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Abstract: Soil salinization is an ecological challenge across the world. Particularly in arid and semi-
arid regions where evaporation is rapid and rainfall is scarce, both primary soil salinization and
secondary salinization due to human activity pose serious concerns. Soil is subject to various human
disturbances in Xinjiang in this area. Samples with a depth of 0–10 cm from 90 soils were taken
from three areas: a slightly disturbed area (Area A), a moderately disturbed area (Area B), and a
severely disturbed area (Area C). In this study, we first calculated the hyperspectral reflectance of five
spectra (R,

√
R, 1/R, lgR, 1/lgR, or original, root mean square, reciprocal, logarithm, and reciprocal

logarithm, respectively) using different fractional-order differential (FOD) models, then extracted
the bands that passed the 0.01 significance level between spectra and total salt content, and finally
proposed a partial least squares regression (PLSR) model based on the FOD of the significance level
band (SLB). This proposed model (FOD-SLB-PLSR) is compared with the other three PLSR models to
predict with precision the total salt content. The other three models are All-PLSR, FOD-All-PLSR, and
IOD-SLB-PLSR, which respectively represent PLSR models based on all bands, all fractional-order
differential bands, and significance level bands of the integral differential. The simulations show that:
(1) The optimal model for predicting total salt content in Area A was the FOD-SLB-PLSR based on
a 1.6 order 1/lgR, which provided good predictability of total salt content with a RPD (ratio of the
performance to deviation) between 1.8 and 2.0. The optimal model for predicting total salt content
in Area B was a FOD-SLB-PLSR based on a 1.7 order 1/R, which showed good predictability for
total salt content with RPDs between 2.0 and 2.5. The optimal model for predicting total salt content
in Area C was a FOD-SLB-PLSR based on a 1.8 order lgR, which also showed good predictability
for total salt content with RPDs between 2.0 and 2.5. (2) Soils subject to various disturbance levels
had optimal FOD-SLB-PLSR models located in the higher fractional order between 1.6 and 1.8.
This indicates that higher-order FODs have a stronger ability to extract feature data from complex
information. (3) The optimal FOD-SLB-PLSR model for each area was superior to the corresponding
All-PSLR, FOD-All-PLSR, and IOD-SLB-PLSR models in predicting total salt content. The RPD
value for the optimal FOD-SLB-PLSR model in each area compared to the best integral differential
model showed an improvement of 9%, 45%, and 22% for Areas A, B, and C, respectively. It further
showed that the fractional-order differential model provides superior prediction over the integral
differential. (4) The RPD values that provided an optimal FOD-SLB-PLSR model for each area were:
Area A (1.9061) < Area B (2.0761) < Area C (2.2892). This indicates that the prediction effect of data
processed by fractional-order differential increases with human disturbance increases and results in a
higher-precision model.

Keywords: saline soil; human disturbance of different extent; field hyperspectral; fractional-order
differential; total salt content
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1. Introduction

Soil salinization is a process of land degradation leading to agricultural output reduc-
tion. The primary salinization of soil and secondary salinization caused by unreasonable
human disturbance, such as irrigation, grazing, and farming, seriously restrict agricultural
production and economic development in arid areas. Hyperspectral remote sensing tech-
nology can obtain continuous spectral information of different ground objects with high
spectral resolution [1–3], which has a strong advantage in the quantitative prediction of
soil properties. Although many scientists have used hyperspectral technology to carry out
prediction research of soil properties, they face difficulties due to the differences in soil
parent material, soil type, soil forming process, particle size, pre-treatment method, testing
environment, modeling method, and salt information content of saline soil in different areas.
Consequently, the prediction precision of soil by hyperspectral remote sensing technology
varies to a certain extent [4–7]. For example, Nawar et al. [8] collected the soil of the EI-Tina
plain in Egypt, and used partial least squares regression (PLSR) and multivariate adaptive
regression splines (MARS) to predict soil salt, and it was found that the MARS model was
superior to the PLSR model in salt prediction and mapping performance. Chen et al. [9]
collected saline soil samples from the Yellow River Delta in China, and studied them using
near infrared reflectance spectroscopy based on non-negative matrix factorization (NMF) to
predict soil salt content. The simulation results showed that the method of NMF combining
indoor and outdoor spectra can improve the correlation between salt content and spectra
as well as improve the accuracy of prediction models. An et al. [10] explored the feasibility
of estimating soil salt content using field hyperspectral data and satellite remote sensing
images in Kenli County, an area on the Yellow River Delta, and simulation results showed
that the sensitive bands of soil salt were mainly concentrated in the visible and near infrared
sections. Summers et al. [11] studied the soil in Jamestown, South Australia, by using an
ASD spectrometer to measure soil hyperspectral values in an indoor environment and
PLSR to predict soil properties. The simulation results showed that the PLSR model could
predict the contents of clay, organic carbon, iron oxide, and carbonate, with characteristic
spectral bands at 1900–2200 nm, 600–900 nm, 400–1100 nm, and 1900–2300 nm, respectively.

