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Abstract: The angular position measurement of an array antenna based on a wireless signal has high
accuracy in an indoor no-occlusion environment. However, due to the high complexity of indoor
environments, signal occlusion, multipath, and other interfering factors are inevitable when users
move randomly, which can greatly reduce the positioning accuracy. In addition, different directions
of the positioning source signal can also affect the positioning result. The switching wheels of the
dual-polarization antenna array are collected in channel 1, the fast Fourier transform (FFT) is applied
to the data of channel 2 to estimate the frequency offset, and the phase of the data is compensated.
Using the FFT frequency offset estimation, the high-precision positioning of a single base station
is realized using the dual-channel switch and dual-polarization antenna array in turn. Aiming at
analyzing the affecting factors of the positioning system accuracy, the strong tracking kalman filter
algorithm is studied. At the same time, the singular value decomposition of the covariance matrix is
performed to improve the robustness of the strong tracking kalman filter, and the adaptive factor is
introduced to improve the filtering accuracy. The proposed positioning algorithm can achieve the
positioning accuracy within 1 m in the coverage area in a line-of-sight (LOS) environment, while
the dynamic positioning accuracy within 1 m cannot be guaranteed in the coverage area in a non-
line-of-sight (NLOS) environment. On this basis, the analysis of the static, rotational, and dynamic
positioning accuracies of the source in the LOS and NLOS environments shows that the proposed
singular value decomposition strong tracking kalman filter (SVD-STKF) algorithm can improve the
overall positioning accuracy of the system by 0.03 m, and the maximum error in the LOS environment
can be reduced by 0.08 m. The proposed SVD-STKF algorithm can correct the Hausdorff distance
of dynamic positioning by up to 0.513 m in the NLOS environment where the system’s positioning
accuracy decreases sharply due to the signal shielding. Also, it can make the positioning results
smoother and achieve a good correction effect for the points far away from the true trajectory.

Keywords: indoor localization; angular orientation; strong tracking kalman filter; array antenna;
singular value decomposition

1. Introduction

With the continuous development of satellite communication and navigation, mobile
Internet, and artificial intelligence technology, the demand for navigation and positioning
technology has been growing rapidly [1]. High-precision positioning has become increas-
ingly important in many fields. The acquisition of high-precision positioning has brought
great convenience to people’s lives. The Global Navigation Satellite System (GNSS) can pro-
vide users with high-accuracy real-time positioning services in outdoor environments [2],
but its indoor positioning precision can meet the needs of people’s daily lives. The GNSS
has been widely used in transportation, agriculture, business, and other industries. Many
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studies have demonstrated that most of people’s activity areas are indoors. Different indoor
environments, such as large shopping malls, airports, and stations, require efficient flow
monitoring and dynamic analysis means. Also, many special types of work, such as mines
and high-rise buildings, need to locate internal personnel accurately in real-time, especially
in an emergency. Furthermore, medical and nursing institutions require locating nursing
objects in real-time to maximize the rescue time to provide the most timely medical services.
In recent years, there have been numerous efforts to use the basic features of acoustics [3],
light [4], electricity [5–9], magnetic field [10], and force [11] in different fields, including
detection, to obtain the parameters associated with indoor positioning. However, due to
the indoor environment’s complexity, the proposed indoor positioning technology and
methods have not been enough mature and perfect [12], lacking the performance of high
precision, low cost, and easy deployment of an indoor positioning environment. An indoor
positioning method of low cost, wide coverage, low power consumption, high precision,
and easy deployment is urgently needed.

Wireless signal indoor positioning technology can be divided into categories of sig-
nal feature matching, time measurement, and angle measurement according to signal
parameter measurement methods. Signal feature matching is mainly based on using the
measured signal strength or channel status information (i.e., RSS or CSI) to establish a fea-
ture fingerprint database to obtain matching location. Time distance measurement includes
measuring the signal’s time of arrival, time difference, or time of flight (i.e., TOA, TDOA,
or TOF). Angle measurement includes measuring the signal’s arrival angle or direction
of arrival (i.e., AOA or DOA) [13–17]. The radio direction finding, angle measuring, and
positioning have been applied in many fields. A radar system using an array antenna can
perform high-resolution direction finding. The 5G system equipped with a large-scale
antenna array makes high-precision ranging and angle measuring possible. The Bluetooth
Special Interest Group (Bluetooth SIG) has added the directional finding to the Bluetooth
5.1 standard, which was released in 2019 [18]. Compared with the positioning method
based on measuring time and distance using multiple base stations, single-base station
high-precision angular positioning technology based on using an antenna array requires
fewer base stations, has lower cost, and avoids the problems of time synchronization
and joint calculation between base stations [19]. In [19], a dual-channel switch switching
and dual-polarization wheel antenna array was proposed, and the phase-specific angle
measurement method of the antenna was introduced to eliminate the frequency estimation
error caused by the antenna switching. Combined with the super-resolution estimation
algorithm of angle and pole decoupling, the high-precision positioning of a single base
station was realized. In this paper, the method is modified. The switching wheels of the
dual-polarization antenna array are collected in turn in channel 1, the fast Fourier transform
(FFT) is applied to the data of channel 2 to estimate the frequency offset, and the phase
of the data is compensated, without eliminating the frequency estimation error through
phase comparison. It can also achieve high precision positioning within the coverage area
of a single base station. However, in the non-line-of-sight (NLOS) environment with signal
occlusion, multipath, and other interfering factors, the dynamic positioning accuracy of the
proposed Bluetooth array angular measurement and positioning system decreases sharply.
Therefore, it is necessary to develop a positioning and tracking algorithm.

