as described
by [31].

The processing method consists of the following four main stages (Figure 2): (1).
removal of noise and peaks detection from the raw signal, (2). dealiasing of the spec-
trum to improve the detection of the vertical velocity, (3). computation of attenuation
path integrated (PIA) factors and (4). calculation of radar parameters using the cor-
rected spectrum and the BB characterisation. The results are saved in a netcdf output
file. Stages (2) and (4) are particularly novel. Note that Stage (1) must be performed be-
fore Stage (2) as spectral reflectivity (η), required for dealiasing, is not available in the
manufacturer’s netcdf file.
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3.1. Signal and Noise Detection

The signal and noise separation is performed considering the algorithm proposed
by [32], similarly to what was described by [30], but considering two steps. The first step
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consists of comparing the ratio of the squared mean spectral reflectivity and its variance
with a specific threshold or limit fixed for a given integration time, given by Equation (3):

η2

var(η)
=

(
∑ ηi

n

)2

∑ (ηi − η)2
√

n − 1

< Limit, (3)

where Limit equals the time resolution chosen (Ti). This step is applied iteratively while
the condition is verified. Each iteration implies evaluating a peak candidate, and if (3) is
fulfilled, then the peak is discarded. The signal remains until the condition is false and will
be considered background noise. More details of the implementation of this first step are
detailed in [31].

The second step adds a new condition where the spectral reflectivity peak divided by
the mean of the spectrum must be equal to or greater than a threshold value equal to 1.3 as
shown in Equation (4):

max(η)
η

≥ 1.3, (4)

in order to be considered a real signal. Note that (4) is applied after verifying (3) so that
both conditions must be satisfied.

Then, the next step is the noise determination. The SNR is calculated using its
definition expressed in dB, according to the manufacturer’s documentation, given by
Equation (5):

SNR = 10·log10
Signal
Noise

. (5)

It is noted that SNR values provided by the manufacturer are substantially lower
than those obtained with RaProM-Pro; in particular, they contain negative SNR values,
i.e., signal below the noise level. This is a consequence of the different schemes applied
for signal determination by the manufacturer and the methodology proposed, despite
other derived variables presenting very similar values. An example is shown in Figure 3
comparing values obtained by RaProM-Pro and the manufacturer for equivalent reflectivity,
SNR and Doppler velocity (Figure 3a–c respectively). SNR values present systematic
differences around 20 dB but very similar values for the other variables, except for a few
vertical velocity outliers due to the different dealiasing methods discussed below.
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An additional analysis is performed for radar reflectivity comparing the lowest valid
radar height bin (from 150 to 200 m above radar level) and the co-located Parsivel dis-
drometer (Figure 4) considering 1 min sampling periods. Both radar processing schemes
compare very well with Parsivel values, with slight discrepancies that may be explained
by instrumental differences—see [33]. More details about the signal and noise detection
scheme can be found in Appendix A.
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3.2. Dealiasing

Spectral reflectivity aliasing occurs when the target returns a signal outside the unam-
biguous range interval. A systematic method to correct aliasing in MRR-2 was proposed
by [34] and was implemented with some modifications by [31]. The two methods are based
on the estimated velocity parameters calculated from equivalent radar reflectivity in [35].
Here we propose a different approach, where only signal continuity between vertical levels
is used, instead of the parameters estimated in [35]. According to the manufacturer’s
documentation, the radar manufacturer processing is able to detect upward movements of
precipitation particles, but in some cases, this detection is not possible, and velocities are
aliased. Figure 5 shows an example where the manufacturer velocity spectrum (Figure 5a)
shows a suspicious pattern between 4000 and 5000 m, potentially caused by aliasing. By
extending or unfolding the spectra to both sides (Figure 5b), the vertical continuity of the
spectra allows a consistent dealiased spectra profile to be selected (Figure 5c).
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The dealiased spectral reflectivity allows, in this case, to detect upward movements
of precipitation particles between 4000 and 5000 m. Figure 6 shows the corresponding
time–height display of this case where RaProM-Pro detects upward movements, unlike the
manufacturer original output, which indicates high downward values. More challenging
cases, for example, with convective precipitation and strong windshear might not be de-
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tected by the new proposed scheme, which was designed to deal with typical BB conditions
(see Appendix B for more details).
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Figure 6. Time–height display of Doppler vertical velocity (positive values indicate downward
direction) obtained with MRR-Pro on 16 May 2020 processed with: (a). The manufacturer’s software,
(b). RaProM-Pro, which includes a new dealiasing scheme.