The main subjects of the hyperspectral studies above were saline soils affected by hu-
man activities such as farming, and the predicted elements focused on were soil properties
such as total salt content, organic matter, electrical conductivity, nitrogen, phosphorus,
potassium, and water content. However, the precision of prediction was not high, and stud-
ies of hyperspectral data on saline soil disturbed by different human activities is lacking.
Moreover, change to soil properties is further complicated given the inevitable influence of
varied human activity. Therefore, it is a challenge to quantitatively predict the total salt
content of soil under different human disturbance conditions.

In addition, the pre-processing of hyperspectral data is a key to building a high-
precision prediction model. Thus, improving the prediction precision of the prediction
model is a central concern among researchers [12–16]. An optimal pre-processing method
can fully reveal information hidden in the spectrum. Traditional integral differential models
(1st or 2nd order) are widely used in the pre-processing of ground hyperspectral data [17],
but the physical model of the system described is an approximate way of processing which
ignores the reality of the system in the natural world. However, fractional-order differential
models extend the order concept of the integral differential to any order due to “memory”
and “wholeness”, and thus can delineate the physical characteristics of the system in the
natural world more clearly [18,19]. Compared with integral differential models, a model
described by a fractional-order differential is more accurate and is widely used in the fields
of signal analysis, weather forecast, image processing, biomedicine, viscoelastic materials,
fractal theory, automatic control, and more [20–22]. However, it is only in recent years that
the fractional-order differential model has been used to pre-process soil hyperspectral data
by scientists. Hong et al. [23] collected soil samples from the Hanjiang Plains of Wuhan,
and calculated the fractional-order differential of soil spectra from order 0.0 to order 2.0
at intervals of order 0.25. The results of the simulation showed that the RPD derived
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by PLS-SVM (partial least squares-support vector machines) was better than that of the
PLSR model, and a 1.25-order PLS-SVM model is the best prediction model for prediction
of soil organic matter. Wang et al. [24] took the saline soil in the Ebinur Lake Wetland
National Nature Reserve in Xinjiang as their research object and used the fractional-order
differential coupled gray correlation analysis-BP neural network modeling method to
quantitatively predict the organic matter content. The simulation results showed that the
accuracy of quantitative prediction of organic matter was the highest when the model was
at an order of 1.2. Zhang et al. [25] collected soil in northwest China, measured indoor
hyperspectral data, analyzed organic content, and pre-processed the soil hyperspectral
data with fractional-order derivatives (FOD) at an interval of 0.05. The simulation results
found the correlation between FOD and organic matter was best within an order range of
1.05–1.45.

The above research found that the fractional-order differential method could delineate
the variation of soil hyperspectral reflectance in detail so that more hidden information can
be mined and the accuracy of the retrieval model can be improved. These fractional-order
differential studies mainly aim at the calculation of indoor hyperspectral values from soil,
while there are few reports on the application of field hyperspectral data from soil. Indoor
hyperspectral data are measured in a dark room with controlled lighting by using a 50 W
halogen lamp to simulate the solar light source. These testing conditions are ideal and
ignore the actual environment of the soil. In addition, air drying, grinding, and sieving of
soil before measurement may change the original hyperspectral characteristics of the soil.
The field hyperspectral data are measured in open air, which can reflect the real natural
environment of the soil. However, it is more difficult to collect field hyperspectral data,
and the collected field hyperspectral data are usually limited. Using a small sample size, it
is more difficult to improve the RPD of field hyperspectral data on soil property prediction
by fractional-order differential modeling.

