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Abstract: Most of the existing image segmentation methods have a strong anti-noise ability but
are susceptible to the interference in the background, so they are not suitable for 3-D synthetic
aperture radar (SAR) image target extraction. Region of interest (ROI) extraction can improve the
anti-interference ability of the image segmentation methods. However, the existing ROI extraction
method uses the same threshold to process all the images in the data set. This threshold is not
optimal for each image. Designed for 3-D SAR image target extraction, we propose an ROI extraction
algorithm with adaptive threshold (REAT) to enhance the anti-interference ability of the existing
image segmentation methods. The required thresholds in the proposed algorithm are adaptively
obtained by the mapping of the image features. Moreover, the proposed algorithm can easily be
applied to existing image segmentation methods. The experiments demonstrate that the proposed
algorithm significantly enhances the anti-interference ability and computational efficiency of the
image segmentation methods. Compared with the existing ROI extraction algorithm, the proposed
algorithm improves the dice similarity coefficient by 6.4%.

Keywords: synthetic aperture radar (SAR); image segmentation; target extraction; 3-D; saliency detection

1. Introduction

Recently, near-field 3-D synthetic aperture radar (SAR) imaging and its applications
have become an important research direction [1–3]. When SAR imaging results are dis-
played in 3-D form, the occlusion caused by the background (the sidelobes, noise, and
interference) makes the main lobe difficult to observe. The target extraction of a 3-D SAR
image is an efficient algorithm for eliminating the influence of the background. Scholars
are committed to investigating the target extraction algorithm with high accuracy and
computational efficiency. For target extraction, the image segmentation method is usually
utilized to divide the image into several categories, and then the target is determined
through certain judgment conditions.

In computer vision, medicine, and other fields, image segmentation methods based
on fuzzy C-means (FCM) and hidden Markov random fields (HMRF) are widely used due
to their good performance. Recently, researchers have been working hard to improve the
performance of these two types of algorithms [4–8]. One of the main means of improve-
ment is the introduction of information into neighboring voxels to improve the anti-noise
ability [9–11].

We try to use general segmentation algorithms to complete the target extraction of
3-D SAR images. However, when these algorithms are applied to 3-D SAR images, it is
difficult for them to avoid the influence of interference whose intensity is very close to the
target. As a result, some strong interference voxels are incorrectly divided into the target
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voxels. In addition, some segmentation algorithms tend to use more complex objective
functions to obtain better anti-noise ability. And these algorithms are usually designed
for the processing of 2-D images. When these algorithms are applied to 3-D images, the
complex objective functions make their computational efficiency unacceptable. Therefore,
most of the algorithms that exist are not suitable for direct application to the segmentation
of 3-D SAR images.

A 3-D SAR image has sparsity [12], which means that the number of background
voxels in a 3-D SAR image is far higher than that of target voxels. We consider the region
where the target is located as the region of interest (ROI). If one algorithm can be applied
to remove the background area with the interference and extract ROI, then the high-
performance image segmentation algorithm only needs to divide the voxels in ROI. This
not only improves the anti-interference ability but also the computational efficiency.

The region-adaptive morphological reconstruction fuzzy C-means (R-AMRFCM) al-
gorithm [13] is an ROI-based algorithm specifically designed for 3D SAR image target
extraction. It utilizes the anisotropic diffusion method [14] to smooth the image, the 3-D
Kirsch method to calculate the gradient magnitude, and the hysteresis threshold method to
extract target edges. The minimum bounding polyhedrons of the target edges are regarded
as the ROI. The adaptive morphological reconstruction fuzzy C-means algorithm was then
used to divide the target voxels and the background voxels in ROI. However, R-AMRFCM
has two disadvantages:

1. The gradient threshold in the anisotropic diffusion filter and the two thresholds in the
hysteresis threshold method have to be adjusted manually. The adjustment process is
experience-dependent and time-consuming;

2. The target extraction of different images in one data set is achieved by the same
thresholds. These thresholds are not optimal for each image.

In this paper, we will focus on designing an ROI-based preprocessing algorithm which
can obtain the required thresholds adaptively in order to make general segmentation
algorithms suitable for 3-D SAR image target extraction. Image features can reflect the
unique information contained in each image, and different images have different features.
If a mapping relationship can be established between the required thresholds and image
features, the thresholds can be calculated adaptively. Thereby, we aim to find a way to
achieve ROI extraction with an adaptive threshold.

There are some statistical models that fit the distribution of gray levels in SAR images;
these include Gamma distribution, Gamma mixture distribution (GMD), generalized
Gamma distribution (GGD), etc. [15–22]. The gray levels of the 3-D SAR images that we
processed [13,23,24] follow Gamma distribution. Furthermore, the algorithm proposed
in this paper is based on this hypothesis. The histogram is an important feature for
SAR images. Researchers have achieved a variety of SAR image applications through
histograms [25–28]. For example, Qin et al. proposed a classification algorithm and a
segmentation algorithm for SAR images based on GGD [29,30]. Pappas et al. proposed
a framework to extract a river area from a SAR image based on GGD [31]. Xiong et al.
presented a change detection measure based on the statistical distribution of SAR intensity
images [32]. Therefore, we also utilize the histogram to achieve an ROI extraction with an
adaptive threshold.