After the dealiasing is applied, different Doppler moments from the spectral reflectiv-
ity are computed, including the equivalent radar reflectivity (dBZ), the Doppler velocity
(m/s), the spectral width (m/s), the skewness and the kurtosis (Equations (6)–(10)):

Ze = 1018· λ
4

π5 ·
1

|K|2
·∆v·∑ η(v), (6)

w =
∑ η(v, i)·v(i)

∑ η(v, i)
(7)

σ =

√
∑ η(v, i)·(v(i)− w)2

∑ η(v, i)
(8)

skewness = ∑ η(v, i)·(v(i)− w)3

∑ η(v, i)·σ3 (9)

kurtosis = ∑ η(v, i)·(v(i)− w)4

∑ η(v, i)·σ4 (10)

where λ is the radar wavelength, |K|2 is the dielectric factor, in this case, liquid water
and ∆v is the Nyquist velocity. Note that the radar reflectivity does not yet consider the
possible effects of rainfall attenuation, which is computed in the next subsection.

3.3. Attenuation Calculation

Weather radars operating in attenuated frequencies, such as the K-band, may be
affected by rainfall attenuation, impacting specific parameters such as radar reflectivity (Z),
liquid water content (LWC) and rain rate (RR). Attenuation is calculated to determine the
amount of signal loss integrated along a path (in height) by absorption and scattering by
precipitating particles. PIA values are computed following an iterative process described
in [36], shown schematically in Figure 7.

Essentially, drop size distributions N’(D, n), at each level n, are calculated consid-
ering an attenuation factor (the PIA) multiplied by the previous (attenuated) drop size
distribution Na(D, n), computed from the Doppler spectra assuming Mie scattering condi-
tions [37,38]. As these calculations are only valid for liquid precipitation particles falling at
terminal fall speeds, an additional procedure that provides a hydrometeor classification
type for each bin height [31] is applied so that attenuation can be used consistently only for
liquid precipitation.
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Figure 7. PIA calculation flow chart adapted from [36]. N’(D, n) and Na(D, n) are, respectively, the
drop size distribution and the attenuated drop size distribution; ke is the specific rain attenuation and
σe is the single-particle extinction coefficient, calculated with the Mie theory.

As described in Figure 7, the maximum PIA value is 10, because for higher values, the
scheme may not work properly. If PIA reaches the value of 10, the manufacturer processing
stops calculating it for higher range bins. However, RaProM-Pro assigns a constant value
of 10 for internal processing reasons. The final output parameter of PIA in RaProM-Pro is
simply the PIA value expressed in dB (11), called DBPIA:

DBPIA = 10log(PIA) (11)

The DBPIA calculation is included in RaProM-Pro processing despite it not being
applied in the BB determination procedure
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3.4. Bright Band Calculation

The new methodology proposed to detect the BB is based on [39], plus a novel
approach considering the vertical variation of the skewness computed from the spectrum
Doppler velocity at each height. Skewness provides information about the asymmetry of
the fall velocity distribution and indicates that in the BB, snowflakes or ice particles have
started to melt [3,4,22]. The change of shape and aerodynamics of the solid particles as they
melt modifies the averaged Doppler velocity and the spectrum shape. This change can be
observed in the velocity distribution provided by the spectrum reflectivity at each height,
where the maximum value changes from being tilted to the right to being tilted to the left,
which implies a change of sign of the skewness. Figure 8 shows an example observed by
the MRR-Pro, highlighting the different spectra shape above, within and below the BB
calculated by RaProM-Pro.
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Figure 8. Examples of the Doppler velocity distribution (redsolid line) and fitted normal distribution
calculated with the same average Doppler velocity and spectral width (blue dashed line) obtained at
three different heights: (a). above the Bright Band (2350 m ASL), (b). within the Bright Band (1900 m
ASL) and (c). below the Bright Band (1800 m ASL), on 5 December 2019. Skewness values (Sk) are
given for each height.

The change in the shape of the spectra is clearly visible in Figure 8, where the progres-
sive appearance of raindrops at the expense of melted solid particles (Figure 8b) modifies
the Doppler velocity spectra, widening it to the right due to higher fall speeds. This leads
to a symmetric or slightly right-skewed spectrum distribution, which implies a change of
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the skewness from negative to positive values. Determining the height where the skewness
sign changes is thus a key feature to obtain the height of the BB.

The method proposed is detailed in the flowchart shown in Figure 9, which describes,
first, the BB detection approach, based on [39], and then the BB characterisation, which
computes the BB top and the BB bottom. The remaining BB feature, the BBpeak, is the
level located between the BB bottom and the BB top, where the skewness is maximum and
should be close to the melting level. An additional checking is performed to remove BB
detections of virga cases, simply verifying that precipitation reaches the ground.

