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Abstract: The accurate estimation of nearshore bathymetry is necessary for multiple aspects of
coastal research and practices. The traditional shipborne single-beam/multi-beam echo sounders
and Airborne LiDAR bathymetry (ALB) have a high cost, are inefficient, and have sparse coverage.
The Satellite-derived bathymetry (SDB) method has been proven to be a promising tool in obtaining
bathymetric data in shallow water. However, current empirical SDB methods for multispectral
imagery data usually rely on in situ depths as control points, severely limiting their spatial application.
This study proposed a satellite-derived bathymetry method without requiring a priori in situ data by
merging active and passive remote sensing (SDB-AP). It realizes rapid bathymetric mapping with
only satellite remotely sensed data, which greatly extends the spatial coverage and temporal scale.
First, seafloor photons were detected from the ICESat-2 raw photons based on an improved adaptive
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, which could
calculate the optimal detection parameters for seafloor photons by adaptive iteration. Then, the
bathymetry of the detected seafloor photons was corrected because of the refraction that occurs at the
air-water interface. Afterward, the outlier photons were removed by an outlier-removal algorithm to
improve the retrieval accuracy. Subsequently, the high spatial resolution (0.7 m) ICESat-2 derived
bathymetry data were gridded to match the Sentinel-2 data with a lower spatial resolution (10 m). All
of the ICESate-2 gridded data were randomly separated into two parts: 80% were employed to train
the empirical bathymetric model, and the remaining 20% were used to quantify the inversion accuracy.
Finally, after merging the ICESat-2 data and Sentinel-2 multispectral images, the bathymetric maps
over St. Thomas of the United States Virgin Islands, Acklins Island in the Bahamas, and Huaguang
Reef in the South China Sea were produced. The ICESat-2-derived results were compared against
in situ data over the St. Thomas area. The results showed that the estimated bathymetry reached
excellent inversion accuracy and the corresponding RMSE was 0.68 m. In addition, the RMSEs
between the SDB-AP estimated depths and the ICESat-2 bathymetry results of St. Thomas, Acklins
Island, and Huaguang Reef were 0.96 m, 0.91 m, and 0.94 m, respectively. Overall, the above results
indicate that the SDB-AP method is effective and feasible for different shallow water regions. It has
great potential for large-scale and long-term nearshore bathymetry in the future.

Keywords: bathymetry; LIDAR; Sentinel-2; ICESat-2; DBSCAN; outlier removal

1. Introduction

Acquiring detailed bathymetric and topographic information in coastal areas is one
of the challenges for both hydrology-related studies and water resource management.
High-resolution underwater topography data are a basic reference for a wide range of
coastal applications, such as hydrological investigation, nearshore protection, and marine
mineral resources exploitation. Conventionally, shipborne single-beam /multi-beam echo
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sounders and Airborne LiDAR bathymetry (ALB) are mainstream technologies used to col-
lect shallow coastal water data and deliver near-constantly underwater topographies [1-6].
However, the disadvantages of these two methods are obvious. They have a high cost, are
inefficient, and have sparse coverage [7-11].

Satellite-derived bathymetry (SDB) is a crucial alternative measurement used to map
coastal water bodies of the world. Traditional SDB methods in shallow water can be di-
vided into two methodological categories: empirical and physics-based [12]. SDB empirical
methods tend to model the radiative transformation in water to process optical images,
which are mainly discussed in this paper. SDB empirical methods were first associated with
multispectral imagery technology in 1978 [13]. Then, spaceborne multispectral sensors
(e.g., Sentinel-2 /Multispectral Instrument (MSI), LandSat-1/Multispectral Scanner (MSS),
and LandSat-8/Operational Land Imager (OLI)), which are typical passive remote sensing
techniques, have been widely used for bathymetry [14-20]. They can realize bathymetry
in optimal conditions (<30 m depth) [21]. However, empirical SDB methods using mul-
tispectral imagery technology generally rely on in situ depths as control points, or SDB
is independent of control data through complicated physics-based approaches to derive
bathymetric data [17,22]. Therefore, it is not feasible to obtain ground, shipborne, or
airborne-based measurement data in remote locations of the world. With the development
of photon-counting sensors, spaceborne photon-counting LiDARs show many advantages
of bathymetry mapping. In conjunction with passive multispectral measurements, space-
based LiDAR can provide complementary, vertical profiling for superior depth penetration
and vertical accuracy. The new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has
great potential to fill in this gap since it carries the Advanced Topographic Laser Altimeter
System (ATLAS)—the first Earth-orbiting laser that is capable of penetrating water at a
high resolution in the along-track direction [23].

The National Aeronautics and Space Administration (NASA) launched ICESat-2 on
15 September 2018. ATLAS operates at 532 nm and emits three pairs of beams spaced
3.3 km apart with a 90 m distance within pairs [24]. Each pair of beams consists of a strong
beam, and a weak beam based on a 4:1 transmit energy ratio, and each beam samples
with an interval of ~70 cm along the orbit and only has a ~14 m diameter footprint [25,26].
ICESat-2 has the advantage of global coverage, including areas where high-resolution or
up-to-date bathymetry is not available [27]. In addition, ATLAS can collect along-track
bathymetric points up to 40 m in depth in very clear water [23]. Therefore, the bathymetric
photon points from ICESat-2 can provide complementary datasets which work as in situ
depth control points on SDB empirical models.

ICESat-2 ATLAS penetrated the water as an active LIDAR and has been applied to the
expression of the Earth’s surface topography. ATLAS determined the surface slope on ice
sheets and tracked the evolution of a sea ice pack and freeboard in winter [28,29]. ICESat-2
makes considerable improvements, particularly the dense along-track sampling of the
surface, which helps obtain highly detailed bathymetry information in shallow water [30].
A method was proposed to estimate the temporal change in water levels and volumes
with Multiple Altimeter Beam Experimental LIDAR (MABEL) data [31]. MABEL served
as a technology demonstrator of ICESat-2 ATLAS. Based on the actual ICESat-2 data, an
adaptive variable ellipse filtering bathymetric method was proposed to precisely identify
and separate the photons in the above-water, water surface, and water-column regions [32].
Some studies have combined ICESat-2 ATLAS with passive remote sensing techniques
into bathymetry retrieval in recent years [33,34]. The ATLAS dataset could work as a
complementary dataset, which offers flexibility on bathymetry. According to the signal
characteristics of ATLAS, the clustering density method has been proven to be effective
for photon signal processing [35,36]. These studies have proved that this fusion method is
now feasible between satellite-based multispectral images and LiDAR data.