In this study, the hyperspectral reflectance of five kinds of spectra (R,
√

R, 1/R, lgR,
1/lgR) at different fractional orders were calculated by collecting the field hyperspectral
data of soil samples from different human disturbance areas. Bands reaching a 0.01 signifi-
cance level at different fractional orders were extracted to establish a significance level band
partial least squares model (FOD-SLB-PLSR) based on the fractional-order differential. The
purposes of this study were (1) to establish a soil salt content prediction FOD-SLB-PLSR
model with high precision under different human disturbance conditions for the three
areas, and to compare the results with those of PLSR models established by other meth-
ods (All-PLSR, FOD-All-PLSR, IOD-SLB-PLSR), (2) to conclude what kind of spectrum
transformation data (R,

√
R, 1/R, lgR, 1/lgR) are the best for predicting different soil salt

content in areas with slight, moderate, and severe human disturbance, (3) to identify the
effect of different pretreatment methods on the accuracy of soil salt content prediction, and
to extract more detailed information via fractional-order differential modeling, and (4) to
select the optimal input variables from soil hyperspectral band, combination significance
level band, and fractional-order differential modeling.

2. Materials and Methods
2.1. Overview of the Research Areas

The research areas are located in Fukang City of Changji Hui Autonomous Prefecture
in Xinjiang Uygur Autonomous Region, in the margin of alluvial fan (87◦44′E–88◦46′E,
44◦45′N–45◦45′N) to the southeast of Xinjiang 102 Corps. Fukang is an important part of
the economic belt on the north slope of Tianshan Mountain, about 50 km from Urumqi
and about 90 km from Changji Hui Autonomous Prefecture. Fukang is one of the typical
representatives of arid areas in Xinjiang, with a total land area of about 853,500 hm2, and is
the main backbone of the agriculture- and animal husbandry-based economy. Fukang City
possesses limestone, coal, mirabilite, oil, and other important mineral resources, as well as
Tianshan Tianchi, desert ecosystems, Bogda Peak, Wuyun mosque, and other important
tourism sites.
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According to the specific conditions of the ground surface in the research areas,
5 sampling lines were arranged in Area A, with spacing between the sampling lines of
about 500 m to 700 m, and 6 representative sampling points set on each sampling line.
Area B was also divided into 5 sampling lines with spacing of about 400 m to 600 m, with
5 to 7 representative sampling points set on each sampling line. Area C consisted of two
tracts of farms, with areas smaller than that of A or B, and six sampling lines arranged with
spacing between sampling lines of about 200 m to 400 m. Five representative sampling
points were set on each sampling line. In each area, samples were collected at 30 points
for a total of 90 sample points for sample collecting, as shown in Figure 1. In this way,
a grid covering different sub-areas was formed across the entire research area, and the
sampling points did not only reflect the soil property of each sub-area, but also controlled
for distribution uniformity of sampling points in each area.
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Figure 1. Research areas: (a) Country and region. (b) Distribution of sample points. (c) Field
environment of soil collection and soil crust in Area A. (d) Field environment of soil collection and
soil crust in Area B. (e) Field environment of soil collection and soil crust in Area C.

2.2. Classification of Research Areas with Different Disturbance Levels

The inevitable disturbance caused by human activity is mainly reflected in the different
methods, intensity, and duration of human land use. Therefore, under the process of land
development in arid areas, inevitable disturbances of different degrees caused by human
activity will affect the ecological environment of the area and will induce changes to the
original scheme of ground water and surface water causing spatial disequilibrium of water
content. This ultimately results in changes to the salt content transfer rate and transport
channels, aggravating the complexity of salt and water variation. One principal result of
this process is a change in soil characteristics.