In this paper, an ROI extraction algorithm with adaptive threshold (REAT) is pro-
posed to improve the anti-interference ability and the computational efficiency of existing
segmentation algorithms. Firstly, a fast saliency detection algorithm is applied to enhance
the 3-D SAR image [33]. Secondly, the features of the original image and the enhanced
image (the image mean, the histogram, etc.) are obtained. Based on the histograms of the
original image and the enhanced image, the Kullback–Leibler distance (KLD) is utilized to
evaluate the difference between these two images. Otsu’s method [34] is used to calculate
the reference thresholds. Subsequently, the gradient threshold in the anisotropic diffusion
method is calculated with the histogram and the image mean. Two thresholds in the Canny
edge detection method [35] are calculated with the use of the reference thresholds and the
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KLD. Then, the anisotropic diffusion method is employed to smooth the image, and the
Canny edge detection method is applied to extract the target edges. Finally, the minimum
bounding cuboids of the target edges are considered as the core region, and the boundary
of the core region is expanded outward to form a buffer area. The core region and the
buffer area constitute a complete ROI. Moreover, the expansion reduces the loss of target
regions caused by inaccurate edge extraction.

The extracted ROI can be directly treated as the input of the existing image segmen-
tation algorithms. In this paper, a Gaussian-based hidden Markov random field and
some FCM-based segmentation algorithms are utilized to divide the target voxels and the
background voxels in ROI.

Our contribution is summarized as follows:

1. Designed for 3-D SAR images, we propose a preprocessing algorithm to quickly
extract the region of interest. The proposed algorithm can improve the performance
and efficiency of general image segmentation algorithms. Moreover, the proposed al-
gorithm is flexible and can easily be applied to existing image segmentation methods;

2. The image features are utilized to adaptively obtain the thresholds required for ROI
extraction. The thresholds are independently optimized for different images.

The rest of this paper is organized as follows. In Section 2, we review related works.
In Section 4, the theory of the proposed algorithm is described. Section 5 introduces the
experimental results and the performance evaluations. In Section 6, we illustrate the
process of the proposed algorithm and discuss the role of the buffer area. The conclusion is
given in Section 7.

2. Related Works
2.1. Saliency Detection

The saliency detection algorithm is usually used to highlight regions of interest.
Therefore, we use the saliency detection algorithm to enhance the target area in the original
image. Reference [33] introduces a highly efficient saliency detection algorithm with the
use of the spectral residual. This algorithm divides the information contained in the image
into innovation and prior knowledge, where the innovation is novelty information and
the prior knowledge is redundant information. After transforming the image into a log-
frequency spectrum, the prior knowledge appears as a smooth curve, and the innovation
forms multiple peaks on the smooth curve. The spectral residual R( f ) is defined as the
statistical singularities which are particular to the input image. The saliency detection
process is expressed as follows:

S = G
{
F−1[exp(R( f ) + P(I))]2

}
, (1)

R( f ) = L( f )−M[L( f )], (2)

L( f ) = log(A(I)), (3)

where A(I) denotes the amplitude of the image I after Fourier transform, P(I) denotes the
phase of the image I after Fourier transform,M denotes mean filtering, F−1[·] denotes
inverse Fourier transform, G{·} denotes Gaussian filtering. The saliency map S indicates
the regions of interest in the image.

2.2. Gaussian-Based Hidden Markov Random Field

After the ROI extraction by the proposed algorithm, an image segmentation method
is needed to divide the target voxels and the background voxels in the ROI. We use a
classic method, the Gaussian-based hidden Markov random field (G-HMRF), to achieve
the segmentation.
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Assuming that the original image contains N voxels, hn denotes the gray level of the
nth voxel, and the set of gray levels isH = {h1, . . . , hN}. Each voxel corresponds to a label
νn, V = {ν1, . . . , νn, . . . , νN}, νn ∈ [1, L], with L as the number of categories. For the hidden
Markov random field,H is the observed field, which is known. V is a hidden random field.
The purpose of the hidden Markov random field is to estimate the hidden random field V
based on the observed fieldH.

The maximum a posterior (MAP) criterion finds the best label V∗ by maximizing the
posterior probability, which is usually used to optimize G-HMRF. Assuming that V̂ is the
estimate of the label V∗,

V̂= argmax
V
{P(V|H, Θ)}, (4)

where Θ = {θl |l ∈ L} denotes the parameter set. The Bayesian criterion is expressed as:

P(V|H, Θ) =
P(H|V , Θ)P(V)

P(H)
. (5)

where P(H) is a constant, which can be ignored in the calculation process. According to
the simplified Bayesian criterion, we have the following:

P(V|H, Θ) = P(H|V , Θ)P(V), (6)

Equation (4) is rewritten as:

V̂= argmax
V
{P(H|V , Θ)P(V)}. (7)

The Hammersly–Clifford principle indicates that the Markov random field and Gibbs
distributions are identical [36]. Therefore, maximizing the posterior probability is equiva-
lent to minimizing the energy function,

V̂= argmin
V∈χ

{U(H|V , Θ) + U(V)}, (8)

where χ denotes all possible configurations of labels. The unitary potential function is
expressed as follows [37]:

U(H|V , Θ) =
N

∑
n=1

U(hn|νn, Θ) (9)

=
N

∑
n=1

[
(hn − µνn)

2

2σ2
νn

+ ln σνn

]
, (10)

and the pairwise potential function is expressed as [37]:

U(V) = ∑
c∈C

Vc(νi, νj), (11)

Vc
(
νi, νj

)
=

{
B if νi 6= νj
0 if νi = νj

, (12)

where Vc
(
νi, νj

)
denotes the clique potential and C denotes the set of all possible cliques.