However, there are still some barriers to be solved. Due to the optical characteristics of
ATLAS, the raw photon data include a great deal of solar background noise photons, which
require the development of specialized onboard receiver algorithms that can distinguish
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signals containing surface returns from those consisting of pure noise [26]. Current methods
for valid photons detection partly rely on preview empirical parameters [35] and even
classify points manually [36], which cannot be used for batch data processing. In addition,
these methods could not overcome the limitations of large scales and different underwater
terrains. To address these problems, the adaptive methods for automated processing of the
ATLAS photon data are needed and need to be improved to achieve spatial coverage and
depth measurements.

In this study, a satellite-derived bathymetry method merging active and passive
remote sensing (SDB-AP) in shallow waters and coastal areas is proposed. It merges
both active (i.e., ICESat-2) and passive (i.e., Sentinel-2 satellite) satellite datasets and
applies an adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm, which greatly extended spatial coverage and bathymetric inversion accuracy.
First, we detected seafloor return photons from the ICESat-2 raw photons based on an
improved adaptive DBSCAN algorithm. Then, we corrected the detected seafloor photons
due to the refraction at the air-water interface. After, we applied a suitable outlier-removal
algorithm to remove outlier photons to improve the retrieval accuracy. We divided all of
the ICESate-2 seafloor signal photons randomly into two parts: 80% of gridded data as
control points were used to train the empirical bathymetric model, and the remaining 20%
as well as the in situ data collected by the NOAA'’s National Centers for Environmental
Information (NCEI) were used to quantify our inversion scheme’s accuracy. We produced
several bathymetric maps over St. Thomas, Acklins Island, and Huaguang Reef using
the empirical bathymetric model trained by merging the ICESat-2 data and the Sentinel-2
multispectral images. Finally, we evaluated and analyzed the performance of our method.

2. Study Areas and Data Sources
2.1. Study Areas

Three study regions with different topographic distributions were chosen to obtain the
satellite bathymetric map. The first region, named Saint Thomas (St. Thomas), as Figure 1a
shows, is the second-largest island of the US Virgin Islands in the eastern Caribbean Sea.
The district has a land area of about 83 km? [37]. The geographical location of this area is
between 18.26°~18.43°N and 64.80°~65.0°W. The Continuously Updated Digital Elevation
Model (CUDEM) obtained in December 2014 for the US coast developed by NCEI, was
used as in situ data to verify the performance of our bathymetric method in St. Thomas [38].
The second study region, as Figure 1b shows, was the surrounding waters around Acklins
Island and Long Cay in Southeastern Bahamas. The geographical location of this area is
between 22.10°~22.60°N and 73.90°~74.40°W. There is a lagoon between Acklins Island
and Long Cay. The bottom is mainly reef, sand, and stone. The third study region, as
Figure 1c shows, was the Huaguang Reef. Huaguang Reef is one of the main reefs of Xisha
Islands in the northwestern South China Sea, about 330 km away from Hainan Island. The
geographical location of this area is between 16.13°~16.28°N and 111.52°~111.86°E. There
are several coral reefs in the region. In all three sites, the in situ bathymetric data are not easy
to access to evaluate the empirical SDB model; therefore, we applied ICESat-2 bathymetric
photons to evaluate bathymetric maps based on SDB-AP. A total of 80% of the ICESat-2
bathymetric points were used to train the empirical model, and the remaining 20% were
used to verify the SDB-AP bathymetric result. In addition, we discuss Chen’s method [32]
along with our method; thus, we chose two sites (Shanhu Island and Nan Island) and the
corresponding ICESat-2 tracks (see Table 1). According to Chen’s definition, the photon
density of ICESat-2 track data on 2 February 2019, 24 May 2019, and 19 August 2019 are
low, medium, and high, respectively. Three types of ICESat-2 data with different density
distributions of photons can help to validate the accuracy of these DBSCAN algorithms.
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Figure 1. Overviews of three study areas: (a) Saint Thomas, US Virgin Islands—the background
satellite image belongs to Sentinel-2 acquired on 15 January 2019. All red lines correspond to the laser
trajectories of ICESat-2 on 22 November 2018, 10 February 2019, and 13 December 2020, respectively.
A total of 80% of the ICESat-2 bathymetric points were randomly used to train the empirical model,
and the remaining 20% as well as in situ data were used to verify the SDB-AP bathymetric result.
(b) Acklins Island—the satellite image in the background belongs to Sentinel-2 acquired on 27 January
2020. All red lines correspond to the laser trajectories of ICESat-2 on 12 November 2018, 11 February
2019, 12 March 2019, 3 June 2019, and 2 September 2019. 80% of the ICESat-2 bathymetric points
were used to train the empirical model, while the remaining 20% were used to verify the SDB-AP
bathymetric result. (¢) Huaguang Reef—the satellite image in the background belongs to Sentinel-2
acquired on 13 August 2019. All red lines correspond to the laser trajectories of the ICESat-2 on
22 October 2018, 22 February 2019, 21 April 2019, 19 April 2020, 19 July 2020, and 20 August 2020.
80% of the ICESat-2 bathymetric points were used to train the empirical model, while the remaining
20% were used to verify the SDB-AP bathymetric result.
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Table 1. Detailed information of the study areas and the ICESat-2 and Sentinel-2 datasets.

Site

St. Thomas

Acklins Island

Huaguang Reef

Shanhu Island

Nan Island

Location

ICESat-2
Tracks-beam

Sentinel-2

In situ Data

18.26°~18.43°N
64.80°~65.07°W

22.10°~22.60°N
73.90°~74.40°W

16.13°~16.28°N
111.52°~111.86°E

111.617°~111.618°N

16.534°~16.548°E

111.612°~111.614°N

16.529°~16.55°E

112.202°~112.333°N
16.956°~16.933°E

22 October
12 November 2018-GT1/2/3R
2018-GT1/2L 22 February
22 November 11 February 2019-GT1/2/3L
2018-GT1/2/3R 2019-GT1/2/3R 21 April
10 February 12 March 2019-GT1/2/3L 22 February 19 August
2019-GT1/2/3L 2019-GT1/2/3R 19 April 2019-GT3L 24 May 2019-GT2L 2019-GT1L
13 November 3 June 2020-GT1/2/3R
2020-GT1L 2019-GT1/2/3L 19 July
2 September 2020-GT1/2/3L
2019-GT2/3R 20 August
2020-GT1/2L
15 January 2019
1 March 2016
21 November 2018
21 March 2019 27 January 2020 13 August 2019 \ \ \
12 September 2019
4 April 2020
3 May 2021
9 Deé%n]gaEe;/[ 2014 \ \ \ \ \

2.2. ICESat-2 LiDAR Datasets

The first spaceborne photon-counting LiDAR ATLAS carried by ICESat-2 can provide
supplementary, vertical profiling for superior depth penetration and vertical accuracy.
ICESat-2 has been collecting data since 14 October 2018. Each captured photon has a
unique delta-time, latitude, longitude, and elevation based on the World Geodetic System
1984 (WGS84) ellipsoid datum. ICESat-2 has a set of data products, including the Global
Geolocated Photon Level 2A data product ATL03. ATLO3 is a large dataset comprising
latitude, longitude, and ellipsoidal height for every detected photon event. ICESat-2 photon
data we used in this study can be freely downloaded from the National Snow & Ice Data
Center website [39]. ATL03 data includes the height above the WGS84 datum (ITRF2014
reference frame) and in the universal transverse Mercator (UTM) [40].