The desert and woodland soils to the northwest of Fukang City in Changji Hui
Autonomous Prefecture, Xinjiang, which are affected by human activity to varying degrees
and represent a variety of landscape and land use modes, are targeted for experimental
study to elucidate the relationship between soil properties and intensity of human activity.
The soil samples were divided into three areas based on intensity of human activity: a
lightly disturbed area (Area A), a moderately disturbed area (Area B), and a severely
disturbed area (Area C). The field environment of soil collection and soil crust of samples
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in Areas A, B, and C are shown in Figure 1c–e. The locations of the three areas are near one
another, and are only separated by natural ditches and man-made fences. Thus, conditions
such as soil properties, sun exposure, atmospheric temperature, humidity, and waterfall
are essentially the same. Namely, the environmental backgrounds of the soils in the three
areas were kept constant.

The sampling area was divided into three types of soil areas according to the degree
of human interference (Figure 1). The specific environments of the three study areas are
described as follows:

Slightly disturbed area (Area A): there is a water conveyance canal from south to north
in the study area (marked in the pink of Figure 1b). Its length is 15.30 km, depth is 5 m,
upper width and lower width are 24 m and 6 m respectively [26]. Area A is far away from
human settlements due to the blockage of the water canal; humans only occasionally visit
this area, and its topography basically maintains its original state, without destruction of
the original component information in the soil, and without effect on the original vegetation.
The vegetation coverage in this area is relatively high, generally about 30%. In some areas,
there is a Haloxylon ammodendron forest. The associated plants are mainly salt-tolerant
vegetation, such as Haloxylon ammodendron, Kalidium foliatum, Tamarix chinensis, Salsola
collina, Reaumuria soongonic, etc. In addition, there are a large number of biological crusts
on the soil surface of Area A, which are black and well developed.

Moderately disturbed area (Area B): Area B is located near the 102nd Corps in Fukang
City, Xinjiang Uygur Autonomous Region. The soil in this area was cultivated in the
1950s and then abandoned. The daily activities of humans interfere with this area to a
certain extent, which has led to certain changes in the vegetation and destroyed the original
composition information in the soil. The ridges that were ploughed at that time still remain
on the soil surface today; the width of the ridges is about 3 m, the distance between the
ridges is about 0.4 m, and the depth of the furrows is about 0.3 m. The vegetation coverage
in this area is relatively low, about 15%, mainly short shrubs such as Salsola collina or
Reaumuria soongonic, accompanied by a small amount of saline vegetation such as Tamarix
chinensis and Alhagi spaysifolia. In addition, there are some biological crusts on the surface
of some soils in Area B; the degree of development of biological crusts is relatively poor
compared with those in Area A.

Severely disturbed area (Area C): Area C is mainly composed of two artificial forest
farms. All the soil was plowed and developed around 2015, which meant it was strongly
disturbed by human activities. A large amount of artificial land reclamation has resulted
in the removal of all the original vegetation on the surface, and the various soil attributes
have been changed, among them, soil salinity, organic matter, nitrogen, phosphorus and
potassium have changed greatly. The artificially planted trees are mainly elm trees. The
average tree height in the woodland is about 2.5 m, the average crown width is about
0.5 m × 0.5 m, the row spacing in the woodland is about 3 m, and the plant spacing is
about 1 m. Plastic hose drip irrigation is used in the woodland, and white salt can be seen
on the soil surface. There are also few crusts on the soil surface in Area C.

2.3. Collection of Soil Sample Data

Soil samples were collected from 1 to 10 October 2017, for 10 days in total, and were
sampled according to the position information of the 90 sampling points set up in Figure 1.
We collected 5 topsoil samples from 0–10 cm depth within 1 m around each sampling point
by using the plum-blossom pile sampling method. We thoroughly mixed the samples
and place them in sealed sampling bags in an aluminum box, then sealed and marked
the samples. Meanwhile, coordinate data of sampling points were recorded using GPS
positioning, as well as the vegetation type, vegetation coverage, crusting condition, and
land utilization. We also took photographs of the sampling environment at each sampling
point. All soil samples were transported back to the laboratory, and after natural air-drying,
impurity removal, grinding and sieving, were sent to the Xinjiang Institute of Ecology and
Geography at the Chinese Academy of Sciences for determination of total salt content.
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2.4. Measurement of Soil Hyperspectral Data

The field hyperspectral data of the soil samples were measured using a FieldSpec®3Hi-
Res type ground-object spectrometer manufactured by American ASD (Analytical spectral
device). The measurements range of all bands was 350–2500 nm, and the number of output
bands was 2151, in which the band range of 350–1000 nm was visible light with a spectral
resolution of 3 nm and a sampling interval of 1.4 nm. The band range of 1001–2500 nm
was near infrared with a spectral resolution of 8 nm and a sampling interval of 1.1 nm. The
resampling interval was 1 nm.