The procedure is applied to each MRR-Pro vertical profile (in our case, available
every 10 s). Then the results (BB top, BB peak and BB bottom) are smoothed temporally,
considering a generalised exponential moving average [40], allowing a more continuous
signal of BB characteristics, but keeping the original temporal resolution. Note that the
current implementation of the scheme detects the lowest BB present in a vertical profile.
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Figure 9. Bright Band (BB) detection and calculation of BB bottom (BBbot) and BB top (BBtop). The
Deltah parameter is equal to the vertical resolution of the radar data.

4. Results

The methodology presented in the previous section is illustrated in Figure 10, display-
ing both radiosonde data (Figure 10a) and MRR-Pro data (Figure 10b) for a clear BB case.
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The figure shows the sounding profiles of dry-bulb, wet-bulb and dew point temperature
(Figure 10a) recorded the 31 March 2020 at 12 UTC and radar equivalent reflectivity Ze
from MRR-Pro and Parsivel observations; the latter was plotted at the lowest height level
and resampled at a 10 s resolution to match MRR-Pro observations, from 12 to 15 UTC
(Figure 10b). The sounding plot panel explicitly shows that the 0 ◦C wet-bulb temperature
is relatively lower than the freezing level (0 ◦C dry-bulb temperature) due to low satu-
ration. The wind profile is also plotted, showing west wind components below the BB,
which is consistent with the precipitation fall streaks visible from the BB. Figure 10b shows
consistent reflectivity values of ground measures from Parsivel and the first lowest valid
height bin from the radar, for example, the alternating maxima and minima reflectivity
columns. The 12 UTC melting levels and 0 ◦C wet-bulb temperature levels obtained with
the sounding match the detected BB top and BB bottom well, respectively. This example
illustrates well the ability of the new methodology to provide a temporal evolution of the
BB details with a 10 s resolution.
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Figure 10. (a). Sounding profiles of dry-bulb (T), wet-bulb (Tw) and dew point (Td) temperatures, also showing the 0 ◦C,
−10 ◦C, −20 ◦C dry-bulb and 0 ◦C wet-bulb temperature levels and the wind profile, corresponding to 31 March 2020
12 UTC, (b). Radar equivalent reflectivity time–height display from MRR-Pro and Parsivel observations, the latter is plotted
at the low height level, from 12 to 15 UTC 31 March 2020.

The results are presented in the following subsections, considering three different
statistical comparisons. The first one is performed comparing the manufacturer’s BB
product and the proposed methodology. The second and third subsections compare,
respectively, the new methodology and the original manufacturer product, with radio
sounding observations.

4.1. Manufacturer ML Height vs. RaProM-Pro BBpeak Height

The previous example is the starting point to assess differences between the manufac-
turer’s BB product and the new proposed methodology. Figure 11 shows radar reflectivity
and Doppler velocity profiles processed with each methodology, also including the ML
manufacturer’s product and the proposed BB product. In this case, the melting layer
heights computed by the manufacturer are always plotted between the estimated BB
top and BB bottom, which provide a more complete description of the BB. Additionally,
RaProM-Pro offers a more detailed description of the precipitation field (better depiction of
contours and inclusion of additional weather echoes) around 15 UTC, particularly above
the BB (from 4000 to 5000 m) thanks to the new noise and peak detection methodology.
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Figure 11. Time–height display of equivalent radar reflectivity—top row, panels (a,b) and Doppler velocity—bottom row,
panels (c,d) calculated with the manufacturer’s software (first column) and RaProM-Pro (second column). First and second
column show, respectively, the melting level detected by the manufacturer (black dots) and the BB top, BB peak and BB
bottom (dashed, continuous, and dotted black lines). The data corresponds to 31 March 2020.

A quantitative analysis is provided by comparing the melting layer (ML) height
provided by the manufacturer and the BBpeak height calculated with RaProM-Pro, given by:

Di f f _ML = ML− BBpeak (12)

The ML product is calculated using an Artificial Intelligence approach [41], providing
probability values; a probability greater than 0.75 is considered a reliable ML height
determination, being the maximum probability of the selected height for the melting level.
The BB peak has been described in Section 3.

Figure 12 shows a histogram of Diff_ML for 39 days, selecting a time window of ±1 h
from the sounding launch, resulting in around 2600 cases. It displays a nearly symmetrical
distribution pattern with a single-mode centred in the second negative class (from −50 to
−100 m), indicating that the manufacturer’s ML height is slightly lower than the BBpeak (the
averaged value of Diff_ML is −89 m and the standard deviation is 180 m). More than 80%
of cases do not exceed 200 m, and the tails of the distribution fall quickly, which despite
some differences, reach values higher than 400 m.
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Figure 12. Histogram of differences between the melting level height provided by the manufacturer
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class bin, 50 m.