In ATLO3 datasets, the “signal_conf_ph” parameter in the /gtx/heights group for each
beam refers to the confidence parameter provided to classify photons that are likely
surface-reflected signal photons and those that are likely background photons [41]. The
“signal_conf_ph” array has five values for each photon, corresponding to five surface
types (land, ocean, sea ice, land ice, and inland water). The specific values range from
4 to —2 [42]. The photon classification algorithm is histogram-based which may classify a
background photon incorrectly as a signal photon because of the false threshold. The higher
the confidence (from 0 to 4) means the higher possibility of the photons being a signal. It is
noticeable that the high confidence (4) photons do not include all signal photons, especially
seafloor signal photons. We also noticed that the confidence four photons were mostly the
signal from the objectives of high reflectivity, such as sea surface and land. To improve the
usage of this parameter, an adaptive DBSCAN algorithm was proposed to detect the signal
photons without detection radius and a threshold priori, and the confidence of the four
photons was used to help determine the positions of the sea surface in this algorithm.

2.3. Sentinel-2 Satellite Imagery

Sentinel-2 Level-1C (L1C) imagery products can be freely downloaded in SENTINEL-
SAFE format from the US Geological Survey website (USUG) [43]. All of the downloaded
L1C images are in the UTM/WGS84 projection, and they are orthophoto images after
geometric correction [44]. To reduce random errors caused by the atmosphere, we tried
to choose a total of three Sentinel-2 L1C images with less than 20% cloud coverage. De-
tailed information on all study areas and the ICESat-2 and Sentinel-2 datasets are shown
in Table 1.
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3. SDB-AP Method
3.1. Adaptive DBSCAN for ICESat-2 Signal Photon Detection

The DBSCAN algorithm has been proven to be a classic and efficient way to detect
ground and seafloor photons from photon-counting LiDAR signal returns [19,28]. In the
DBSCAN algorithm, when the density of adjacent points in radius & exceeds the threshold
(minpts), the points in the cluster are classified as signals; thus minpts and ¢ are the key
parameters [45]. Standard DBSCAN algorithms rely on preview empirical parameters of e
and minpts [35]. The determination of adaptive threshold minpts and e could be helpful
for automated batch processing and could improve the detection algorithm accuracy. An
improved adaptive DBSCAN algorithm for ICESat-2 signal photon detection was proposed
as follows, and detailed processing steps are provided in Appendix A.

First, we intercepted the underwater photons and rescaled the current along the track
axis to avoid calculation errors from rounding minpts. Then, we divided the dataset into
several segments. For each segment, we determined the instant sea surface height (SSH)
and calculated the average counts of seafloor signal and noise photons. After that, we
counted the noise-signal-dominated frames and noise-dominated frames. We calculated
the candidate ¢ dataset. According to the candidate € dataset, the average counts of seafloor
signal and noise photons and the average counts of noise photons could be computed, and
we obtained the candidate minpts dataset. Finally, we selected the optimal ¢, and minpts;
by iteration. Our adaptive DBSCAB codes were completed on the Python 3.9 platform. The
flowchart for the adaptive DBSCAN algorithm is shown in Figure 2.

3.2. Bathymetric Correction for Detected Seafloor Photons

ICESat-2 products do not consider the refraction and the corresponding change in
light speed at the air-water interface. This will produce horizontal and vertical errors
in the geolocation recorded in ATL03, resulting in the position being deeper than the
real measurement value and farther from the lowest point; thus, ICESat-2 ATLAS needs
appropriate refraction corrections.

The refraction correction method proposed by Parrish was applied [23]. The final
underwater return photon depth H could be expressed as follows:

H = Dep — AZ = Dep — (\/R2 + 52 — 2RS cos(6; — 92)> sin B (1)

where Dep is the uncorrected depth of the underwater photons detected by the adaptive
DBSCAN method, S is the slant range to the uncorrected bottom return photon location, R
is the corrected slant range, 6; is the angle of incidence, and 6, is the angle of refraction. In
Equation (1), B could be expressed as follows:

‘B _ E . 91 . Sil‘l_l Rsin(@l — 92) (2)
2 \/R?+ 52 —2RScos(6; — 6,)

3.3. Outlier Removal for Corrected Seafloor Photons

The purpose of outlier detection is to filter abnormal data in each dataset. In other
words, the main goal of outlier detection is to find outliers or noises markedly different
from or inconsistent with the normal instances. The corrected seafloor photon points still
contained a few noise photons [46]; therefore, we proposed an outlier-removal method for
seafloor photons as follows:

L. Wavelet filtering A hard threshold was optimally set according to the noise level
estimation of each layer of the wavelet decomposition.

II.  K-medoids classification The data were divided into three categories by the K-medoids
algorithm [47]. In the K-medoids algorithm, such a point would be selected from the
current cluster—the minimum sum of the distances from it to all other points (in the
current cluster)—as the center point, which allows the cluster size not to vary greatly.
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III.

IV.

Outlier removal along the geographic axis The data A were sorted along the ICESat-2
along-track first. For each category, the outliers were detected and eliminated using
scaled mean absolute difference MAD, and these outliers were eliminated with a
window size of 50. The outliers were defined as the elements that differ from the
median by more than three scaled MAD from the median in the window. MAD
could be expressed as follows:

MAD = ¢ x median(abs(A — median(A)) (3)

where ¢ = —1/(\/§ X erfcinv(3/2)).

Outlier removal along the depth axis The remaining data were then processed. The
outliers were defined as the elements more than three scaled MAD in data with the
window size of 100, and the recognized outliers were removed.

Here are three examples that present the outlier-removal results from the ICESat-

2-derived signal photons in Figure 3a—c. The light blue points correspond to the noise
photons, and the red points are seafloor photons after noise-outlier removal. It can be
noted that our algorithm cleared out most outlier points and reserved seafloor signal
photons efficiently.