The collection of field soil and soil sample hyperspectral data were performed at
the same time, from 12:30–15:30 local time, and the measurements were conducted when
weather conditions were clear, sunny, and not windy. The FieldSpec®3Hi-Res ground-
object spectrometer was subjected to a whiteboard correction operation prior to each soil
hyperspectral collection, and the soil was measured only when 100% of the baseline was
obtained [26,27]. Measurements were taken at 25 ◦C of the probe field view angle and
at a height of 15 cm vertical to the ground, during which 5 points were chosen within
1 m of each sample point. Measurements were replicated 10 times at each point, thus
50 hyperspectral data readings were collected from each sample point. The average value
of 50 hyperspectral data readings was calculated using View Spec Pro software pre-sets
in the spectrometer, which was then taken as the measured hyperspectral reflectance
value of each sample point. In addition, researchers made careful observations upon each
hyperspectral data measurement. If any outlier hyperspectral data were measured, the
data were excluded from analysis and soil was measured again.

2.5. Delete Interference Bands

The soil hyperspectral reflectance data measured by the FieldSpec®3Hi-Res spectrom-
eter has a detection band range of 350–2500 nm, and each hyperspectral reflectance data
reading contains 2151 bands’ information. However, the ultraviolet bands for 350–399 nm
and the short-wave infrared bands for 2401–2500 nm collected by the spectrometer are
affected by noise, which results in a low signal-to-noise ratio, large amplitude changes,
poor data quality, and data instability. This paper takes the 23rd soil sample in Area A as
an example: the hyperspectral reflectance of the edge bands is shown in Figure 2, and the
fluctuation of the hyperspectral reflectance is relatively large. Therefore, this paper deletes
the 350–399 nm and 2401–2500 nm edge bands.
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Figure 2. Hyperspectral reflectance curve of the edge bands: (a) 350–399 nm; (b) 2401–2500 nm.

Figures 3–5 show the original hyperspectral reflectance values of soils in Areas A,
B, and C at 350–2500 nm, and the original hyperspectral reflectance of the three regions
fluctuates very obviously in the 1350 nm and 1900 nm bands, which was caused by the
influence of the soil moisture absorption bands. At the same time, when we collect field
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hyperspectral data, those bands will have a greater impact on the accuracy of the quanti-
tative prediction model for soil total salt. Therefore, this study deletes the 1340–1420 nm
and 1800–1960 nm bands located near the moisture absorption bands, and deletes the
350–399 nm and 2401–2500 nm bands. Figures 3b, 4b and 5b show the hyperspectral re-
flectance curves with deletion of the interference bands. There was a total of 1759 bands
remaining when the interference bands were deleted.
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2.6. Grünwald-Letnikov Fractional-Order Differential

In 1867, the mathematician Grünwald first proposed an analytical fractional-order
differential formula using the Gamma and Mittag–Leffler functions. However, the mathe-
matician Letnikov, who was completely unaware of the definition of Grünwald’s work,
independently derived another expression using the same method in 1868. Such is the
present definition of Grünwald–Letnikov, which extends the order range of the classical
integral differential with continuous functions [28] from the integral order to the frac-
tional order by calculating the limit of the difference approximate recursion formula of the
original integral differential [29–31].

Since Grünwald–Letnikov’s is a discrete definition, it is convenient for numerical
calculation. Thus, in this study, we use the Grünwald–Letnikov expression to research
hyperspectral signals. The formula is as follows:

dPf(x) = lim
h→0

1
hp

[(t−a)/h]

∑
m=0

(−1)m Γ(p + 1)
m!Γ(p−m + 1)

f(x−mh) (1)

where p represents the order of the differential, the p order differential when p is a positive
real number, and the p order integral when p is a negative real number. h represents the
differential step, t represents the upper limit of the differential, a represents the lower limit
of the differential, and Γ represents the Gamma function.