To realize an accurate system state estimation using a classical kalman filter, the
prerequisite is that the dynamic model of the system is accurate and that the noise is an
uncorrelated white noise. Also, to ensure system stability, appropriate initial value and
variance matrix must be selected [20–22]. However, in a complex indoor environment, it
is obviously difficult to guarantee. Aiming to solve this problem, many adaptive filtering
algorithms based on the estimation algorithm of statistical characteristics of time-varying
noise have been proposed. When the covariance matrix Q of the system noise and the
covariance matrix R of the measurement noise are uncertain, the adaptive filtering uses
the information on the observed data to estimate and correct the statistical characteristics
of the noise continuously so as to reduce the state estimation error [23,24]. Among Q
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and R algorithms for uncertainty, the Sage–Husa algorithm is most representative [25,26].
Simulation and practical results show that the accuracy of the adaptive kalman filtering
algorithm is much higher than that of the conventional kalman filtering algorithm, but the
tracking ability of the adaptive kalman filtering algorithm decreases when the observed
value anomaly and system equation disturbance occur. Thus, the adaptive kalman filter
does not have the ability to deal with the system mutations. To ensure filter reliability,
in [27], it has been suggested that it is possible to sacrifice certain accuracy for achieving
better filter stability, and a strong tracking filter algorithm [27] named the strong tracking
filter (STF) was proposed. This method is to multiply the covariance matrix P of the
predicted state by a weighted coefficient, so the strong tracking kalman filter has strong
robustness to the changes in system parameters and a strong ability to deal with the system
mutations. Although the robustness of the strong tracking kalman filter is significantly
improved compared with the adaptive kalman filter, the optimal condition of the filter is
destroyed, and the accuracy of the filter is reduced compared with the adaptive kalman
filter [28–31]. In [31], a fuzzy logic adaptive system was used to adjust the scaling factor
of an r-array when the p-array scaling factor of the strong tracking kalman filter was
obtained [31]. This method has the disadvantage of estimating the r-matrix independently,
and the control logic of the FLAS is complex. This paper proposes a Bluetooth array
positioning system for a complex indoor environment, including shelter and multipath.
The results of the positioning method of mutation status tracking ability of a strong tracking
kalman filtering algorithm for target tracking, singular value decomposition (SVD) [32–34].
On the basis of further improvement of the strong tracking kalman filter robustness, an
adaptive factor is introduced. Finally, the feasibility of the algorithm is verified by the
measured data.

2. Array Antenna Angle-of-Arrival Positioning Algorithm

The schematic diagram of a circular antenna array is presented in Figure 1. In Figure 1,
the middle antenna 9 is used as a single frequency estimation antenna corresponding to one
receiving channel. Because this antenna is not switched, the number of sampling points
collected is sufficient. FFT can better estimate the frequency offset. The surrounding six
pairs of orthogonally polarized antennas, which include a total of 12 arrays, are used as
circular antennas connected to another receiving channel. The schematic diagram of the
positions of the array antenna and source during the observation is presented in Figure 2.
The specific algorithm is given below.
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Figure 1. Circular array antenna illustration.
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Figure 2. Illustration of antenna.

Suppose that s(t) is an incident signal waveform, f0 is the signal carrier frequency,
λ0 is the signal wavelength, θ is the incidence pitch angle, and ϕ is the incidence azimuth.
A two-channel circular array antenna is adopted to receive the incident signal, and the
switching time interval of the acquisition antenna is T. Then, the received echo signals
of an alternating acquisition antenna and a single-channel antenna can be respectively
expressed as:

xn(t) = b× pn(θ, ϕ, γ, η)s[t + (n− 1)T − τn(θ, φ)]ei2π( f0+ fd)[t+(n−1)T−τn(θ,φ)] (1)

xn0(t) = b× p0(θ, ϕ, γ, η)s[t + (n− 1)T − τ0(θ, φ)]ei2π( f0+ fd)[t+(n−1)T−τn0(θ,φ)] (2)

where b represents the component related to the transmitting power of the source and the
distance from the array antenna; pn(θ, ϕ, γ, η) is the component related to the polarization;
γ and η are two polarization parameters; τn(θ, φ) represents the time delay of the signal to
the n array element; fd is the Doppler frequency of the source.

After the frequency-mixing signal processing, the echo signals can be expressed as:

xn(t) = b× pn(θ, ϕ, γ, η)s[t]e−i2π f0τn(θ,φ)ei2π fd [t+(n−1)T−τn(θ,φ)] (3)

xn0(t) = b× p0(θ, ϕ, γ, η)s[t]e−i2π f0τ0(θ,φ)ei2π fd [t+(n−1)T−τn(θ,φ)] (4)

The existence of the frequency synchronization error leads to the deviation between f0
and f0, which can be expressed as f∆ = f0 − f0. Since a base station is generally arranged
at a high level and the incident signals are narrowband signals in the far-field, the delay
along the array of the envelope of the received signal can be ignored. Then, Equations (3)
and (4) can be respectively rewritten as:

xn(t) = b× pn(θ, ϕ, γ, η)s[t]e−i2π f0τn(θ,φ)ei2π( f∆+ fd)[t+(n−1)T−τn(θ,φ)] (5)

xn0(t) = b× p0(θ, ϕ, γ, η)s[t]e−i2π f0τ0(θ,φ)ei2π( f∆+ fd)[t+(n−1)T−τn(θ,φ)] (6)