Based on experience, the variable coefficient B is set to 1/2 in this paper.
After estimating V̂ through MAP, the parameter set Θ needs to be estimated. This

step is usually achieved by the expectation maximization algorithm (EM). The image
segmentation process through G-HMRF is described as follows:

1. K-means or fuzzy C-means is used to initialize the label V̂ (0). According to V̂ (0) and
the set of gray levelsH, EM is applied to initialize the parameter set Θ(0);
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2. MAP is utilized to estimate the label V̂ (t+1):

V̂ (t+1)= argmin
V (t)∈χ

{
U
(
H|V (t), Θ(t)

)
+ U

(
V (t)

)}
;

3. According to the label V̂ (t+1) and the set of gray levelsH, EM is used to estimate the
new parameter set Θ(t+1);

4. After z iterations of step 2 and step 3, the division V̂ z of each voxel in the image
is obtained.

3. Background

The 3-D SAR imaging system for security inspection usually consists of three main
parts: a virtual array, a radio frequency system (RFS) for transmitting signals and collecting
echoes, and a data processing platform (DPP) for storing the digital echo data and imaging.
And the framework of the 3-D SAR imaging system for security inspection is shown in
Figure 1. The SAR system uses wideband signals and matched filtering to obtain range
resolution. In order to obtain the resolution of the other two dimensions (cross-track
direction and along-track direction), a virtual array is generated on a plane perpendicular
to the distance direction. For the security inspection SAR imaging system, a 1-D real
antenna array is usually used to generate a virtual array. This mode takes into account the
cost and scanning time.

3-D

SAR

image

Radio-frequency system 

Data processing plantform

Virtual array 

Transmitted signal

Echo

Control

information

Digital

echo

data

Imaging

algorithms

Detected area 

Background

Figure 1. The framework of the 3-D SAR imaging system for security inspection. It usually consists of three main parts:
a virtual array, a radio-frequency system, and a data processing platform.

The DPP sends the control information to the RFS. Then, the RFS transmits signals
and receives echoes through antennas. After the analog-to-digital conversion, the digital
echo data is transmitted from the RFS to the DPP. Finally, the DPP stores the digital echo
data and achieves 3-D SAR imaging. References [23,24] show two different near-field 3-D
SAR imaging systems.
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The 3-D SAR image can be divided into two parts: target and background. There are
some high-intensity interferences in the background, and the intensity of these interferences
is almost equal to the intensity of the weak target. For general image segmentation
algorithms, it is difficult to distinguish between weak targets and strong interferences
based on intensity alone. Reference [13] shows that the edge gradient intensity of the target
is usually stronger than that of the interference. Therefore, the target and the interference
can be distinguished by the difference in edge gradient intensity. This paper designs an
ROI extraction algorithm based on this idea.

4. Method

Influenced by interference, general image segmentation algorithms are not suitable
for the target extraction of 3-D SAR images. Therefore, we propose an ROI extraction
algorithm with adaptive threshold (REAT) to enhance the anti-interference ability and
computational efficiency of general image segmentation algorithms. The input of REAT
is a 3-D gray scale voxel image, and its output is one or more small-sized 3-D gray scale
images (regions of interest). For near-field 3-D SAR images, voxels with higher gray levels
tend to be judged as target voxels. When designing REAT, the area gathered by voxels with
higher gray levels is judged as the region of interest. In this section, we will elaborate on
the inspiration and theory of the proposed algorithm.

4.1. Overview

The proposed algorithm consists of 4 main steps, and the structure is shown in Figure 2.
Firstly, the saliency map of the original image is calculated by the spectral residual method.
Based on the saliency map, the enhancement matrix is generated. The saliency-enhanced
image is calculated by the Hadamard product of the original image and the enhancement
matrix. Secondly, the mean value of the enhanced image, the histogram of the enhanced
image, and the histogram of the original image are calculated. In addition, two reference
thresholds are calculated by Otsu’s method based on the histogram of the original. After
calculating the probability distribution function of the original image and the enhanced
image with the histogram, the Kullback–Leibler distance between these two images is
obtained. Then, the gradient threshold of the anisotropic diffusion algorithm and the
thresholds of the Canny edge detection algorithm are calculated by two map functions
with the above-mentioned results. Finally, after smoothing the enhanced image with the
anisotropic diffusion algorithm, the Canny algorithm is used to detect the target edges.
The minimum bounding cuboids of the target edges are regarded as the core region. After
expanding the boundary of the cuboids outwards, the expanded area is then considered
the buffer area. The core region and buffer area constitute the complete ROI.

We introduce the proposed algorithm in detail in the following subsections.

4.2. Image Enhanced by Saliency Detection

Assuming that the matrix of the gray levels of the original image is I, I(x, y, z) is the
element in I, x ∈ [1, Nx], y ∈

[
1, Ny

]
, z ∈ [1, Nz]. The set of gray levels of all voxels is

H = {h1, . . . , hn, . . . , hN}, N = Nx × Ny × Nz. The spectral residual method is applied to
calculate the saliency map S of I. S̃ is the gray-level normalized result of S. Then, the
enhancement matrix is constructed as follows:

E = (1− p) · Ã + p · S̃, (13)

where p ∈ (0, 1) denotes the gain, Ã ∈ ZNx×Ny×Nz denotes a matrix whose elements are all
1. The enhanced image Ṡ is expressed as:

Ṡ = E� I, (14)

where� denotes the Hadamard product. Image saliency enhancement reduces the intensity
of the background area. We will illustrate this in Section 6.1.
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Saliency map

Enhancement matrix
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Figure 2. The structure of the proposed algorithm. It consists of 4 main steps: enhancing the image
with saliency detection, evaluating image features, calculating the thresholds, and extracting the
region of interest.