The derivation of Equation (1) is as follows:
Assuming an n order differential in the function f(x), then the first order differential

f(x) is defined as:

f′(x) =
df(x)

dt
= lim

h→0

f(x)− f(x− h)
h

(2)

The second order differential of f(x) is defined as:

f′′ (x) =
(
f′(x)

)′
= lim

h→0

f′(x)− f′(x− h)
h

= lim
h→0

f(x)− 2f(x− h) + f(x− 2h)
h2 (3)

The third order differential of f(x) is defined as:

f′′′ (x) = (f′′ (x))′ = lim
h→0

f′′ (x)− f′′ (x− h)
h

= lim
h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)
h3 (4)

By analogy, the nth order differential of the function f(x) can be deduced by mathe-
matical induction as:

f(n)(x) =
dnf(x)

dtn = lim
h→0

1
hn

n

∑
m=0

(−1)m
(

n
m

)
f(x−mh) (5)

In which,
(

n
m

)
represents the number of combinations,

(
n
m

)
= n(n−1)(n−2)...(n−m+1)

m!

Since the binomial expansion can be expressed as Equation (6):

(1− z)n =
n

∑
m=0

(−1)m
(

n
m

)
zm =

n

∑
m=0

(−1)mn!
m!(n−m)!

zm (6)

The coefficients of the binomial can be directly calculated by Equation (7):

(−1)m
(

n
m

)
= (−1)m n!

m!(n−m)!
(7)
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By extending the formula for calculating the n-order differential to the case of non-integer
v, the expression of the binomial can be changed into the form of infinite series, namely:

(1− z)v =
∞

∑
m=0

(−1)m
(

v
m

)
zm =

∞

∑
m=0

wmzm (8)

Then the expression of the extended binomial can be expressed as Equation (9):

wm = (−1)m
(

v
m

)
=

(−1)mΓ(v + 1)
Γ(m + 1)Γ(v−m + 1)

(9)

Assuming a ≤ t, the value of the function f(x) is zero and the sum of infinite terms can
be transformed into the sum of finite terms. Thus, expression of the Grünwald–Letnikov
fractional-order differential derived at this time is shown in Equation (1).

Assuming that the function f(x) is a one-dimensional hyperspectral signal, the band
range is [a, t], x ∈ [a, t] equally divided by the differential step h. Since the resampling
interval of the ASDFieldSpec®3Hi-Res spectrometer is 1 nm, the differential step can be set
as h = 1. Thus, the difference expression of the v order fractional-order differential of the
function f(x) can be derived from Equation (1) as follows:

dvf(x)
dxv ≈ f(x) + (−v)f(x− 1) +

(−v)(−v + 1)
2

f(x− 2) +
(−v)(−v + 1)(−v + 2)

6
f(x− 3) + . . . +

Γ(−v + 1)
n!Γ(−v + n + 1)

f(x− n) (10)

In Equation (10), v = 0 represents 0.0 order differential; that is, no fractional-order
differential processing is performed on the hyperspectral. v = 1 represents a 1.0 order
differential of the integral order, and v = 2 represents a 2.0 order differential of the integral
order. In this study, the fractional-order differential pre-processing calculation on the
hyperspectral signal is performed using Matlab software.

From Equation (10), the v-order fractional-order differential value of function f(x) in
the given band is related not only to the hyperspectral reflectance f(x) of the band, but also
the hyperspectral reflectance of all bands prior. That is, the reflectance is related to f(x− 1),
f(x− 2), f(x− 3), . . ., f(x−n). Moreover, the calculation process incorporates point distance
as a parameter affecting the value of the fractional-order differential. That is, the weight
value corresponding to closer points is larger and the influence on the differential value
is likewise greater, while the weight value corresponding to farther points is smaller and
the influence on the differential value is likewise smaller. This property reflects “memory”
and “global” in the fractional-order differential, which is the most significant difference
between fractional and integral differential.