Standard | DBSCAN Improved DBSCAN
S1. Intercepting S8. Calculating
underwater the candidate €
photons dataset
S2. Rescaling the S9. Calculating

the average
counts of seafloor

current along-
track axis

signal and noise

l

photons
$3. Dividing the !
dataset S10. Calculating

l the average
counts of noise

S4. Determing the photons

surface height S11. Calculating

l

the candidate

S5. Calculating
the average
counts of seafloor

|

4 ¢ S12. Selecting the
signal and noise optimal cluster
phoIons number
S6. Counting

S13. Selecting the

noise-signal- .
optimal £ value

dominated frames

l l

S7. Counting
noise-dominated
frames

S14. Processing
the next segments

\

\
\

\
\

|
\

\
\

\
\

\
\

\
\

\
\

|
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
| \

instant sea \ | l

! \
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

|
\

\
\

\
|

\
\

\
\

\
\

\
\

\

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
minpts dataset | |
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
J

Figure 2. The flowchart for the adaptive DBSCAN algorithm.
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Figure 3. Outlier-removal result based on our method with the noise photons (light blue) and the outlier-removal signal
photons (red): (a) St. Thomas site, (b) Acklins Island site, and (c) Huaguang Reef site.

3.4. Matching ICESat-2 Data to Sentinel-2 Images with Different Spatial Resolution

The spatial resolution of ICESat-2 and in situ depth data are higher than that of
Sentinel-2 image data, which means the depth value of each pixel of the Sentinel-2 bathy-
metric map may correspond to a great deal of high spatial resolution control points or in
situ points in the process of depth inversion. To solve this problem, it is necessary to reduce
the high-resolution data to the Sentinel-2 spatial resolution (10 m).

The ICESat-2 data with high spatial resolution were matched with the Sentinel-2 pixel
in the WGS-84 coordinate reference system, according to the same latitude and longitude
range, and the average value was obtained from the data corresponding to each pixel value
of Sentinel-2 data. During the averaging process, the Pauta criterion of the mean plus or
minus three standard deviations (SD) was utilized based on the characteristics of a normal
distribution for which 99.87% of the data appear within this range [48]. Therefore, each
mean depth corresponded to a Sentinel pixel, and the down-sampled dataset was used to
build the empirical model.

3.5. SDB Retrieval by Merging the Sentinel-2 Data with ICESat-2 Data
3.5.1. Atmosphere Correction

Before the application of the SDB empirical model, all the raw Sentinel-2 L1C prod-
ucts in study areas needed to be atmospherically corrected and conveyed to Level-2A
(L2A) products containing bottom-of-atmosphere (BOA) corrected reflectance [49]. The
Sentinel-2 Data Correction (Sen2Cor) version 2.9 was chosen for atmospheric correction [50].
Sen2Cor is a semi-empirical algorithm based on the Atmospheric and Topographic Cor-
rection (ATCOR) and can be applied over water surfaces. European Space Agency (ESA)
provides an offline version of the Sen2Cor to produce L2A data. The first step is cloud
detection and scene classification, followed by retrieving the Aerosol Optical Thickness
(AOT) and the Water Vapor (WV). Finally, Top-Of-Atmosphere (TOA) is converted to
Bottom-Of-Atmosphere (BOA) [51]. Considering the spatial resolution for each visible
band (B2—497 nm, B3—560 nm, and B4—665 nm), a spatial resolution of 10 m was used in
Sen2Cor processing. Thus far, the raw Sentinel-2 L1C image was converted to the processed
L2A image.

3.5.2. Spatial Operation

The L2A images needed a spatial operation to simplify our analysis and focus on the
region of interest (ROI). First, we resampled all bands to equal resolution. In the resampling,
we selected band B2 as the reference band. Then, we could create subsets of ROI in each
resampled L2A image.

3.5.3. Clouds, Whitecaps, and Land Pixels Mask

Masks were generated to remove clouds, whitecaps, and land pixels. The Near
Infrared (NIR) band is used to mask clouds, whitecaps, and most land pixels; since the NIR
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does not penetrate the water, the water seems darker, which helps to distinguish the water
from the things that look brighter. We used a user-set threshold value (0.05) of the NIR band
and created the mask with this threshold; by applying this mask to each band, we created
a masked image that only contains sea with original values and invalid value NaN for the
ocean and the others, respectively. For the land pixels mask, we downloaded a course Space
Shuttle Radar Topography Mission (SRTM) 5-min Digital Elevation Model [43], which can
determine whether the pixel is on land. Then, we created a new image so that all ocean
pixels would be preserved, and all land pixels would be set to NaN, and all Sentinel-2
images were projected to the same WGS-84 coordinate reference system before empirical
bathymetric inversion.

3.5.4. Empirical SDB Retrieval

Finally, the ratio model was conducted to calculate seafloor depths using the depth
control points from ICESat-2-derived bathymetry described in Section 3.3. The ratio model
is expressed as follows:

In(nRy (A7)

M (iR (1))

— my (4)
where Z is the estimated depth, m; is a tunable constant to scale the ratio to depth, nis a
fixed constant for all areas (usually 1000), Ry, is the reflectance of water for bands 7 or j,
and my is the offset for a depth of 0 m (Z = 0). mg and m; were calculated by regression
using the depth control points from ICESat-2 derived bathymetry.

The flowchart of the SDB-AP method is shown in Figure 4. The whole SDB-AP codes
and partly ICESat-2 bathymetry data are available online in Supplementary Materials.
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Figure 4. The flowchart of the SDB-AP.
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4. Results
4.1. Bathymetric Retrieval by ICESat-2 Data

Based on our proposed algorithm in Sections 3.1 and 3.2, the ICESat-2 signal photons
were detected. Figure 5 provides ICESat-2 ground trajectory images, and corresponding
detected elevation profiles over the St. Thomas site, Acklins Island site, and Huaguang
reef site. Figure 5a,c,e demonstrates the enlarged satellite image and the sampled areas
corresponding to the green box. Figure 5b,d,f illustrates the detected ICESat-2 underwater
photons with and without refraction correction.
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Figure 5. Enlarged satellite images and profiles of geolocated photon returns over three study sites: (a,b) St. Thomas on
21 February 2019; (c,d) Acklins Island on 3 June 2019; (e f) Huaguang Reef on 22 February 2019; bathymetric retrieval by
ICESat-2 data over the St. Thomas site with the detected seafloor signal photons (red), the corrected seafloor photons from
our detected result photons(orange), the detected sea surface (dark blue), and the noise photons (light blue).