For the N-point FFT transformation of xn0(t) the spectrum is expressed as follows:

XN(k) = FFT[xn0(t)] =
N−1

∑
n=0

xn0(t)e−j 2πkn
N (7)

where the spectrum line corresponding to the amplitude is k.
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For the maximum value of the spectrum, the corresponding spectrum line is denoted
as k1. According to the maximum likelihood estimation principle, the relationship between
the frequency offset value and k1 can be obtained as follows:

f∆ =

{
k1

TN 0 ≤ k1 ≤ N
2 − 1

−N−k1
TN

N
2 ≤ k1 ≤ N − 1

(8)

According to Equation (8), the estimation accuracy of the frequency offset is directly
related to the FFT length, and its maximum estimation error is obtained as k1

2TN . In this
system, the data acquisition points of channel 2 are equal to the sum of the data acquisition
points of 12 antennas in channel 1, so the FFT length is long enough to estimate the
frequency offset accurately.

By substituting the estimated frequency offset value into Equation (5), the 2N matrix
metadata arranged into a column vector can be obtained as follows:

xl =


x1(tl)
x2(tl)

x2N(tl)

 = bl × p(θ, ϕ, γ, η)� as(θ, ϕ) (9)

where p(θ, ϕ, γ, η) = P(θ, ϕ)w(γ, η),P(θ, ϕ) =


pT

1 (θ, ϕ)
pT

2 (θ, ϕ)
...

pT
2N(θ, ϕ)

,w(γ, η) =

[
cos γ

sin γeiη

]
,

as(θ, φ) =


e−i2π f0τ1(θ,φ)ei2π( f∆+ fd)[t+(n−1)T−τ1(θ,φ)]

e−i2π f0τ2(θ,φ)ei2π( f∆+ fd)[t+(n−1)T−τ2(θ,φ)]

...
e−i2π f2N τ1(θ,φ)ei2π( f∆+ fd)[t+(n−1)T−τ2N(θ,φ)]

, and � denotes the Hardmard

product.
Considering the receiver noise, the echo signal vector can be expressed as follows:

yi = ba(θ, φ, γ, η) + ni (10)

where a(θ, φ, γ, η) = p(θ, φ, γ, η)ea(θ, φ), and ni ∈ CN(0, Rn) is a complex Gaussian noise
vector with a zero mean and a covariance matrix Rn.

In an indoor environment, signals received by the array contain not only direct waves
but also multipath echoes that reached the array after being reflected by various obstacles
such as walls, tables, and floors. After considering these factors, the receiver echo signal yi
can be expressed in the following form:

yi = Asi + ni (11)

where A =
[

a(θ1, φ1, γ1, η1) a(θ2, φ2, γ2, η2) L a(θP, φP, γP, ηP)
]

denotes the array
manifold matrix, P is the number of direct waves and multipath signals, and si is the signal
vector, which can be expressed as:

si= [b 1l , b2l , L, bPl ]
T (12)

In a multipath environment, the direct wave signal and multipath signal need to be
separated to estimate the target direction accurately. In this case, a super-resolution angle
estimation method is needed. Considering that the Multiple Signal Classificaion (MUSIC)
spectrum estimation algorithm has the advantages of a small amount of computation and
low complexity, the MUSIC spectrum estimation algorithm is adopted.
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Assume that R̂music =
1
L

L
∑

l=1
yiy

H
i is the covariance matrix of the received signal.

The spatial spectrum obtained by the MUSIC spectrum algorithm is expressed as
follows:

Pmusic(θ, φ, γ, η) =
1

aH(θ, φ, γ, η)Qmusica(θ, φ, γ, η)
(13)

where Qmusic = UNUH
N , and UN is the eigenvector matrix of noise subspace derived from

R̂music eigen decomposition.
The target parameter is obtained by searching the peak value of the spectral function

by parameters, which can be expressed as:

[θ̂, ϕ̂, γ̂, η̂] = argmaxPmusic(θ, φ, γ, η) (14)

Since the above process is a four-dimensional search and requires a large amount of
calculation, to reduce the amount of calculation, B is expressed in the following form by
combining Equation (14) and the properties of the Hardmard product:

a(θ, φ, γ, η) = p(θ, φ, γ, η)ea(θ, φ) = Λs(θ, φ)P(θ, φ)ω(γ, η) (15)

where Λs(θ, φ) denotes a diagonal matrix consisting of a(θ, φ), so Pmusic(θ, φ, γ, η) can be
expressed as follows:

Pmusic(θ, φ, γ, η) = 1
ωH(γ,η)PH(θ,φ)ΛH

s (θ,φ)QmusicΛs(θ,φ)P(θ,φ)ω(γ,η)
= 1

ωH(γ,η)D(θ,φ)ω(γ,η)
(16)

where D(θ, φ) = PH(θ, φ)ΛH
s (θ, φ)QmusicΛs(θ, φ)P(θ, φ).