4.2. Sounding Observations vs. RaProM-Pro BB Levels

The 0 ◦C dry-bulb temperature level (freezing level, hereafter h0) and the 0 ◦C wet-
bulb temperature level (hereafter hw,0) are compared here with the BBtop, BBpeak and BBbot
heights. We consider the same 39 days studied in the previous subsection, with the same
time intervals of ±1 h from the sounding launch time to minimise spurious differences
caused by rapidly changing BB heights, leading to around 5327 cases.

The evaluation is performed using the parameters Diff_top, Diff_bot, Diff_peak and
Diff_Tw defined as:

Di f f _top = BBtop − h0 (13)

Di f f _bot = BBbot − h0 (14)

Di f f _peak = BBpeak − h0 (15)

Di f f _Tw = BBpeak − hw,0 (16)

where BBtop, BBbot and BBpeak are the heights from the BB top, BB bottom and BB peak,
respectively. Note that a priori, Diff_top should be close to 0 as solid particles begin to melt
when they reach the melting level, Diff_bot should be greater than 0, as it takes some time to
completely melt all solid particles and, by definition, Diff_peak, should be between Diff_top
and Diff_bot. Regarding the expected value of Diff_Tw, the recent study of [42] indicated
that BBpeak heights were very similar to hw,0, so a value close to 0 would be consistent with
that result.

Figure 13a shows histograms of Diff_top and Diff_bot, indicating similar patterns but
centred, respectively, below and above h0: BBtop mode is between 150 and 200 m, and BBbot
is between −250 and −2000 m. The fact that BBtop occurs mostly above h0 (so it is not close
to 0 as initially expected) can be explained by the tendency of solid particles to increase
aggregation just above the melting level, producing larger snowflakes and reducing the
number of smaller particles [6]. This would lead to a change in the skewness spectrum,
which would be detected by the proposed methodology as the BBtop. On the other hand,
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the mode value of Diff_bot found is reasonable, compared with previous existing studies,
such as [4].

Figure 13b shows that the Diff_peak histogram presents a similar pattern to Diff_top
and Diff_bot, but, as expected, the mode value, more pronounced (corresponding to a more
leptokurtic distribution), is centred between the previous two modes, close to 0. Finally,
Diff_Tw presents a slightly thicker mode, with a maximum between −50 and 0 m, which is
just one class below the Diff_peak mode.
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Figure 13. (a). Histograms of the differences between Bright Band top and Bright Band bottom
heights and the sounding-derived freezing levels Diff_top (blue) and Diff_bot (green), respectively,
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of zero wet-bulb temperature, Diff_Tw (red) and differences between Bright Band peak height and the
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4.3. Sounding Observations vs. Manufacturer ML Levels

In this subsection, the same analysis performed in Section 4.2 is applied to the manu-
facturer’s ML product for 1749 cases detected in the same time period considered above.
However, in this case, no BB top nor bottom are considered; only a BB peak is given here by
the maximum probability of the ML height product (exceeding 75% as mentioned earlier),
denoted as MLmax. We computed the differences between the MLmax and sounding-derived
zero dry and wet-bulb temperature heights (Diff_peak_Man and Diff_Tw_Man respectively),
given by:

Di f f _peak_Man = MLmax − h0 (17)

Di f f _Tw_Man = MLpeak − hw,0 (18)

The distributions of these variables are displayed in Figure 14, similarly to Figure 13b.
Both variables show similar patterns and a common main mode corresponding to the same
class of height differences (−150 to −100 m) and are relatively wide (three to four different
height classes). Secondary modes exceeding 5% relative frequencies are found around
−300 and +400 m for Diff_peak_Man and around −500 m for Diff_Tw_Man.
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5. Discussion

According to the results shown in the previous section, the proposed BB detection and
characterisation method provides some advantages.

Firstly, the new dealiasing scheme presents an improvement in some cases where
the manufacturer standard processing fails. Despite the fact that the new dealiasing
cannot handle very complex cases, such as those found on convective precipitation with
intense turbulence, environments favourable to BB conditions, with moderate updrafts, are
reasonably well identified, improving the original manufacturer’s software capabilities.

Secondly, the BB detection proposed, when compared to radiosounding derived
zero dry and wet-bulb temperatures, provide narrower difference height distributions
compared to those obtained with the manufacturer’s ML product. This suggests that,
despite both schemes performing similarly, the proposed methodology gives lower differ-
ences compared to the observed freezing level. Moreover, the new method gives explicit
information about the BB top and bottom, information not available from the ML manufac-
turer’s product, and the number of detections is considerably higher (5327 vs. 1749 in the
period examined).