Figure 5a shows that ICESat-2 flew over this area at the local time of 01:43:18 on
21 February 2019. from north to south. The satellite first flew over a shallow water region
and then went over a deep underwater terrain and quickly back to a shallow area. In
Figure 5b, significant seafloor signal photons were detected by ICESat-2 in accordance with
underwater topography. For each laser shot, the refraction effect in the water column was
corrected by the equations in Section 3.2. The maximum profile of the refraction-corrected
bottom return photons was about ~70 m, while ICESat-2 detected seafloor signal photons
nearly reached ~80 m. Therefore, without the refraction correction in vertical elevation, the
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(a)

same water level errors influence the bathymetry results. The maximum bathymetric depth
over St. Thomas was larger than that over the other two sites. Figure 5c shows that ICESat-2
flew over this area at the local time of 09:17:25 on 13 June 2019, from south to north. The
trajectory was over two land margins of Long Cay. In Figure 5d, it is noticeable that our
DBSCAN results matched well with underwater topography, and even the seafloor details
were scanned accurately. The maximum refraction-corrected return photons were up to the
water depth of ~20 m. Figure 5e shows that ICESat-2 flew over this area at the local time
of 13:51:59 on 22 February 2019, from north to south. The satellite passed by a part of a
reef and then went to a deep-water area. In Figure 5f, our DBSCAN results were consistent
with underwater topography, and the maximum refraction-corrected return photon depth
was ~8 m. The maximum bathymetric depth over Huaguang Reef was the smallest.

4.2. Bathymetric Retrieval by the SDB-AP

Figure 6a—c shows the bathymetric maps over the St. Thomas site, Acklins Island
site, and Huaguang Reef site based on the SDB-AP. Over the St. Thomas site, the blank
area is the land masked by the course SRTM 5-min DEM. The maximum and minimum
bathymetric depths were 34.79 m and 2.29 m in Figure 6a, respectively. The water depth in
the north was shallower than that in the south, and the coastal water depth was shallow.
The average depth was 18.83 m in total. Over the Acklins Island site, we present a bay
within the depth of 5 m, where the average bathymetric depth was 2.83 m. From west
to east, the bathymetric depths presented a fluctuating state, and the margin of the area
was towards the deep water in Figure 6b. The maximum bathymetric depth was 9.87 m.
Over the Huaguang Reef site in Figure 6c, which is a submerged reef in the South China
Ocean, the maximum, minimum, and average bathymetric depths were 13.88 m, 0.37 m,
and 3.08 m, respectively.
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Figure 6. SDB-AP derived-bathymetric maps and error scatter plots of SDB-AP estimated depths vs. ICESat-2 bathymetric

depths: (a) derived bathymetric maps in the St. Thomas site, (b) derived bathymetric maps in the Acklins Island site,

(c) derived bathymetric maps in the Huaguang Reef site, (d) error scatter plots in St. Thomas site, (e) error scatter plots in

the Acklins Island site, and (f) error scatter plots in the Huaguang Reef site. The red line is the 1:1 line, while the blue line

represents the regression line. N is the number of the training gridded bathymetric points from ICESat-2, and the regression

equation details are shown in the top-left corner.
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4.3. Validation

For all study sites, 80% of the detected ICESat-2 derived bathymetric photon points
were used as model-training points, and the remaining 20% were used to validate the
method’s validation accuracy. The in situ data over the St. Thomas site were also employed
to quantify the performance of SDB-AP. In the following error scatter plots, the red line is
the 1:1 line, and the blue line represents the regression line. N is the number of the training
gridded bathymetric points from ICESat-2, and the regression equation, R?, and RMSE
details are also shown in the figures.

In Figure 7, the ICESat-2-derived bathymetric depths matched well with the in situ
data over St. Thomas, with a good agreement of R? = 0.9951 and a low standard Root Mean
Squared Error (RMSE) at 0.68 m, which proves that our adaptive DBSCAN and outlier-
removal algorithm are effective. For SDB-AP-estimated depths and the in situ data over St.
Thomas, R? was 0.93, and the RMSE was 1.91 m, as shown in Figure 8. Compared with
the ICESat-2-derived bathymetric depths, the bathymetric accuracy of SDB-AP estimated
depth decreases due to the error accumulation effects, including the ICESat-2 inversion
error, the spatial matching error between ICESat-2 and Sentinel data, the Sentinel image
process error, the empirical SDB model error, etc. Among them, the empirical SDB model
error is the main error source; generally, the error for the empirical SDB model is about
2m [15,17,18,20]. Figure 6d—f shows the performance of SDB-AP estimated depths when
the ICESat-2-derived bathymetric points were used as testing data in the three study areas.
The R? in St. Thomas site reached the top (R? = 0.96), followed by that in the Huaguang
Reef site and Acklins Island site, 0.94 and 0.91, respectively. All RMSEs in the St. Thomas
site, Acklins Island site, and Huaguang Reef site were less than 10% of the maximum
depths, and the smallest RMSE was in the Acklins Island site with the value of 0.27 m.

Figure 9a—c illustrates the error scatter plots in different depth ranges over St. Thomas.
The horizontal axis and the vertical axis in Figure 9a—f are the SDB-AP estimated depths
versus the ICESat-2 bathymetric estimated depth and the SDB-AP estimated depth versus
the in situ depth, respectively. In Figure 9a—c, the trend of scattered points was visually
linear at a depth of 0-10 m, started to diverge when the water depth was between 10 and
20 m, and finally dispersed over 20 m. The same trend could be noticed in Figure 9df.
Tables 2 and 3 present the error analysis in different depth ranges. Table 2 corresponds to
the information for Figure 9a—c, and Table 3 corresponds to the information for Figure 9d-f.
It appears that the N, RMSEs and Mean Absolute Error (MAEs) rose with the increase in
water depth, while the R? fell, which revealed that there were large errors in deep water
(>20 m) and that the SDB is more feasible for shallow water within a depth of 10 m.
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Figure 7. Error scatter plot: ICESat-2 bathymetric depths vs. in situ depths over St. Thomas. The red
line is the 1:1 line, while the blue line represents the regression line. N is the number of the training
gridded bathymetric points from ICESat-2, and the regression equation details are shown in the
top-left corner.
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Figure 9. Error scatter plots in different depth ranges over St. Thomas: (a-c) ICESat-2 bathymetric depths vs. in situ depths;

(d—f) SDB-AP depths vs. ICESat-2 bathymetric depths.

Table 2. Error analysis in different depth ranges: ICESat-2 bathymetric depths vs. SDB-AP depths.