To maximize Pmusic(θ, φ, γ, η), D(θ, φ) should be as small as possible, and parameter
search can be achieved as follows:

[θ̂, ϕ̂] = argminλmin(D(θ, φ)) (17)

where λmin(D(θ, φ)) represents the minimum eigenvalue of D(θ, φ).
Assuming that the vertical distance between the source and base station is h, the

coordinates of the source location can be obtained by combining Figure 2 as follows:

[x, z] = [h tan θ cos ϕ, h tan θ sin ϕ] (18)

3. Proposed Tracking Algorithm

According to Equation (7), the multipath and other factors in the echo signal of the
receiver cannot be eliminated, and the characteristics of the reflected signals vary with the
material and size of obstacles. Therefore, in an NLOS environment, the dynamic positioning
accuracy of the proposed Bluetooth array angular measurement and positioning system
decreases sharply. Therefore, if only relying on the positioning accuracy of the system, the
high-precision positioning within the coverage area cannot be guaranteed, so the tracking
algorithm is particularly important. After comparative analysis, this paper selects strong
tracking kalman filtering algorithm as a basic tracking algorithm and optimizes it.

3.1. Strong Tracking Kalman Filter

The source coordinates and their rate of change are taken as the state parameters,
Xcv,k =

[
xk zk vx vz

]
.

Assume that the state equation is given by:

Xcv,k = FXcv,k−1 + wcv,k (19)
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where F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

, ∆T is the data output interval expressed in seconds, and

wcv,k is the system noise at the current moment, whose covariance matrix is Qcv,k.
The measurement information represents directly output positioning information, so

the measurement equation is given by:

Zcv,k = HXcv,k + Vcv,k (20)

where Zcv,k =
[

xR
k zR

k
]
, Hcv,k =

[
1 1 0 0

]
, xR

k is directly output location infor-
mation at the current time; Vcv,k is the measurement noise at the current moment, and its
covariance matrix is Rcv,k.

In the strong tracking kalman filter, the gain matrix Kk needs to be determined online
to satisfy the following conditions:

E[xk − x̂k][xk − x̂k]
T = min (21)

E[rT
k rk+j] = 0, k = 0, 1, 2, · · · , j = 1, 2 · · · (22)

where rk = Zk −HkXk,k−1 represents an innovation vector, whose covariance matrix is
Nk = HkPk,k−1HT

k . Equation (22) requires rk to be orthogonal, which actually represents
an index of the residual sequence that is orthogonal on the basis of the index of minimum
variance of the residual.

If the signal is not affected by environmental factors, such as refraction, reflection,
and multipath effect, it can be considered that rk obeys the Gaussian distribution with
the zero mean. In this case, Equation (22) satisfies. Therefore, in that case, the strong
tracking kalman filter represents the standard extended kalman filter. However, uncertain
influencing factors in the external environment will lead to the deviation of the filter state
estimate from the system state. In this situation, to realize the system state tracking by the
filter, the gain matrix needs to be adjusted online to make the residual sequence still be
mutually orthogonal.

Based on Equations (19) and (20), the strong tracking filtering algorithm can be
expressed as follows: 

Xk,k−1 = FXk−1
Pk,k−1 = L(k)FPk−1FT + Qcv,k−1

Kk = Pk,k−1HT
k (HkPk,k−1HT

k + Rcv,k)
−1

Pk = (I−KkHk)Pk,k−1
Xk = Xk,k−1 + Kk(Zk −HkXk,k−1)
L(k) = diag[λ1(k), λ2(k), · · · λn(k)]

(23)

where Xk,k−1 is the predicted state vector, Pk,k−1 is the covariance matrix of the predicted
state, Kk is the Kalman gain matrix; Xk−1 and Xk represent the estimated state matrices at
times (k−1) and k, and Pk−1 and Pk are their respective covariance matrices, respectively;
Zk indicates the measured value at the current time; I is the identity matrix; L(k) is the
time-varying elimination matrix; λi(k) ≥ 1(i = 1, 2, · · · , n) is the n time-varying fading
factor, which can be expressed as follows:

λi(k) =

{
λ0(k) λ0(k) > 1
1 λ0(k) ≤ 1

(24)

where λ0(k) =
Tr(Nk)
Tr(Mk)

, V0,k =

r0rT
0 k = 0

ρV0,k−1+rkrT
k

1+ρ k ≥ 1
, Nk = V0,k − HkQk−1HT

k − lkRk, and ρ is

the forgetting factor.
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It can be seen that when the system state mutates, the increase in V0,k will increase
with the r0rT

0 , so the time-varying fading factor will also increase, and the tracking ability
of the filter will be enhanced.

3.2. Improved Tracking Algorithm

It is considered that the covariance matrix Pk,k−1 is a symmetric matrix of the nth
order. However, after enough large number of times of calculation, it no longer has
non-negative and positive character. Suppose the rank is e, 0 < e < 1, S is a diagonal
matrix, and they satisfy the semi-positive definite condition, whose eigenvalue is set as

σ2
1 , σ2

2 , · · · , σ2
n , and it holds that σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n , σ2
r+1 = · · · = σ2

n = 0. Then,
there must be an orthogonal matrix V of order n, making PTP similar to a diagonal matrix,
which can be expressed as follows [34]:

VT(Pk,k−1
TPk,k−1)V = diag( σ2

1 , σ2
2 , · · · , σ2

r , 0, · · · , 0 ) = S2
n =

[
S2

r 0
0 0

]
(25)

where V =
[

V1 V2
]
= [ v1, v2, · · · , vn ], and Pk,k−1V2 = 0.