4.3. The Calculation of the Gradient Threshold

In this paper, assume that a 3-D SAR image follows the Gamma distribution. The
schematic of a 3-D SAR image histogram is shown in Figure 3. For near-field SAR detection,
the target usually has high intensity. Due to the sparsity of 3-D SAR images, the number of
background voxels with low gray levels is much higher than the number of target voxels
with high gray levels. Thus, there is a serious imbalance between the number of target
voxels and the number of background voxels. In addition, the histogram is not a smooth
curve, and there are many small peaks on the histogram.

The gradient threshold in the anisotropic diffusion algorithm depends on the noise
level and edge strength [14]. In this paper, the gradient threshold is regarded as the
boundary between the target and the background. According to the histogram, the huge
peak in the low gray-level range is almost contributed by the background. If the gray level
with the largest number of voxels is regarded as the median of the background intensity,
two times the median of the background intensity can be roughly regarded as the boundary
between target and background. However, this boundary is unstable and susceptible to
small peaks. To improve the stability of the boundary, the mean value of NAD gray levels
with the largest number of voxels is taken as the median of the background intensity. The
larger the NAD, the more stable the median of the background intensity. However, because
the histogram of the Gamma distribution is asymmetric, too large an NAD will cause the
offset of the median of the background intensity. Empirically, NAD is set to 5.
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The pure background The pure targetThe mixture

1 2

Small peaks

Figure 3. The histogram of a 3-D SAR image. It is divided into three areas: the pure background, the mixture of the target
and the background, and the pure target.

The calculation of the median of the background intensity only considers the image
background information and ignores the target information. We believe that the gradient
threshold should be calculated after a complete evaluation of the image. Therefore, the im-
age mean that includes both background information and target information is introduced
to correct the threshold calculated before.

The set of gray levels of the enhanced image is Ḣ =
{

ḣ1, ḣn, . . . , ḣN
}

, and the mean

value of the image is Ḣ is h̄ = 1
N

N
∑

n=1
ḣn. The histograms of the original image and the

enhanced image are Γ=
{

γ1, γ2, . . . , γq
}

and Γ̇=
{

γ̇1, γ̇2, . . . , γ̇q
}

, respectively; q ∈ [1, Q].
Both histograms have the same gray level R =

{
r1, r2, . . . , rq

}
. The histogram of the

enhanced image is sorted from largest to smallest. The sorted histogram is
{

γ̇′1, γ̇′2, . . . , γ̇′q

}
,

where the gray level corresponding to
{

γ̇′1, γ̇′2, γ̇′3, γ̇′4, γ̇′5
}

is
{

ṙ′1, ṙ′2, ṙ′3, ṙ′4, ṙ′5
}

. Hence, the

median of the background intensity is r̄ = 1
5

5
∑

q=1
ṙ′q. The gradient threshold κ is calculated

with the following map function:

κ =
2r̄ + h̄

2
. (15)

So far, we have obtained the gradient threshold κ for the anisotropic diffusion algorithm.

4.4. Canny Edge Detection and the Calculation of Two Thresholds

According to the distribution of voxels in the histogram, it is inferred that there is a
threshold µ1 so that the voxels whose gray level is in the range of [0, µ1] are part of the
background. Similarly, there is a threshold µ2 so that the voxels whose gray level is higher
than µ2 are targets. Thus, these two thresholds divide the histogram into three intervals:
the pure background, the mixture of the target and the background, and the pure target.

According to the threshold µ1, the histogram is divided into two regions. The voxels
belonging to the pure background are directly discarded. The voxels belonging to the
mixture and the pure target are extracted and considered as the ROI. This allows for a large
number of background voxels to be removed.

There is some strong interference in the 3-D SAR image. These interference voxels
are usually distributed in the pure background and the mixture. If the ROI and the
background are roughly divided by the threshold µ1, the interference voxels in the mixture
will be divided into the ROI at the same time. In addition, these interference voxels
seriously influence the segmentation result. Reference [13] pointed out that there is a
difference between the edge gradient magnitude of the target and the interference, which
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can be used to eliminate the influence of the interference. According to this idea, the
Canny edge detection method is applied to extract the target edges while eliminating the
interference. The minimum bounding cuboids of the target edges after boundary expansion
also forms the ROI. Among them, µ1 and µ2 correspond to the low threshold and the high
threshold, respectively. In this way, ROI extraction not only removes the voxels in the pure
background, but also eliminates the interference voxels in the mixture. The difficulty of
image segmentation is greatly decreased.

Otsu’s method [34] is an efficient histogram-based method of calculating the reference
thresholds. However, the imbalance in the number of voxels between the background and
the target makes the reference thresholds inaccurate. Therefore, the imbalance needs to be
corrected. For the images before and after the saliency enhancement, there are differences in
the background and target information between these two images. Moreover, the Kullback–
Leibler distance can measure these differences. Therefore, we utilize the Kullback–Leibler
distance to evaluate these differences and use the evaluation result to correct the reference
thresholds. The map function is used to achieve further adjustment.