Despite improvements in the dealiasing approach, limitations of the proposed method
include the inability to correct fully folded velocity profiles and also convection with strong
windshear. However, these conditions do not typically produce BBs. On the other hand,
strong windshear with stratiform precipitation, leading to tilted precipitation streaks, might
be a problem for the BB scheme because it examines single radar vertical profiles. Moreover,
the proposed scheme cannot handle either multiple BB cases as only the lowest BB can
be detected. In any case, the new method based on the vertical variability of the Doppler
speed skewness provides a good basis for the further development of more sophisticated
BB detection methods.

6. Summary and Conclusions

The work presents a new methodology to process spectral raw reflectivity data from a
K-band vertically pointing Doppler radar, implemented for the Metek MRR-Pro system,
and called RaProM-Pro, which is freely available. RaProM-Pro can be used complementary
with the manufacturer’s software and provides additional features, such as an improved
signal and noise detection scheme, an advanced dealiasing method and a new Bright Band
product (including top, peak and bottom levels).

The study illustrates the advantages of RaProM-Pro, such as the capability to detect
weaker signals or the robust detection of updrafts thanks to a novel dealiasing scheme. The
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derived parameters, such as radar reflectivity, mostly match the values provided by the
manufacturer (R2 of 0.992) and is also consistent with independent observations from co-
located disdrometer data. The new Bright Band product, based on changes of the skewness
of spectral Doppler velocities, compares favourably with the manufacturer’s Melting Level
product and also with collocated radio sounding observations, both qualitatively in selected
examples and quantitatively, as revealed by a study considering 39 days.

Based on the current results, future work is planned to perform a long-term study of
BB features in more detail, including BB occurrence, height, thickness and atmospheric
conditions (dry and moist BBs).

The methodology can be used for both research and operational applications and
could be adapted to other vertically pointing radars. RaProM-Pro is written in Python and
is freely available at the GitHub repository.

Author Contributions: Conceptualisation, A.G.-B. and J.B.; methodology, A.G.-B. and J.B.; software,
A.G.-B. and S.G.; data curation, A.G.-B.; writing—original draft preparation, A.G.-B. and J.B.; writing—
review and editing, A.G.-B., B.J, S.G., M.U. and B.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partly funded by the project “Analysis of Precipitation Processes in
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Research Institute (IdRA) of the University of Barcelona.

Data Availability Statement: The proposed methodology coded as a Python program is available at
the GitHub repository (https://github.com/AlbertGBena/RaProM-Pro.git). Radiosonde data are
available from the Meteorological Service of Catalonia (meteo.cat) and MRR-Pro and Parsivel data
are available from the authors upon request.
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Appendix A

This Appendix provides additional information about the new processing method-
ology regarding noise and signal detection introduced in Section 3.1. Based on 3 h of
precipitation data recorded from 12 to 15 UTC 31 March 2020 (Figure 11), 138,240 points
(height gates) were examined. Figure A1 shows a mask of three possible cases regarding
the signal and noise detection of each method: gates (pixels) with the signal detected by
both methods, gates with noise detected by both methods and pixels detected only by one
of the methods.
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Figure A1. Signal and noise detection comparison between manufacturer and RaProm-Pro schemes:
pixels with the signal detected by both methods (white), noise detected by both methods (grey),
pixels detected only by the manufacturer (a) and RaProm-Pro (b) methods (red). The data were
recorded from 12 to 15 UTC, 31 March 2020.
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It is clear that both methods perform similarly, as most signal and noise detections
are identical; only a small fraction, close or at the precipitation contours, is detected
differently, being RaProM-Pro a bit more sensitive (about 2.8% more signal detection than
the manufacturer’s method, as listed in Table A1).

Table A1. Signal and noise gates detected by manufacturer versus RaProM-Pro methods.

Cases (12 to 15 UTC 31 March 2020) Number %

Total number of gates 138,240 100.00
Noise gates identified both by manufacturer and RaProM-Pro 57,654 41.71
RaProM-Pro signal gates identified as noise gates by manufacturer 4062 2.94
Manufacturer signal gates identified as noise gates by RaProM-Pro 166 0.12
Signal gates identified both by manufacturer and RaProM-Pro 76,358 55.23

Appendix B

This Appendix provides more details about the dealiasing scheme proposed.
The dealiasing scheme is based on the original work by [43,44], and it has been tested

for 39 2 h events with precipitation and radiosounding data with the aim to apply it for
BB detection. Other more challenging situations, such as convective precipitation with
windshear or strong turbulence, where typically BB is not present, may not produce good
results. Figure A2 shows one of these cases, recorded on 27 July 2019, displaying the
Doppler vertical velocity provided by the manufacturer and the new dealiasing scheme.