Set U1 = Pk,k−1V1S−1
r to obtain UT

1 U1 = I, so the -column vectors of U1 are unit
orthonormal vectors, which can be extended to an orthonormal basis. There exists U2 such
that U = [ U1 U2 ] is an orthonormal matrix of order n, and:

UTPk,k−1V =

[
UT

1 Pk,k−1V1 UT
1 Pk,k−1V2

UT
2 Pk,k−1V1 UT

1 Pk,k−1V2

]
(26)

From U1 = Pk,k−1V1S−1
r , we get Pk,k−1V1 = U1Sr, which yields to:

UT
1 Pk,k−1V1 = S−1

r VT
1 Pk,k−1

TPk,k−1V1 = S−1
r S2

r = Sr (27)

UT
2 Pk,k−1V1 = UT

2 U1Sr = 0 (28)

Further, because Pk,k−1V2 = 0, then UT
1 Pk,k−1V2 = UT

2 Pk,k−1V2 = 0.

UTPk,k−1V =

[
I 0
0 0

]
, Pk,k−1 = U

[
I 0
0 0

]
VT .

Since is symmetric, it holds that:

VT(Pk,k−1
TPk,k−1)V = VT(Pk,k−1Pk,k−1)V

= VT(USnVTUSnVT)V = (VTU)Sn(VTU)Sn = S2
n

(29)

So, VTU = I and V = U, which yields to:

Pk,k−1 = U
[

Sr 0
0 0

]
UT (30)

By setting D =

[
Sr 0
0 0

]
, we obtain:

Kk = UDUTHT
k (HkUDUTHT

k + Rcv,k)
−1

(31)

The SVD is applicable to any matrix decomposition. It can express a complex matrix
by the product of several relatively simple matrices (eigenvalues and eigenvectors), which
can not only simplify the operation but also preserve the properties of the original matrix.
In the classical kalman filter (KF) algorithm, the rounding error of the state covariance
matrix gradually accumulates over time, leading to the loss of its non-negative property.
Using the SVD can ensure its non-negative positive property so that the algorithm can go
on and improve the operation accuracy.
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In the Kalman filter, rk = Zk − HkXk,k−1 represents the innovation vector, and its
covariance matrix is Nk = HkPk,k−1HT

k . If the signal is not affected by environmental
factors, such as refraction, reflection, and multipath effect, it can be considered that rk obeys
the Gaussian distribution with the zero mean. If the influence of the external environmental
factors leads to the decrease in the positioning accuracy or abnormal positioning values, it
can be considered that rk follows the Gaussian distribution with the mean value of Zk −ZT

k ,
where ZT

k is the actual location. Based on the innovation vector and its covariance matrix,
the test information is constructed as ∆rk = rT

k D−1rk, and it is used as a condition to judge
whether the positioning result is abnormal; it is defined as follows:{

|∆rk|≤ m Locate normal
|∆rk|> m Locate abnormal

(32)

where m denotes the threshold value, which is determined through multiple static tests at
different points.

Huber functions are used to construct adaptive factors as follows:

αk

{
1 |∆rk|≤ m
∆rk
m |∆rk|> m

(33)

The robust estimation of positioning can be achieved by replacing Rcv,k in the gain ma-
trix with αkRcv,k. The absolute value of ∆r is compared with the prior threshold information.
When the absolute value of ∆r is greater than the prior threshold, the positioning result
is considered abnormal. In this case, the robust factor of the constructed measurement
noise is used to update its covariance matrix to achieve robust filtering performance and to
improve the positioning accuracy.

The Sage–Husa filter can estimate and modify the statistical characteristics of the
system noise in real-time so as to improve the filter accuracy further and has a certain
anti-interference ability. Therefore, combined with the improved Sage–Husa filter, the
covariance matrix of the system noise can be estimated in real-time as follows [24]:

Qcv,k = (1−βk)Qcv,k−1 + βk
[
KkrkrT

k KT
k + Pk − Fk−1Pk−1FT

k−1−
2KkHkPk,k−1HT

k KT
k − 2KkαkRcv,kKT

k + Pk,k−1HT
k KT

k + KkHkPk,k−1
] (34)

where βk= (1 − b)/(1 − bk+1), and b is the forgetting factor, and 0 < b < 1. In the
updating process of Qcv,k, to prevent losing the non-negativity characteristic of the matrix,
the diagonal elements in the second part on the right side of Equation (34) are treated with
absolute value, and the non-diagonal elements are treated with zero.

When calculating the predicted state covariance matrix, the improved Sage–Husa
filtering is used for the system noise covariance matrix for continuous real-time estimation
and correction. To reduce the state estimation error, the adaptive differential resistance
factor, combined with the measurement noise covariance matrix, is updated, thus further
improving the accuracy and obtaining more accurate location information.

Based on the above theories, the specific algorithm of SVD-STKF can be described as:

(1) Calculate the one-step state prediction value according to Equation (19).
(2) Calculate innovation vector according to rk = Zk −HkXk,k−1.
(3) Calculate the prediction error covariance matrix according to Equation (23).
(4) Calculate the SVD factorization of Pk,k−1.
(5) Calculate Kalman gain matrix according to Equation (31).
(6) Status updates according to Equation (23).
(7) Test information is constructed based on innovation vector and its covariance matrix

according to Equation (32).
(8) Huber function is used to construct adaptive factors according to Equation (33).
(9) Update error covariance matrix according to Equation (23).
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4. Experimental Validation
4.1. Experimental Environment

The field diagram of the antenna array AOA positioning test is presented in Figure 3.
The test was performed in a room which was 7 m long and 6 m wide. The passive antenna
array was placed on the ceiling, and its axes were as shown Figure 1. The source used in
this test was a tag that transmitted the Bluetooth signal.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 23 
 

 

4.1. Experimental Environment 

The field diagram of the antenna array AOA positioning test is presented in Figure 

3. The test was performed in a room which was 7 m long and 6 m wide. The passive an-

tenna array was placed on the ceiling, and its axes were as shown Figure 1. The source 

used in this test was a tag that transmitted the Bluetooth signal. 