Assuming that the reference thresholds calculated by Otsu’s method are µO1 and µO2,
respectively, and µO1 < µO2. The probability distribution of the original image ρr and the
probability distribution of the enhanced image ρe are calculated with the corresponding
histogram, respectively:

ρr
(
rq
)
=

γq

N
, ρe
(
rq
)
=

γ̇q

N
. (16)

The Kullback–Leibler distance between the original image and the enhanced image is
expressed as follows:

D̄ =
1
2
(D(ρr|ρe)+D(ρe|ρr)), (17)

D(ρr|ρe) =
Q

∑
q=1

ρr
(
rq
)
· log

ρr
(
rq
)

ρe
(
rq
) , (18)

D(ρe|ρr) =
Q

∑
q=1

ρe
(
rq
)
· log

ρe
(
rq
)

ρr
(
rq
) . (19)

The thresholds after correction are expressed as follows:

µD1 = µO1 + D̄, µD2 = µO2 + D̄. (20)

The range of µO1 and µO2 are (0, 1). D̄ is usually a small value.
If µD1 and µD2 are directly regarded as the low threshold and the high threshold,

when µD1 is much smaller than µD2, some interference edges will be regarded as the target
edges. Hence, the power function is introduced to narrow the gap between these two
thresholds. However, the power function increases the values of µD1 and µD2 at the same
time. The coefficient α is thus introduced to offset the negative effects of the power function.
The map function is constructed as follows:

µ1 = α · (µD1)
β, µ2 = α · (µD2)

β, (21)

where α ∈ (0, 1) and β ∈ (0, 1) are the coefficients. Figure 4 shows the relationship between
these two coefficients and the map function in the range of [0, 1]. The value with [0, 1] is
mapped to the value with [0, α]. The smaller the coefficient β, the smaller the gap between
µ1 and µ2. In this paper, α and β are set to 0.5 and 1/3, respectively.
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Figure 4. The relationship between the two coefficients and the map function.

4.5. The Extraction of ROI and Target

The thresholds required by the anisotropic diffusion method and the Canny edge
detection algorithm have been calculated. After smoothing the enhanced image with the
anisotropic diffusion method, the Canny algorithm is applied to extract the target edges.
Thus, several regions formed by the minimum bounding cuboids of the target edges are
determined, and the set of these regions is regarded as the core region. The inaccurate
edge detection causes the permanent loss of part of the target region. Therefore, we expand
the boundary of the core region outward to the

(
τx, τy, τz

)
voxels. The expanded area

is named the buffer area. The core region and the buffer area form the complete ROI
Ω={ω1, ω2, . . . , ωw}, w ∈ [1, W]. The next step is to accurately divide the voxels in each
region ωw through an image segmentation method.

Each region ωw is composed of target voxels and background voxels, ωw = ωt
w ∪ωb

w,
where ωt

w denotes the set of target voxels in the wth region, and ωb
w denotes the set of

background voxels in the wth region. G-HMRF is used to achieve the division of voxels
in each region ωw. The category containing the highest gray-level voxels is marked as
the target, and the other category is marked as the background. Thereby, the union of all
target voxel sets Ωt = ωt

1 ∪ωt
2 ∪ · · · ∪ωt

w is extracted. To decrease over-segmentation, the
voxels whose gray level is less than µ1 · rQ are regarded as background and removed. To
improve the accuracy, the ψ times upsampling is performed on each region before image
segmentation, and the region size is restored after the image segmentation is completed.

5. Experiments
5.1. Evaluation Criterion

Accuracy, precision, recall, and the dice similarity coefficient (DSC) were used to
evaluate the performance of the target extraction algorithm. Ra denotes the whole image.
Rseg denotes the extracted target region. Rgt denotes the ground truth.

Accuracy represents the ratio of the number of voxels correctly classified to the number
of total voxels in the image:

Accuracy =

∣∣Rseg ∩ Rgt
∣∣+ ∣∣Ra −

(
Rgt ∪ Rseg

)∣∣
|Ra|

. (22)

Precision represents the ratio of the number of correctly extracted target voxels to the
number of all extracted target voxels:
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Precision =

∣∣Rseg ∩ Rgt
∣∣∣∣Rseg

∣∣ . (23)

Recall represents the ratio of the number of correctly extracted target voxels to the
number of real target voxels:

Recall =

∣∣Rseg ∩ Rgt
∣∣∣∣Rgt

∣∣ . (24)

The dice similarity coefficient, also known as the F1-score, indicates the similarity
between the correctly extracted target region and the real target region:

DSC =
2×

∣∣Rseg ∩ Rgt
∣∣∣∣Rseg

∣∣+ ∣∣Rgt
∣∣ . (25)

The value range of the four criteria above is [0, 1]. The closer the value is to 1, the
better the performance is. Among them, the DSC is the most important because of its
comprehensive evaluation ability.

5.2. Experimental Results

We used the imaging result of the 3-D SAR security inspection system to evaluate the
algorithm performance. Based on the data set in reference [13], we added several images
to the data set. The new data set contains a total of 56 images, which consists of 53 images
with a size of 160 × 400 × 40, 2 images with a size of 512 × 512 × 64, and 1 image with a
size of 200 × 200 × 41. All experiments were performed on a workstation with an AMD
Threadripper 3960X 3.8 GHz CPU and 64 GB memory. The parameters of the proposed
algorithm were set as follows: the gain p = 0.2, the coefficient α = 0.5, the coefficient
β = 1/3, τx = 6, τy = 6, τz = 0, the upsampling rate ψ = 2.