Depth (m) N R? RMSE (m) Bias (m) MAE (m)
0-10 382 0.9035 0.9548 0.1039 0.5397
10-20 246 0.7951 2.2463 —1.0138 1.9493
20-30 420 0.4281 2.5499 —0.8490 2.2155
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Table 3. Error analysis in different depth ranges: SDB-AP depths vs. in situ depths.
Depth (m) N R2 RMSE (m) Bias (m) MAE (m)
0-10 199 0.82516 1.2259 0.3846 1.0195
10-20 331 0.8260 1.8768 —0.8994 1.6265
20-30 461 0.4697 2.4056 —0.7402 2.08725

4.4. Comparison between Adaptive DBSCAN and Standard DBSCAN

Figure 10a,b shows the results of the detected ICESat-2 signal photons based on our
algorithm and the standard DBSCAN algorithm. Retrieval by both methods followed
the underwater terrain. However, the result of the standard DBSCAN with fixed ¢ and
Minpts reserved plenty of noisy photons near the sea surface compared with our adaptive
DBSCAN algorithm. This may be because the photon density in deep water is much higher
than that in shallow water; hence, the DBSCAN with fixed e and Minpts is suitable for deep
water while retaining many noise photons in the high-density sea surface. Figure 11a,b
shows the outlier-removal results over the St. Thomas site based on the two methods. The
seafloor return photons are light blue, and the outlier-removal signal photons are red. The
results showed that our outlier removal algorithm removed most noisy photons near the
sea surface, while there were still some outliers by the standard method in Figure 11b,
which would reduce water depth estimation accuracy. In Figure 11a, the most outlier
photons were clearly eliminated.
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Figure 10. Comparison of the detected ICESat-2 signal photons based on our method and standard DBSCAN method on
12 December 2020: (a) adaptive DBSCAN; (b) standard DBSCAN with fixed € and Minpts.
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Figure 11. Outlier removal results over St. Thomas site: the bottom return photons (light blue), the outlier-removal signal
photons (red). (a) adaptive DBSCAN; (b) standard DBSCAN with fixed e and minpts detection results.
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After outlier removal, we used the gridded ICESat-2 bathymetric photon points
as model-training data to train the band ration model. Figure Alab in Appendix A
corresponds to the bathymetric maps derived from the data by our adaptive DBSCAN
algorithm and the standard DBSCAN algorithm, respectively. Figure Alc shows the
bathymetric map with the in situ data. The dark grey line means the trajectory of ICESat-2
on 13 December 2020 in Figure A1l. The trend of the water depth in Figure Ala is consistent
with that in Figure Alc. The average water depth found using our method in Figure Ala
was 12.68 m, which is close to the in situ with an average depth of 13.98 m in Figure Alc.
The estimated water depths in Figure Alb (with an average water depth of 10.22 m) were
shallower than the in situ water depths. The derived bathymetric map created using
our adaptive DBSCAN algorithm was generally well derived. Moreover, the maximum
bathymetric depth in Figure Alb was only 13.25 m, which is far shallower than in situ with
18 m. Figure A2a,b in Appendix A shows the error scatter plots using the two DBSCAN
methods over the St. Thomas site. The results derived by our adaptive DBSCAN algorithm
showed that the R? was 0.96 and that the RMSE was 1.14 m, indicating that our algorithm is
consistent with the in situ data. However, for the results derived by the standard DBSCAN
algorithm, the R? was 0.94, and the RMSE was 1.94 m.

5. Discussion
5.1. Impact of Outlier Removal on Bathymetry Accuracy

As shown above, although the adaptive DBSCAN algorithm could track the under-
water terrain well, there were still some noise photons remaining near the sea surface and
seafloor signals. To verify the influence of these noise outliers for overall bathymetry accu-
racy, we generated the bathymetric maps at the St. Thomas site without outlier removal in
Figure A3a in Appendix A. To compare the results, bathymetric maps for the same location
obtained from the SDB-AP method and the in situ data were also generated (Figure A3b,c).
The estimated water depth in Figure A3a was much shallower than in the other two maps.
In addition, it could be noticed that depths in shallow water (2-5 m) were close to the in
situ data. The large differences are likely that the outlier photons near sea surface introduce
errors for the bathymetry inversion of deep water. Figure A4a—c in Appendix A shows the
error scatter plots based on different methods without using the outlier-removal process.
They showed that the estimation result stayed away from in situ values without using the
outlier removal method, and the RMSEs without outlier removal were 13.90 m, 11.87 m,
and 8.73 m, which revealed that the outlier-removal method is significant for SDB.

5.2. Stability of SDB-AP

To verify the stability of our method, we downloaded six Sentinel-2 images on 1 March
2016, 21 November 2016, 21 March 2019, 12 September 2019, 4 April 2020, and 3 May 2021
and retrieved the bathymetric maps over St. Thomas Island using the SDB-AP method.
Figure A5a—f in Appendix A shows the six error scatter plots. Over these six dates, the
result on 12 September 2019 illustrated the best fitness with in situ data with an R? of 0.94
and an RMSE of 1.88 m, while the result on 1 March 2016 was relatively the worst, with an
R? of 0.91 and an RMSE of 2.06 m. It should be noted that the deviation between different
dates may be caused by many reasons, such as satellite remote-sensing reflection difference
or the tide [52-54]. For each date, the R and RMSEs were also calculated and shown in
the top-left corners. The mean R? was 0.93, and the mean RMSE was 2.00 m, which is less
than 10% of the maximum depth. These key regression equation parameters mean great
temporal consistency of SDB-AP over different dates.

5.3. Comparison with an Adaptive Variable Ellipse Filtering Bathymetric Method

As we mentioned above, several great DBSCAN algorithms for ICESat-2 photon
detection were proposed. For comparison, we selected a similar method named Adaptive
Variable Ellipse-Filtering Bathymetric Method (AVEBM) proposed by Chen [32]. AVEBM
can precisely identify and separate photons in the above-water, water surface, and water-
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column regions, and it is based on the characteristics and changes in the density distribution
of water-column photons with increasing water depth.

Figure A6a—i in Appendix A shows the ICESat-2 photon detection results based on
our adaptive DBSCAN algorithm, AVEBM, and the standard DBSCAN algorithm on
2 February 2019, 24 May 2019, and 19 August 2019. The detected seafloor signal photons
are red, the detected sea surface is dark blue, and the noise photons are light blue.

As for the three photons in different regions, the detection results indicated that our
adaptive DBSCAN algorithm and the AVEBM could extract seafloor photons accurately.
Compared with the other two methods, the standard DBSCAN had the worst detection
performance: it ignored minor photons at the end of the underwater topography for
low-density data and counted too many background noisy photons for medium- and
high-density data.