 

Figure 3. Test field image. 

The hardware of the array antenna and source is shown in Figure 4. The receiver 

collected data from the peripheral circle of the polarized antenna in a time-sharing 

manner, and the collection sequence was (1–2, 3–4, 5–6, 7–8, 10–11, 12–13). The number of 

collection cycles was two, and eight data points were collected at each time. The data 

collected by antenna No. 9 in the middle, which was the frequency estimation antenna, 

entered the receiver through another channel. The source uses a tag that emits Bluetooth 

signals. 

  

 

Figure 4. The hardware of the array antenna and source. 

The Bluetooth array AOA position was determined by measuring the source emis-

sion signal, realizing the signal arrive angle positioning. The accuracy of frequency es-

timation has a significant influence on positioning accuracy; therefore, in the test, the 

Bluetooth tag antenna used an omnidirectional antenna. However, in the actual envi-

ronment, the source is placed in a different direction so that the positioning result can 

have a certain degree of difference. Under the condition of different source locations, 

positioning accuracy was different. The farther the distance between the source and the 

base station, the lower the positioning accuracy. To verify the validity of the proposed 

algorithm, the static test, rotation test, and dynamic test were conducted on the source. It 

was assumed that the height of the source was known, and the true height of the source 

was substituted into the positioning formula. The defined relative coordinate system had 

the origin right below the center of the antenna array. In the actual scene, the x-axis and 

z-axis point, as shown Figure 3, which is consistent with the direction in Figure 2. The 

height of the source was about 3.35 m. To reduce the calculation complexity, the search 

range was limited to the range of the array beamwidth. The simulation results based on 

Matlab were as follows. 

Figure 3. Test field image.

The hardware of the array antenna and source is shown in Figure 4. The receiver
collected data from the peripheral circle of the polarized antenna in a time-sharing manner,
and the collection sequence was (1–2, 3–4, 5–6, 7–8, 10–11, 12–13). The number of collection
cycles was two, and eight data points were collected at each time. The data collected by
antenna No. 9 in the middle, which was the frequency estimation antenna, entered the
receiver through another channel. The source uses a tag that emits Bluetooth signals.
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Figure 4. The hardware of the array antenna and source.

The Bluetooth array AOA position was determined by measuring the source emission
signal, realizing the signal arrive angle positioning. The accuracy of frequency estimation
has a significant influence on positioning accuracy; therefore, in the test, the Bluetooth
tag antenna used an omnidirectional antenna. However, in the actual environment, the
source is placed in a different direction so that the positioning result can have a certain
degree of difference. Under the condition of different source locations, positioning accuracy
was different. The farther the distance between the source and the base station, the lower
the positioning accuracy. To verify the validity of the proposed algorithm, the static test,
rotation test, and dynamic test were conducted on the source. It was assumed that the
height of the source was known, and the true height of the source was substituted into the
positioning formula. The defined relative coordinate system had the origin right below
the center of the antenna array. In the actual scene, the x-axis and z-axis point, as shown
Figure 3, which is consistent with the direction in Figure 2. The height of the source was
about 3.35 m. To reduce the calculation complexity, the search range was limited to the
range of the array beamwidth. The simulation results based on Matlab were as follows.
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4.2. Empirical Positioning Algorithm

Figure 5 shows the single-frame data, including the amplitude and phase diagrams,
where the horizontal axis denotes the sampling period, according to each antenna collection
point, and the vertical axis represents the sampling sequence number in terms of the
antenna number and order of calculating. Thus, for the single-channel data, although the
amplitude of fundamental was not affected, the phase diagram was obviously affected by
the presence of excess phase. The phase stability had a great influence on the accuracy and
stability of subsequent positioning.
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Figure 6 shows the amplitude and phase diagrams of the single-frame data after
the compensation, where it can be seen that after the comparison, the redundant phase
caused by the frequency deviation was complemented, and the redundant phase was
corrected well.
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To verify the effect of frequency estimation on the positioning results, the positioning
results at the point (0, 0) with the compensation frequencies f0 and f0 ± 2k are statistically
analyzed in this paper. The estimated frequency at the point (0, 0) is 254 kHz. Table 1 shows
the positioning results. The statistical results show that a 2 kHz frequency estimation devi-
ation can cause a 0.3 m positioning deviation. Therefore, the accuracy of the compensated
frequency estimation is extremely important.
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Table 1. Influence of different frequencies on positioning results.