Figure A3 (analogous to the simpler case shown in Figure 5) illustrates the steps
of the dealiasing applied. Two basic concepts are considered in the scheme: Doppler
bin clustering (of precipitation and non-precipitation blocks) and vertical continuity of
precipitation blocks.
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Figure A2. Time–height display of the Doppler velocity (positive values indicate downward direction)
obtained with MRR-Pro on 27 July 2019, processed with: (a) the manufacturer’s software, (b). RaProM-
Pro. Panels (c,d) show zooms of the previous images, from 10:10 to 10:20 UTC.
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For each height, two Doppler bin groups are identified: blocks of continuous pre-
cipitation bins and blocks of non-precipitation bins (hereafter gaps) (Figure A3a). Then,
the spectra are extended to both sides of the Nyquist velocity interval, i.e., considering
stronger fall speeds (adding to the right of the original spectra the spectra immediately
above the central one) or upward speeds (adding to the left of the original spectra the
spectra immediately below the central one). A new grouping of Doppler bins is applied
to the extended spectra, providing new precipitation blocks and gaps (Figure A3b). Now
three options are possible to select the dealiased velocity profile, and we assume that only
one, for each height, is valid. Starting from the second lowest valid level to higher ones, the
selection criteria is that the average velocity of the level considered is closest to the average
velocity of the level below (Figure A3c).

In this convective case, the results seem reasonable for aliasing found from 1500 to ca.
2500 m ASL, but it is not so clear for heights above 2500 m ASL.

References
1. Tapiador, F.J.; Sánchez, J.L.; García-Ortega, E. Empirical values and assumptions in the microphysics of numerical models. Atmos.

Res. 2019, 215, 214–238. [CrossRef]
2. Gray, W.R.; Cluckie, D.I.; Griffith, R.J. Aspects of melting and the radar bright band. Meteorol. Appl. 2001, 8, 371–379. [CrossRef]
3. White, A.B.; Gottas, D.J.; Strem, E.T.; Ralph, F.M.; Neiman, P.J. An Automated Brightband Height Detection Algorithm for Use

with Doppler Radar Spectral Moments. J. Atmos. Ocean. Technol. 2002, 19, 687–697. [CrossRef]
4. Fabry, F.; Zawadzki, I. Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci.

1995. [CrossRef]
5. Fabry, F. Radar Meteorology Principles and Practice; Cambridge University Press: Cambridge, UK, 2018; ISBN 9781108460392.
6. Heymsfield, A.J.; Bansemer, A.; Poellot, M.R.; Wood, N. Observations of Ice Microphysics through the Melting Layer. J. Atmos.

Sci. 2015, 72, 2902–2928. [CrossRef]
7. Bordoy, R.; Bech, J.; Rigo, T.; Pineda, N. Analysis of a method for radar rainfall estimation considering the freezing level height.

Tethys J. Weather Clim. West. Mediterr. 2010, 25–39. [CrossRef]
8. Hall, W.; Rico-Ramirez, M.A.; Krämer, S. Classification and correction of the bright band using an operational C-band polarimetric

radar. J. Hydrol. 2015, 531, 248–258. [CrossRef]
9. Sánchez-Diezma, R.; Zawadzki, I.; Sempere-Torres, D. Identification of the bright band through the analysis of volumetric radar

data. J. Geophys. Res. Atmos. 2000. [CrossRef]
10. Bech, J.; Pineda, N.; Rigo, T.; Aran, M. Remote sensing analysis of a Mediterranean thundersnow and low-altitude heavy snowfall

event. Atmos. Res. 2013, 123, 305–322. [CrossRef]
11. Casellas, E.; Bech, J.; Veciana, R.; Pineda, N.; Rigo, T.; Miró, J.R.; Sairouni, A. Surface precipitation phase discrimination in

complex terrain. J. Hydrol. 2021, 592, 125780. [CrossRef]

http://doi.org/10.1016/j.atmosres.2018.09.010
http://doi.org/10.1017/S1350482701003139
http://doi.org/10.1175/1520-0426(2002)019&lt;0687:AABHDA&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1995)052&lt;0838:LTROOT&gt;2.0.CO;2
http://doi.org/10.1175/JAS-D-14-0363.1
http://doi.org/10.3369/tethys.2010.7.03
http://doi.org/10.1016/j.jhydrol.2015.06.011
http://doi.org/10.1029/1999JD900310
http://doi.org/10.1016/j.atmosres.2012.06.021
http://doi.org/10.1016/j.jhydrol.2020.125780


Remote Sens. 2021, 13, 4323 19 of 20

12. Casellas, E.; Bech, J.; Veciana, R.; Pineda, N.; Miró, J.R.; Moré, J.; Rigo, T.; Sairouni, A. Nowcasting the precipitation phase
combining weather radar data, surface observations, and NWP model forecasts. Q. J. R. Meteorol. Soc. 2021, 147, 3135–3153.
[CrossRef]