One of the reasons why our adaptive DBSCAN algorithm could obtain similar results
to AVEBM is that we rescaled the current along-track axis according to Equation (2) before
density clustering, which increases the detection accuracy of the photon signal using
DBSCAN. However, for medium- and high-density photon data, there were still some
noise photons remaining along the seafloor signal and sea surface signal in the results
from our adaptive DBSCAN. They could be deleted in outlier-removal steps. It was
also noticed that there was some small discontinuity in the detected sea-surface signal
photons in the results using our adaptive DBSCAN and the AVEBM due to spatial photon
distribution change.

5.4. Comparison with Different Methods Deriving Bathymetry from Sentinel-2

In recent research, several approaches have been applied to estimate bathymetry
from Sentinel-2, such as extraction wave propagation information or deep learning [55,56].
Deep learning could identify features in satellite images. A deep learning method named
Deep Single-Point Estimation of Bathymetry (DSPEB) was proposed [56] and used a
convolutional neural network to estimate the average depth of individual local areas. Since
this method processes a single small sub-tile at a time, it has demonstrated impressive
capabilities for its applicability to many coastal areas. Here, a simple comparison was
needed to develop and quantify the performance of classic models and the deep learning
method deriving bathymetry from Sentinel-2.

Therefore, we utilized the Neural Clustering tool in MATLAB 2020B to compare the
performance of bathymetry estimation of classic models and deep learning. We first defined
a 10-layer network. The ICESat-2 corrected seafloor detection results and corresponding
above-water surface remote sensing reflectance at the blue and green band from Sentinel-2
images which were used to train the network. The trained network was applied to derive
a bathymetric map over the St. Thomas site. Another classic linear model [13] was also
applied to generate the bathymetric map over St. Thomas.

Figure A7a,b in Appendix A shows two bathymetric maps derived from Sentinel-2
using the linear model and deep learning method over the St. Thomas site. The maximum
bathymetric depths were 31.02 m and 33.23 m in Figure A7a,b. The trend of the linear
model results in Figure A7a was similar to that in Figure 6a using the band ratio model,
and its average bathymetric depth was 19.23 m. It is clear that the map using the deep
learning method presents a deeper bathymetric result in the edges of the selected field with
an average depth of 22.88 m.

To compare the performance of the linear band model and deep learning with the
band ratio model over St. Thomas, Tables 4 and Al in Appendix A list the detailed error
analysis in different depth ranges using two methods. Comparing Tables 2 and Al in
Appendix A, the linear model and the band ratio model had approximate accuracy in the
St. Thomas site. In addition, both mathematical models had poor inversion accuracy in
deep water. In Table 4, it should be noted the result using the deep learning method had
the best bathymetric accuracy in terms of R?. The reason for this may be that the location of
points for the error analysis corresponds to the location of points used to train the network.
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In terms of the RMSE, the deep-learning method had a worse accuracy at 0-10 m, and
the reason may be that there were insufficient training points. However, it had better
performance in the water depth range of 10 to 30 m. In future research, the deep-learning
method is superior for deep-water bathymetry.

Table 4. Error analysis in different depth ranges: deep learning bathymetric depths vs. in situ depths.

Depth (m) N R? RMSE (m) Bias (m) MAE (m)
0-10 289 0.8073 1.3980 0.4948 1.1408
10-20 377 0.8293 1.6895 1.1531 1.4291
20-30 461 0.4406 2.1800 0.5675 1.8222
0-30 1127 0.9425 2.0068 0.8560 1.6428

6. Conclusions

In this study, we proposed a satellite-derived bathymetry method by merging active
and passive remote sensing in shallow waters and coastal areas. The results showed
that the ICESat-2 bathymetric photons reached excellent accuracy with in situ data, and
the corresponding RMSE was only 0.99 m. Moreover, the accuracy between the SDB-
AP estimated depths and in situ data was also good, and the RMSE was 0.93 m. The
RMSEs between the SDB-AP estimated depths and the ICESat-2 bathymetry results over St.
Thomas, Acklins Island, and Huaguang Reef were 0.96 m, 0.91 m, and 0.94 m, respectively.
This reveals that the SDB-AP method is feasible and efficient. In addition, an adaptive
DBSCAN algorithm for raw ICESat-2 photon detection was proposed to adjust the optimal
parameters in different underwater topographies. Compared with the standard DBSCAN
method, the applied algorithm improved the ICESat-2 bathymetric accuracy and has
extended its scope of application. The algorithm showed that the estimation result stays
away from in situ values without using the outlier-removal method, revealing that the
outlier-removal method is significant for SDB. A suitable outlier removal algorithm was
proposed to remove the outlier photons points for the detected ICESat-2 seafloor photons
here, which could improve clustering accuracy. The accuracy of SDB-AP was mainly
limited to the empirical SDB model error. Further investigation is needed to validate the
SDB-AP method in various regions, and the machine learning method is worthy of more
investigation for seafloor photon detection and bathymetry retrieval in the future.

Supplementary Materials: The SDB-AP codes and the filtered and corrected ICESat-2 bathymetry
tracks are available online at https:/ /github.com/soedchen/SDB/tree/bathymetry-tracks.
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Appendix A

Processing steps of the Adaptive DBSCAN for ICESat-2 Signal Photon Detection are
as follows:
S1. Intercepting underwater photons
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As mentioned above, ATLAS can collect along-track bathymetric points up to 40 m
in depth in very clear water. Before the following processes, the raw ICESat-2 ATL03
data should be intercepted roughly in the vertical direction, including the seafloor, sea
surface, and land returns. Its vertical distance range is with [yin, Ymax], Where ¥y,
and Yy are the chosen minimum elevation and the maximum elevation, respectively
(Ymax — Ymin = Yawin < 40).

52. Rescaling the current along-track axis

The along-track spanning distance in this data segment is x,;,, and xy;, could be
described as follows:

Xwin = Xmax — Xmin (A1)

where x,,;, and X, are the minimum value and the maximum value of the current
along-track axis, respectively.

As the order of magnitude x,;;, and v, differed greatly, to avoid the calculation error
of rounding minpts, the along-track axis is divided t; times

t = (xmax - xmin)/<ymax - ymin) = Xwin /yzuin (A2)

53. Dividing the dataset

The ATLO3 raw data photon datasets are divided into several segments for processing.
Every continuous N (usually 5000) points along the along-track direction are a dataset D.

54. Determining the instant sea surface height (SSH)

The “signal_conf_ph” parameters in the ICESat-2 ALT03 data are also introduced. The
photons with confidence level of 4 are divided into different bins with a resolution of 0.1 m
in the vertical direction. The largest bin would be considered the bin containing the sea
surface. We took the median value of this bin as the elevation of sea surface height S, in
the WGS84 ellipsoidal height.