Point Direction Component Frequency (kHz) Maximum Error (m)

(0, 0)

X
254 0.208
256 0.415
252 0.377

Z
254 0.125
256 0.269
252 0.306

When the location of a source is different, the positioning accuracy is also different,
so the static test was performed at different distances from the base station. In the static
test, points (0, −1), (2, 0), and (2, −1.5) with different distances on the x-axis, z-axis, and
non-coordinate axis were selected for testing. Fifty frames of data were collected at each
position. The results are shown in Figures 7–9. In the error graphs, the yellow horizontal
line represents the coordinate value of the current position, the blue curve represents the
positioning value given by the current system, the horizontal axis indicates the number
of sampled frames, and the vertical axis represents the error value. In the distribution
diagram of anchor points, the horizontal axis is x, the vertical axis is z, and the blue point
represents the anchor point position of certain frame data. In the CDF diagrams, the
horizontal axis represents the positioning error of the point, which can be calculated by√

∆x2 + ∆z2, where ∆x and ∆z represent the errors of the current location point in the x-
and z-directions, respectively, and the vertical axis represents the CDF. The multi-frame
positioning results of the source at the point (0, −1) are shown in Figure 7, where it can be
seen that the accuracies in the x-direction and z-direction were about 0.058 m and 0.07 m,
respectively. The positioning results were good and stable without any jump point. As can
be seen from the CDF diagram, the positioning errors were all within 0.3 m. The static test
location results for the source locations of (2, 0) and (2, 1.5) are presented in Figures 8 and 9,
respectively, where it can be seen that the positioning accuracy was higher for the source
location of (2, 0). The precision in the x-direction was about 0.1 m, whereas the accuracy in
the z-direction of about 0.22 m. At point (2, 1.5), the source and array antenna elevation
angle was close to 45◦, so the accuracy was a little poor. However, there was only one
peak point within 0.5 m, which could be interfered with by the other signals. The CDF
diagram in Figures 8 and 9 show that the positioning errors were within 0.5 m and 0.6 m,
respectively.
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4.3. Empirical Tracking Algorithm
4.3.1. Empirical Source Rotation Positioning

In the source rotation test, two representative points were used, point (0, 0) that was
directly below the antenna, and point (2, −1.5) that was far away from the antenna on the
non-coordinate axis. During the test, 200 frames of data were collected at each point. The
error diagram of 200 frame data and the CDF graph corresponding to the single-frame data
are presented in Figures 10 and 11. In the error graph, the yellow horizontal line represents
the coordinate value of the current position, the blue curve represents the positioning value
obtained by the system, the horizontal axis is the number of sampled frames, and the
vertical axis is the error value. In the CDF graph, the horizontal axis represents positioning
error of this point, the vertical axis represents CDF. The precision in x-direction was about
0.124 m, and that in z-direction was about 0.109 m. The positioning result was good, and
there was no jump point. It can be seen from the CDF diagram that the positioning errors
are all within 0.3 m. The positioning result in the x-direction was strongly affected by
the source rotation, which showed a trend of first decreasing, then increasing, and finally,
decreasing. The positioning results in the z-direction were stable under the source rotation.
Since point (2, −1.5) was far away from the base station, its positioning error increases. The
precision in the x-direction was about 0.255 m, and that in the z-direction was about 0.125 m.
Thus, when the source was far away from the base station, the positioning accuracy of
some frames fluctuated significantly, with the maximum value exceeding 0.5 m. The CDF
diagram shows that the positioning errors are all within 0.8 m.
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In addition, the STKF was applied to the above two points. The positioning results
after the STKF optimization are shown in Figures 12 and 13. The positioning accuracy
of the point (0, 0) in the x-direction was about 0.122 m, and that in the y-direction was
about 0.106 m. Compared with the results before the optimization, the accuracies in the x-
and y-directions were improved by approximately 0.002 m and 0.003 m, respectively. The
positioning accuracies of the point (2, −1.5) in the x- and z-directions were approximately
0.239 m and 0.119 m, respectively. Compared with the results before the optimization,
the positioning accuracies in the x- and z-directions were improved by approximately
0.006 m and 0.005 m, respectively. Due to the instability of the positioning result caused
by the source rotation, the STKF could only slightly improve the positioning accuracy;
the accuracy improvement was small, by only a few millimeters. The positioning result
was smoother than before the modification, but there was no significant correction for the
mutation of point (2, −1.5).
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As shown in Figures 14 and 15, in the case of source rotation, the strong tracking
kalman filter could make the positioning result smoother, but the accuracy improvement
was small. The singular value decomposition strong tracking kalman filter (SVD-STKF)
was performed for the above two points. The positioning results after the SVD-STKF
optimization are shown in Figures 9 and 10. The positioning accuracies of the point
(0, 0) in the x- and y-direction were approximately 0.12 m and 0.104 m, respectively.
Compared with the results before the optimization, the accuracies in the x- and y-direction
were improved by approximately 0.004 m and 0.003 m, respectively. The positioning
accuracies of the point (2, −1.5) in the x- and z-direction were improved by approximately
0.226 m and 0.11 m, respectively. Compared with the results before the optimization,
the positioning accuracies in the x- and z-direction were improved by about 0.029 m and
0.019 m, respectively. Compared with the STKF, the SVD-STKF achieved a more obvious
improvement in accuracy and had a better tracking ability in the system mutation state.
The accuracy of the mutation value at the point (2, −1.5) was improved by more than
0.05 m.
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As shown in Figures 14 and 15, for the point (0, 0), which was directly below the
antenna, due to the strong signal, the positioning accuracy of the system was high, and
the correction effect of the KF on it was not obvious. At this time, the difference between
the SVD-STKF and strong KF tracking was small. However, for the distant point (2, −1.5),
the stability of the signal decreased compared to the point (0, 0). Under the process of
source rotation, the measurement error of some angles was large, and although the STKF
improved the smoothness, the improvement in the accuracy was not obvious. The SVD-
STKF provided a more obvious correction of the positioning results compared to the STKF.
The overall positioning accuracy was improved by about 0.03 m, and the tracking ability
for the abrupt state was stronger. The maximum error was reduced from 0.595 to 0.51, and
the overall smoothing effect was good. The specific statistical results are given in Table 2.