13. Demir, I.; Krajewski, W.F. Towards an integrated Flood Information System: Centralized data access, analysis, and visualization.
Environ. Model. Softw. 2013, 50, 77–84. [CrossRef]

14. Rossa, A.; Haase, G.; Keil, C.; Alberoni, P.; Ballard, S.; Bech, J.; Germann, U.; Pfeifer, M.; Salonen, K. Propagation of uncertainty
from observing systems into NWP: COST-731 Working Group 1. Atmos. Sci. Lett. 2010, 11, 145–152. [CrossRef]

15. Seo, B.C.; Krajewski, W.F. Statewide real-time quantitative precipitation estimation using weather radar and NWP model analysis:
Algorithm description and product evaluation. Environ. Model. Softw. 2020, 132, 104791. [CrossRef]

16. Ryzhkov, A.; Zhang, P.; Reeves, H.; Kumjian, M.; Tschallener, T.; Trömel, S.; Simmer, C. Quasi-Vertical Profiles—A New Way to
Look at Polarimetric Radar Data. J. Atmos. Ocean. Technol. 2016, 33, 551–562. [CrossRef]

17. Tokay, A.; Hartmann, P.; Battaglia, A.; Gage, K.S.; Clark, W.L.; Williams, C.R. A field study of reflectivity and Z-R relations using
vertically pointing radars and disdrometers. J. Atmos. Ocean. Technol. 2009. [CrossRef]

18. Das, S.; Shukla, A.K.; Maitra, A. Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region.
Adv. Sp. Res. 2010, 45, 1235–1243. [CrossRef]

19. Massmann, A.K.; Minder, J.R.; Garreaud, R.D.; Kingsmill, D.E.; Valenzuela, R.A.; Montecinos, A.; Fults, S.L.; Snider, J.R. The
Chilean Coastal Orographic Precipitation Experiment: Observing the Influence of Microphysical Rain Regimes on Coastal
Orographic Precipitation. J. Hydrometeorol. 2017, 18, 2723–2743. [CrossRef]

20. Pfaff, T.; Engelbrecht, A.; Seidel, J. Detection of the bright band with a vertically pointing K-band radar. Meteorol. Z. 2014, 23,
527–534. [CrossRef]

21. Wang, H.; Lei, H.; Yang, J. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using Micro
Rain Radar data. Adv. Atmos. Sci. 2017. [CrossRef]

22. Li, H.; Moisseev, D. Two Layers of Melting Ice Particles Within a Single Radar Bright Band: Interpretation and Implications.
Geophys. Res. Lett. 2020, 47, e2020GL087499. [CrossRef]

23. Romatschke, U. Melting Layer Detection and Observation with the NCAR Airborne W-Band Radar. Remote Sens. 2021, 13, 1660.
[CrossRef]

24. Benarroch, A.; Siles, G.A.; Riera, J.M.; Perez-Pena, S. Heights of the 0 ◦C Isotherm and the Bright Band in Madrid: Comparison
and Variability. In Proceedings of the 14th European Conference on Antennas and Propagation, EuCAP 2020, Copenhagen,
Denmark, 15–20 March 2020.

25. Lin, D.; Pickering, B.; Neely, R.R., III. Relating the Radar Bright Band and Its Strength to Surface Rainfall Rate Using an Automated
Approach. J. Hydrometeorol. 2020, 21, 335–353. [CrossRef]

26. Alpers, W.; Zhao, Y.; Mouche, A.A.; Chan, P.W. A note on radar signatures of hydrometeors in the melting layer as inferred from
Sentinel-1 SAR data acquired over the ocean. Remote Sens. Environ. 2021, 253, 112177. [CrossRef]

27. Arulraj, M.; Barros, A.P. Automatic detection and classification of low-level orographic precipitation processes from space-borne
radars using machine learning. Remote Sens. Environ. 2021, 257, 112355. [CrossRef]

28. Peters, G.; Fischer, B.; Andersson, T. Rain observations with a vertically looking Micro Rain Radar (MRR). Boreal Environ. Res.
2002, 7, 353–362.

29. Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmos.
Ocean. Technol. 2014, 31, 1276–1288. [CrossRef]

30. Metek MRR-Pro. Description of Products. Valid for MRR-PRO Firmware VS ≥ 01; Metek Meteorologische Messtechnik GmbH:
Elmshorn, Germany, 2010.