For the sea surface photon accumulation, S, and S, are the upper and lower layers
of the sea surface photon, respectively. S;,, and Sy, could be set as follows:

Sup = Ssup +1 (A3)

Sdown = Ssuf -1 (A4)

S5. Calculating the average counts of seafloor signal and noise photons -
The sea surface photons above S, are eliminated. The average number pho of
seafloor signal and noise photons is calculated as follows:

Ni

Pho = — Mt
P (Sdown - ]/min)

(A5)
where N is the number of remaining total photons after eliminating the photons above S,y

56. Counting noise-signal-dominated frames

For each dataset, the original photons are divided into M frames in the vertical
direction, and the height of each frame in the vertical elevation direction is / (usually 5 or
10 m). If the number of photons in the photon number in the current frame are bigger than
pho, the current frame is considered as controlling by both noise and signal photons. The
photons numbers of these frames are Nj in total, and the number of these vertical frames
is M1~

57. Counting noise-dominated frames

If the number of photons in the photon number in the current frame is smaller than
pho, the current vertical frame is considered controlled by noise photons. The photons
numbers of these frames are N, in total. The number of these vertical frames is as follows:

My =M— M, (A6)

S8. Calculating the candidate ¢ dataset
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The candidate dataset ¢ of dataset D were obtained as follows:

1.  Compute the Euclidean distance matrix Disty« y from i to j for all points in dataset D.
Distyxn = {dist(i,j) | I<i< N,1<j< N} (A7)

2. Sort each row element in the distance matrix Dist;x, in ascending order. The first
column of matrix Disty n represents the distance from the object to itself and the ele-
ments in column k constitute the K-nearest neighbor distance vector D of all points.

3. Calculate the vector Dy mean value D;. Calculate all k (k=1,2,...,N) to obtain
candidate radius dataset D, which is expressed as follows:

De={e, =Dy |1<k<N} (A8)

The values of the candidate ¢ dataset less than 0.4 would be eliminated.

59. Calculating the average counts of seafloor signal and noise photons

For each radius ¢, the average number of seafloor signal and noise photon N, in the
circular region is expressed as follows:

2. M
Ngp = p1- S = meg, Tt M (A9)

where S is the area of this circular region with radius g. p; is the number of seafloor signal
and noise photons per unit area, and xy,;,” is the reduced along-track spanning distance in
this data segment.

510. Calculating the average counts of noise photons

The average number N,, of noise photons in the circular region with radius ¢, was
expressed as follows:

N,
Npo = 02 - S = 7€} - - 2 (A10)

win' M2
where p; is the number of noise photons per unit area.
S11. Calculating the candidate minpts dataset
As the definition of optimum noise threshold [57], the minpts; corresponding to &j
could be expressed as:

N; + In(M) _ round((NS" — Npo) + In(M)

Tn(Na/Np) 7 (Now / Now) )'1 sks N} (A1)

Dypts = {minptsk =

where N; is signal counts, N is the noise counts per frame; and N; = N; + Nj, is the total
mean photoelectron count, equal to the sum of the mean signal Ns; and noise counts Nj,.
The function round( ) rounds values to the nearest integer.

512. Selecting the optimal cluster number

Looping through k values: the g, and minpts; with different k values are input into the
DBSCAN algorithm to cluster the dataset D, and the numbers of clusters corresponding
to k are generated and recorded under different k values. When the number of generated
clusters are the same three times in succession, the clustering results are judged to be stable,
and the current cluster number Ny, is the optimal number.

513. Selecting the optimal k value

512 is repeated until the number of generated clusters is no longer N, the maximum
k value k, is selected as the optimal value and ¢;, and minptsy are the optimal parameters
for DBSCAN. Then, input the optimal parameters into the DBSCAN calculator to calculate
the current segment results.

514. Processing the next data segments

Repeat S4-13 until all data segments are processed.
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Figure Al. Sentinel-2 bathymetric maps over the St. Thomas site: (a) our adaptive DBSCAN, (b) standard DBSCAN,
(c) in situ. The dark grey line corresponds to the trajectory of ICESat-2 on 13 December 2020.
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Figure A2. Error scatter plots near the St. Thomas sites: (a) adaptive DBSCAN; (b) standard DBSCAN. The red line is the
1:1 line, while the blue line represents the regression line. N is the number of the training gridded bathymetric points from
ICESat-2, and the regression equation details are shown in the top-left corner.
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64°W
58.14'

Figure A3. Bathymetric maps over the St. Thomas site: (a) Sentinel-2 inversion result without outlier
removal, (b) Sentinel-2 inversion result with SDB-AP method, (c) in situ data.
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Figure A4. Error scatter plots for different bathymetry estimation methods over St. Thomas without using the outlier-
removal method: (a) ICESat-2 bathymetric estimated depths vs. in situ depths, (b) SDB-AP estimated depths vs. in situ
depths, (c) SDB-AP estimated depths vs. ICESat-2 bathymetric estimated depths. The red line is the 1:1 line, while the
blue line represents the regression line. N is the number of the training gridded bathymetric points from ICESat-2, and the
regression equation details are shown in the lower-right corner.
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Figure A5. Error scatter plots on different dates over St. Thomas: (a) 1 March 2016, (b) 21 November 2016, (c) 21 March 2019,
(d) 12 September 2019, (e) 4 April 2020, (f) 3 May 2021.
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Figure A6. Comparison of the detected ICESat-2 signal photons based on our method, AVEBM, and the standard DBSCAN
method on different dates: (a,d,g) adaptive DBSCAN on 22 February 2019, 24 May 2019, and 19 August 2019, respectively;
(b,e,h) AVEBM on 22 February 2019, 24 May 2019, and 19 August 2019, respectively; and (c,f,i) standard DBSCAN with
fixed € =1 mand Minpts = 5 on 22 February 2019, 24 May 2019, and 19 August 2019, respectively.
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(a)

(b)

Figure A7. Bathymetric maps derived from Sentinel-2 using different methods: (a) linear model and

(b) deep-learning method.

Table Al. Error analysis in different depth ranges: Linear model bathymetric depths vs. in

situ depths.

Depth (m) N R? RMSE (m) Bias (m) MAE (m)
0-10 244 0.8935 1.0700 —-0.1171 0.5233
10-20 452 0.8125 2.6690 —1.6661 2.3869
20-30 541 0.4132 2.2092 —0.4535 1.8305
0-30 1237 0.9225 2.0187 —0.3298 1.9875
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