To verify the enhancement ability of the proposed algorithm to the image segmentation
method, we used the proposed algorithm to enhance G-HMRF [37], FRFCM [38], and
RSSFCA [39]. The enhanced algorithms were named REAT-G-HMRF, REAT-FRFCM, and
REAT-RSSFCA, respectively. R-AMRFCM [13] is a state-of-the-art algorithm for 3-D SAR
image target extraction. To verify the performance of the proposed algorithm, the ROI
extraction algorithm in R-AMRFCM was replaced with the proposed algorithm. The
algorithm after replacement was called REAT-AMRFCM.

The target extraction results of the four images in the data set are shown in Figure 5.
For a clear display, we converted the 3-D image into a 2-D image with the maximum
projection along the Z direction. The original image is in the leftmost column, and the
ground truth is next to the original image. The results of the original algorithms are marked
in white, the results of the algorithms enhanced by the REAT are marked in yellow, and
the results of the state-of-the-art algorithms are marked in red.

As shown in Figure 5, the target extraction results of the three original algorithms
(G-HMRF, FRFCM, and RSSFCA) contain a lot of background voxels. In contrast, the
extraction results of the three enhanced algorithms (REAT-G-HMRF, REAT-FRFCM, and
REAT-RSSFCA) almost do not contain background voxels. Additionally, as shown in
Figure 5d, the result of REAT-AMRFCM contains fewer background voxels than that of
R-AMRFCM. Therefore, the proposed algorithm enhances the anti-interference ability of
the existing image segmentation methods and has a stronger anti-interference ability than
the state-of-the-art algorithm.
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Original image Ground truth REAT-G-HMRF G-HMRF REAT-FRFCM FRFCM REAT-RSSFCA RSSFCA REAT-AMRFCM R-AMRFCM

(a)

Original image Ground truth REAT-G-HMRF G-HMRF REAT-FRFCM FRFCM REAT-RSSFCA RSSFCA REAT-AMRFCM R-AMRFCM

(b)

Original image Ground truth REAT-G-HMRF G-HMRF REAT-FRFCM FRFCM REAT-RSSFCA RSSFCA REAT-AMRFCM R-AMRFCM

(c)

Original image Ground truth REAT-G-HMRF G-HMRF REAT-FRFCM FRFCM REAT-RSSFCA RSSFCA REAT-AMRFCM R-AMRFCM

(d)

Figure 5. The original image, the ground truth, and the target extraction results of 4 images in the data set. (a) Rifle. (b) Knife
and pistol. (c) Human body. (d) Metal stick.
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As shown in Figure 6, there is a 3-D original image of the human body, a 3-D ground truth,
and 3-D extraction results of 8 algorithms. The original image is shown in Figure 6a. Visually,
the side lobes and interference in the imaging space cover the main lobe. Figure 6b–d are the
extraction results of G-HMRF, FRFCM, and RSSFCA, respectively. The extraction results
of these algorithms still contain a lot of background voxels (sidelobes and interference).
As shown in Figure 6e, R-AMRFCM effectively divides the target voxels and most of the
background voxels. However, some regions in the extraction result are over-segmented,
and a large number of target voxels are lost in some areas. The areas where the target voxels
are lost are marked by red circles. As shown in Figure 6g–j, the enhanced segmentation
algorithms achieve excellent target extraction. There is no obvious over-segmentation and
lack of target regions in these extraction results.

As shown in Figure 7, the original SAR images and extraction results of 10 scenes are
shown through the maximum projection. These scenes contain a rich variety of targets. For
example, scene C contains two tiny objects: a tomato and a tiny metal ball. Although the
extraction of tiny targets in a scene full of interference is a severe test for the algorithm, the
algorithms enhanced by REAT still complete the target extraction. Scene D contains the
main lobe and the grating lobes of a rifle and a knife. The grating lobes are regarded as
the weak targets. Among these four enhanced algorithms, REAT-AMRFCM extracts more
target grating lobes than the other three algorithms. Therefore, REAT-AMRFCM is better at
classifying weaker voxels as target voxels than the other three enhanced algorithms.

5.3. Evaluation of the Performance

Accuracy, precision, recall, and the DSC are used to evaluate the performance of these
algorithms. The evaluation results of the original algorithms and the enhanced algorithms
are shown in Table 1. The accuracy of these three enhanced algorithms is very close to 1.
Additionally, their precision, recall, and DSC are all higher than 0.7989. Among them,
REAT-FRFCM has the highest precision (0.9125), REAT-RSSFCA has the highest recall
(0.8702), and REAT-G-HMRF has the highest DSC (0.8703). The accuracy, the precision,
and the DSC of the enhanced algorithms are significantly higher than those of the original
algorithms. The extraction results of the original methods not only contain almost all target
voxels but also contain a large number of background voxels. The over-segmentation
makes the original methods have a very high recall. In summary, the proposed algorithm
effectively enhances the performance of the existing image segmentation methods.

Table 1. Evaluation results of the original algorithms and the enhanced algorithms. The bold number
indicates the best performance under one criterion.