31. Garcia-Benadi, A.; Bech, J.; Gonzalez, S.; Udina, M.; Codina, B.; Georgis, J.F. Precipitation type classification of Micro Rain Radar
data using an improved Doppler spectral processing methodology. Remote Sens. 2020, 12, 4113. [CrossRef]

32. Hildebrand, P.H.; Sekhon, R.S. Objective Determination of the Noise Level in Doppler Spectra. J. Appl. Meteorol. 1974, 13, 808–811.
[CrossRef]

33. Adirosi, E.; Baldini, L.; Tokay, A.L.I. Rainfall and DSD parameters comparison between Micro Rain Radar, two-dimensional video
and Parsivel2 disdrometers, and S-band dual-polarization radar. J. Atmos. Ocean. Technol. 2020. [CrossRef]

34. Maahn, M.; Kollias, P. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas.
Tech. 2012, 5, 2661–2673. [CrossRef]

35. Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11,
1–35. [CrossRef]

36. Peters, G.; Fischer, B.; Clemens, M. Rain Attenuation of Radar Echoes Considering Finite-Range Resolution and Using Drop Size
Distributions. J. Atmos. Ocean. Technol. 2010, 27, 829–842. [CrossRef]

37. Prahl, S. Miepython. Available online: https://miepython.readthedocs.io/ (accessed on 1 July 2021).
38. Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [CrossRef]
39. Cha, J.-W.; Chang, K.-H.; Yum, S.S.; Choi, Y.-J. Comparison of the bright band characteristics measured by Micro Rain Radar

(MRR) at a mountain and a coastal site in South Korea. Adv. Atmos. Sci. 2009, 26, 211–221. [CrossRef]
40. Nakano, M.; Takahashi, A.; Takahashi, S. Generalized exponential moving average (EMA) model with particle filtering and

anomaly detection. Expert Syst. Appl. 2017, 73, 187–200. [CrossRef]

http://doi.org/10.1002/qj.4121
http://doi.org/10.1016/j.envsoft.2013.08.009
http://doi.org/10.1002/asl.274
http://doi.org/10.1016/j.envsoft.2020.104791
http://doi.org/10.1175/JTECH-D-15-0020.1
http://doi.org/10.1175/2008JTECHA1163.1
http://doi.org/10.1016/j.asr.2010.01.001
http://doi.org/10.1175/JHM-D-17-0005.1
http://doi.org/10.1127/metz/2014/0605
http://doi.org/10.1007/s00376-017-7005-6
http://doi.org/10.1029/2020GL087499
http://doi.org/10.3390/rs13091660
http://doi.org/10.1175/JHM-D-19-0085.1
http://doi.org/10.1016/j.rse.2020.112177
http://doi.org/10.1016/j.rse.2021.112355
http://doi.org/10.1175/JTECH-D-13-00174.1
http://doi.org/10.3390/rs12244113
http://doi.org/10.1175/1520-0450(1974)013&lt;0808:ODOTNL&gt;2.0.CO;2
http://doi.org/10.1175/JTECH-D-19-0085.1
http://doi.org/10.5194/amt-5-2661-2012
http://doi.org/10.1029/RG011i001p00001
http://doi.org/10.1175/2009JTECHA1342.1
https://miepython.readthedocs.io/
http://doi.org/10.1364/AO.19.001505
http://doi.org/10.1007/s00376-009-0211-0
http://doi.org/10.1016/j.eswa.2016.12.034


Remote Sens. 2021, 13, 4323 20 of 20

41. Brast, M.; Markmann, P. Detecting the Melting Layer with a Micro Rain Radar Using a Neural Network Approach. Atmos. Meas.
Tech. 2020, 13, 6645–6656. [CrossRef]

42. Lee, J.-E.; Jung, S.-H.; Kwon, S. Characteristics of the Bright Band Based on Quasi-Vertical Profiles of Polarimetric Observations
from an S-Band Weather Radar Network. Remote Sens. 2020, 12, 4061. [CrossRef]

43. Kneifel, S.; Maahn, M.; Peters, G.; Simmer, C. Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain
Radar). Meteorol. Atmos. Phys. 2011. [CrossRef]

44. Kneifel, S.; Kulie, M.S.; Bennartz, R. A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res.
Atmos. 2011, 116, D11203. [CrossRef]

http://doi.org/10.5194/amt-13-6645-2020
http://doi.org/10.3390/rs12244061
http://doi.org/10.1007/s00703-011-0142-z
http://doi.org/10.1029/2010JD015430

	Introduction 
	Instrumentation and Data Acquisition 
	Instrumentation 
	Data Acquisition 

	Processing Method 
	Signal and Noise Detection 
	Dealiasing 
	Attenuation Calculation 
	Bright Band Calculation 

	Results 
	Manufacturer ML Height vs. RaProM-Pro BBpeak Height 
	Sounding Observations vs. RaProM-Pro BB Levels 
	Sounding Observations vs. Manufacturer ML Levels 

	Discussion 
	Summary and Conclusions 
	
	
	References