Table 2. Source rotation test error statistics.

Point Direction Component Filter Method Maximum Error (m) RMS

(0, 0)

x
Raw Output 0.21765 0.124

STKF 0.215 0.122
SVD-STKF 0.215 0.12

z
Raw output 0.21765 0.109

STKF 0.191 0.107
SVD-STKF 0.189 0.104

(2,−1.5)

x
Raw output 0.541 0.255

STKF 0.532 0.249
SVD-STKF 0.47 0.223

z
Raw output 0.247 0.125

STKF 0.227 0.119
SVD-STKF 0.204 0.11

To present the positioning results more intuitively, the distribution of anchor points
is presented in Figure 16, where the horizontal axis represents the x-coordinate, and the
vertical axis represents the z-coordinate. In Figure 16, the point represented by the red
circle denotes the original output; the point represented by the blue asterisk denotes the
output position obtained by the STKF; the point represented by the green plus sign denotes
the output position of the SVD-STKF. As shown in Figure 16, after the STKF processing, the
deviation degree between the anchor point and actual position decreased, and the accuracy
of the maximum error point was improved to a certain extent, which was closer to the real
position. The SVD-STKF showed the same effect, but the correction effect was better for
the point position, especially for the mutation of the outliers.
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4.3.2. Empirical Dynamic Positioning

In the case of source rotation, although the direction of the source had an impact on
the positioning result, there was no occlusion in the signal propagation. Therefore, at the
point (2, −1.5), which was far away from the base station, the maximum error value was
0.595 m, and the positioning accuracy could also be guaranteed within 1 m. However, for
dynamic scenes, factors such as signal occlusion and multipath cannot be avoided in the
process of moving pedestrians equipped with information sources. Therefore, dynamic
positioning experiments were carried out, and the dynamic experiment process was as
follows.

The user held the information source; the point (0, 2) was the starting point; the user
traveled along the z-axis to the point (0, −2), then traveled along the positive direction of
the x-axis to the point (2, −2), then turned to the positive direction of the z-axis to the point
(2, 2), and finally, traveled along the negative direction of the x-axis to the starting point.
The traveling diagram is presented in Figure 17, where the red circle indicates the starting
position and green arrows indicate the direction of travel.
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Figure 17. Reference trajectory of the dynamic experiment.

The trajectory comparison diagram after filtering is presented in Figure 18, where the
horizontal axis represents the x-coordinate, and the vertical axis represents the z-coordinate;
the point position represented by the red circle is the original output value, the blue asterisk
represents the output value of the STKF algorithm, the green plus sign indicates the
output value of the SVD-STKF algorithm, and the rectangle formed by the solid black line
represents the true trajectory. As shown in Figure 18, in the process of normal pedestrian
walking, the signal occlusion was not obvious when the pedestrian was walking along
the z-axis, and the positioning effect was good. However, when the pedestrian was far
away from the base station, due to the decrease in the positioning accuracy and severe
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signal occlusion, the positioning result had a large deviation. The offset of the farthest
point from the real trajectory was close to 1 m, and the offset of the other anchor points
was also large—almost all of them were above 0.5 m. The Hausdorff distance was 0.979 m.
Therefore, in the dynamic process, due to the influences of signal occlusion and other
factors, if the original output of the system is relied on, the positioning accuracy of distant
points cannot be guaranteed. After the STKF correction, the trajectory was basically close to
the real trajectory, the remote location points could be corrected, and the positioning results
were smoother without random mutation points. The Hausdorff distance was increased to
0.519 m, achieving an increase of 0.46 m. On this basis, compared with the STKF algorithm,
the SVD-STKF algorithm achieved more obvious corrections of the positioning results,
making them be more close to the real trajectory; also, the Hausdorff distance was further
increased to 0.464 m by 0.515 m.
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5. Conclusions

In this paper, the static positioning accuracy, rotational positioning accuracy, and
dynamic positioning accuracy in an NLOS environment are analyzed. The results show
that in a line-of-sight (LOS) environment, the positioning accuracy of the Bluetooth array
angle measurement is higher in its coverage range than in NLOS environment. The
positioning accuracy of the points within 0.3 m (i.e., the near distance) can be guaranteed,
but the maximum positioning error of points at a long distance can reach 0.595 m. The
proposed SVD-STKF algorithm can improve the overall positioning accuracy up to 0.03 m,
and the maximum value can be modified by 0.08 m. In the NLOS environment, the
positioning accuracy decreases sharply, and the positioning error is close to 1 m in severe
cases. However, the proposed SVD-STKF algorithm has a good effect. By using the
proposed algorithm, the Hausdorff distance is improved by 0.513 m, the positioning results
are smoother, there is no random mutation point, and good correction for the points far
from the true trajectory is achieved. The comprehensive comparison results show that
the proposed positioning algorithm can achieve the positioning accuracy within 1 m in
the coverage area in a LOS environment, while in an NLOS environment, the dynamic
positioning accuracy of the proposed Bluetooth array angular measurement and positioning
system decreases sharply. Thus, by relying only on the positioning accuracy of the proposed
system, the high-precision positioning within the coverage area cannot be guaranteed.
However, after modifying the SVD-STKF tracking algorithm, the positioning accuracy
within 1 m can be achieved for the source rotation situation in a LOS environment and the
dynamic situation in an NLOS environment. Therefore, the high-precision positioning in
the coverage area can be achieved by using a single base station.
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