Method ROI Accuracy Precision Recall DSC

REAT-G-HMRF 3 0.9994 0.8924 0.8602 0.8703
G-HMRF 7 0.7617 0.0145 1 0.0276

REAT-FRFCM 3 0.9994 0.9125 0.7989 0.8452
FRFCM 7 0.7397 0.0324 1 0.0482

REAT-RSSFCA 3 0.9994 0.8778 0.8702 0.8673
RSSFCA 7 0.9057 0.0099 0.9998 0.0189
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. The original image, the ground truth, and the target extraction results of 8 algorithms. (a) Original image.
(b) G-HMRF. (c) FRFCM. (d) RSSFCA. (e) R-AMRFCM. The areas where the target voxels are missing are marked by red
circles. (f) Ground truth. (g) REAT-G-HMRF. (h) REAT-FRFCM. (i) REAT-RSSFCA. (j) REAT-AMRFCM.
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Figure 7. The original SAR images and the target extraction results of 10 scenes (Form (A) to (J)). The original images and
the results are displayed in the maximum projection. Scene (A) and (B): the human with kitchen knife. Scene (C): a tomato
and a tiny metal ball (The targets are marked by the red boxes). Scene (D): a rifle and a knife (The rifle has two grating lobes
and the knife has one grating lobe). Scene (E): a metal bar and a pistol. Scene (F): a knife and a pistol. Scene (G): a hammer.
Scene (H): a mobile phone. Scene (I): a kitchen knife and its two grating lobes. Scene (J): a metal cup.

The evaluation results of REAT-AMRFCM and R-AMRFCM are shown in Table 2. The
accuracy, precision, recall, and DSC of REAT-AMRFCM are 0.9994, 0.9170, 0.7920, and
0.8432, respectively. The accuracy, precision, recall, and DSC of R-AMRFCM are 0.9988,
0.7879, 0.8187, and 0.7792, respectively. Compared with R-AMRFCM, REAT-AMRFCM
improves the accuracy, the precision, and the DSC by 0.006, 0.1291, and 0.0640. The recall of
REAT-AMRFCM is only 0.0267 lower than that of R-AMRFCM. DSC is the most important
criterion among the four criteria, and the DSC of REAT-AMRFCM is significantly higher
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than that of R-AMRFCM. Hence, the performance of REAT-AMRFCM is higher than that
of R-AMRFCM.

Table 2. Comparison of REAT-AMRFCM and R-AMRFCM. The bold number indicates the best
performance under one criterion.

Method Accuracy Precision Recall DSC

REAT-AMRFCM 0.9994 0.9170 0.7920 0.8432
R-AMRFCM 0.9988 0.7879 0.8187 0.7792

Consequently, the image analysis and evaluation results show that the proposed algo-
rithm effectively enhances the anti-interference ability of the existing image segmentation
methods. Moreover, the proposed algorithm has better performance and anti-interference
ability than the ROI extraction algorithm in the state of the art.

5.4. Analysis of Computational Efficiency

Computational efficiency is an important evaluation criterion. Therefore, we test the
time consumption of the above-mentioned algorithms to process the entire data set. The
time consumption of the original algorithms and the enhanced algorithms are shown in
Figure 8.

The orange bar represents the time consumption of the enhanced algorithms, and the
blue bar represents the time consumption of the original algorithms. The time consumption
of REAT-FRFCM is 12.96% lower than that of FRFCM. Although FRFCM has very high com-
putational efficiency, the proposed algorithm still considerably improves the computational
efficiency of FRFCM. The time consumption of REAT-G-HMRF is 96.64% lower than that
of G-HMRF; thus, the proposed algorithm greatly improves the computational efficiency of
G-HMRF. The time consumption of REAT-RSSFCA is 62.10% lower than that of RSSFCA, so
the proposed algorithm also greatly improves the calculation efficiency of RSSFCA. Hence,
the proposed algorithm causes a significant improvement in the calculation efficiency of
the existing image segmentation methods.
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Figure 8. The time consumption of the six algorithms on the whole data set. The orange bar represents
the time consumption of the enhanced algorithms. The blue bar represents the time consumption of
the original algorithms.

As shown in Table 3, the time consumption of REAT-AMRFCM and R-AMRFCM
are 9.2528 min and 11.8387 min, respectively. The time consumption of REAT-AMRFCM
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is 21.84% lower than that of R-AMRFCM. Therefore, the proposed algorithm has higher
computational efficiency than the ROI extraction algorithm in R-AMRFCM.

Table 3. The time consumption of REAT-AMRFCM and R-AMRFCM. The bold number indicates the
best performance under one criterion.

Algorithm Time Consumption (Minutes)

REAT-AMRFCM 9.2528
R-AMRFCM 11.8387

In summary, the proposed algorithm not only enhances the performance of the existing
image segmentation methods, but also enhances their computational efficiency. Moreover,
the performance and the computational efficiency of the proposed algorithm are higher
than those of the state-of-the-art algorithm.

6. Discussion
6.1. Algorithm Visualization

In this subsection, we show and discuss the results of several steps in the proposed
algorithm. An image containing the rifle in the data set is used to illustrate the proposed
algorithm. The 3-D SAR image with the size of 160 × 400 × 40 is divided into 40 profiles
with the size of 160 × 400 along the Z direction. The 16 profiles containing the target are
tiled into a 2-D image, which is shown in Figure 9. The saliency map, Figure 9b, shows
that the saliency detection algorithm effectively highlights the target area in the 3-D SAR
image. The original image and the saliency-enhanced image are shown in Figure 9a,c,
respectively. As shown by the red boxes in these two figures, the saliency enhancement
reduces the intensity of the background including interference. Figure 9d is the image
after anisotropic diffusion. Adaptive anisotropic diffusion filtering not only suppresses the
noise but also makes the boundary between the target and the background clear, which is
beneficial to the detection of the target edges. The extracted ROI is shown in Figure 9e. The
core region is marked by white, the buffer area is marked by yellow, and the ground truth
is marked by red. As shown in Figure 9e, the core region covers most of the target voxels.
Due to inaccurate edge detection, some target voxels are lost. The buffer area effectively
supplements the lost target voxels. Therefore, the extracted ROI almost completely covers
the ground truth.

6.2. The Integrity of the ROI

In this subsection, we will discuss the integrity of the ROI extracted by the proposed
algorithm and the role of the buffer area. The integrity of the ROI is defined as the ratio of
the target voxels in the ROI to the ground truth. τx and τy have the same value, and their
ranges are from 0 to 15. Due to the small size in the Z direction, τz is not discussed and
set to 0.

(
τx, τy, τz

)
= (0, 0, 0) indicates that the buffer area is not working. In addition, the

target extraction results of REAT-AMRFCM with different τx and τy are evaluated.
The evaluation results are shown in Table 4 and Figure 10. When the buffer area is not

in effect, the integrity of the target region reaches 94.38% and the DSC is 0.7690. When τx
and τy are set to 15, the integrity reaches 98.18% and the DSC is 0.8514. As the size of the
buffer area increases, the integrity and DSC continue to increase, and their growth rates
continue to decrease. So, when τx and τy are large enough, the growth of the buffer area
does not significantly improve the integrity. In summary, the introduction of the buffer area
effectively supplements the target region, and the ROI extracted by the proposed algorithm
almost completely covers the target region.
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(a)

(b)

(c)

(d)

(e)

Figure 9. The illustration of the proposed algorithm. (a) The original image. (b) The saliency map. (c) The saliency enhanced
image. (d) The image smoothed by the anisotropic diffusion method. (e) The extracted ROI.



Remote Sens. 2021, 13, 4308 19 of 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x
 & 

y

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

In
te

g
ri

ty

0.9438

0.9564

0.9617

0.9655

0.9688

0.9717

0.9736

0.9752

0.9767

0.9778

0.9788

0.9797
0.9803

0.9808
0.9814

0.9818

Figure 10. The relationship between the integrity of ROI extraction results and (τx, τy).

Table 4. The influence of (τx, τy) on region integrity and performance.

τ Integrity Accuracy Precision Recall DSC Time (Minutes)

0 0.9438 0.9992 0.9550 0.6592 0.7690 8.2515
1 0.9564 0.9993 0.9475 0.7015 0.7979 8.8571
2 0.9617 0.9993 0.9386 0.7349 0.8176 9.0589
3 0.9655 0.9994 0.9315 0.7571 0.8286 9.0809
4 0.9688 0.9994 0.9247 0.7726 0.8349 9.3438
5 0.9717 0.9994 0.9234 0.7814 0.8399 8.9220
6 0.9736 0.9994 0.9167 0.7921 0.8431 9.2528
7 0.9752 0.9994 0.9140 0.7979 0.8453 9.7222
8 0.9767 0.9994 0.9105 0.8028 0.8463 10.7494
9 0.9778 0.9994 0.9074 0.8074 0.8476 10.6927

10 0.9788 0.9994 0.9024 0.8155 0.8491 11.4448
11 0.9797 0.9994 0.9009 0.8181 0.8496 11.3717
12 0.9803 0.9994 0.8977 0.8209 0.8493 12.2933
13 0.9808 0.9994 0.8966 0.8242 0.8507 12.4019
14 0.9814 0.9994 0.8948 0.8266 0.8509 13.4230
15 0.9818 0.9994 0.8940 0.8284 0.8514 14.3674

7. Conclusions

This paper proposed a flexible ROI extraction algorithm with adaptive threshold to
enhance the anti-interference ability of existing image segmentation methods. The proposed
algorithm utilized the saliency detection algorithm based on spectral residual to achieve
image enhancement. The thresholds required by the anisotropic diffusion method and the
Canny edge detection method were adaptively calculated by the features of the original
image and the enhanced image. After the calculation of the thresholds, the anisotropic
diffusion method and the Canny edge detection method were used to smooth the image
and extract the target edges. The minimum bounding cuboids of the target edges detected
by the Canny method were considered the core region. The boundary of the core region
was expanded outward to obtain the complete ROI. The expanded buffer area reduced
the loss of target regions caused by inaccurate edge extraction, which was verified in the
discussion section. Moreover, the results of several steps were shown in the discussion
section to illustrate their role. The proposed algorithm was utilized to enhance three
existing image segmentation methods. The experimental results demonstrated that the
proposed algorithm effectively enhances the anti-interference ability and the computational
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efficiency of the existing image segmentation methods. In addition, we replaced the ROI
extraction part in R-AMRFCM with the proposed algorithm and named it REAT-AMRFCM.
The performance and the computational efficiency of REAT-AMRFCM were better than
those of R-AMRFCM.

For future work, we will explore image features more deeply to improve the anti-
interference ability and the extraction accuracy of the target extraction algorithm.
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