2.7. Modeling Process of FOD-SLB-PLSR Model

We sorted bands reaching a 0.01 significance level band (i.e., the characteristic band)
of each spectral transformation for total salts at different differential orders, then took
the corresponding hyperspectral reflectance thereof as an independent variable. Data on
the total salts were treated as dependent variables to establish the partial least squares
regression (FOD-SLB-PLSR) model based on the significance level bands of fractional-order
differential (realized on Matlab software). The modeling steps used are as follows:

1© Carry out four mathematical transformations (
√

R, 1/R, lgR, 1/lgR) on the original
soil hyperspectral data (R) to obtain various transformed hyperspectral data.

2© Calculate the correlation coefficient between the original spectrum of 0.0-order
(0.0-order indicates no performed differential value calculation) as well as its transformed
data and total salt, then test the significance level of the correlation coefficient. Select the
band for which the test result reaches the 0.01 significance level as the characteristic band
of the differential order. If no correlation coefficient of any band at the order of 0.0 passes
the 0.01 significance test, then carry out step 4©.
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3© Take the hyperspectral reflectance corresponding to the selected characteristic band
from step 2© as the independent variable, and the salt data as the dependent variable, then
use the partial least squares regression method to build the model.

4© Execute the calculation r = r + 0.1 if order of differential r ≤ 2.0, then continue to
execute step 5©. Otherwise, continue to execute step 7©.

5© Take 0.1 as the order interval of the fractional-order differential, then use formula (10)
from Section 2.5 to calculate the spectral data of the original spectrum and its transformed
data following the 0.1 order differential.

6© Repeat steps 2© to 5© until orders 0.0–2.0 have been completed.
7© End of modeling process.

The FOD-SLB-PLSR model building process is as shown in Figure 6.
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2.8. Evaluation Method of Model Precision

In this paper, five precision evaluation indices are used to evaluate the effect of
prediction modeling [32,33]. That is, the coefficient of determination for calibration dataset
(R2

c), root mean squared error for calibration dataset (RMSEc), coefficient of determination
for validation dataset (R2

v), root mean squared error for validation dataset (RMSEv), and
the ratio of the performance to deviation (RPD) of the model. The calculation formulas of
R2, RMSE, and PRD are as follows [34–36]:

R2 = (

n
∑

i=1
(yi −

_
y)(zi −

_
z)√

n
∑

i=1
(yi −

_
y)2·

n
∑

i=1
(zi −

_
z)2

)2 (11)

RMSE =

√√√√√ n
∑

i=1
(yi − zi)

2

n
(12)

RPD =
SD

RMSEp
(13)

where n represents the number of soil samples; yi represents the measured values of the
ith soil sample;

_
y represents the average of the measured values of all soil samples; zi

represents the predicted values of the ith soil sample;
_
z represents the average of the

predicted values of all soil samples; and SD represents the standard deviation of the soil
sample in the validation dataset.

In general, the optimal prediction model has the largest R2 and RPD values and the
smallest RMSE value. R2 indicates the degree of fit and stability of the model. The closer
its value to 1, the higher the degree of fit and the better the stability of the model. When
R2 ≥ 0.9, the fit between the predicted value and measured value of the model and stability
were excellent. When 0.80 < R2 < 0.9, the fit between the predicted and measured values
of the model was very good, as well as the stability. When 0.66 ≤ R2 ≤ 0.80, the fit between
the predicted and measured values was acceptable, and the stability was relatively good.
The smaller and closer to 0 the value of RMSE, the smaller the prediction error of the model
and the higher the prediction accuracy. RPD is used to evaluate the ratio of the performance
to deviation of the prediction model [37–39]. When RPD ≥ 2.5, the prediction capability of
the model was excellent. When 2.0 ≤ RPD <2.5, the prediction capability of the model was
very good. When 1.8 ≤ RPD <2.0, the prediction capability of the model was relatively
good. When 1.4 ≤ RPD < 1.8, the prediction capability of the model was average. When
1.0 ≤ RPD < 1.4, the prediction capability of the model was poor. When RPD < 1.0, the
prediction capability of the model was very poor and a prediction could not be made.

The dataset needed to be divided into validation and calibration datasets before
establishing a hyperspectral prediction model. The concentration gradient method was
used as the basis for classification, which selects the samples as the validation dataset
samples according to a certain concentration interval of all the soil samples based on the
total salt content. This method can ensure that the selected validation dataset sample
data is relatively evenly distributed in all soil sample data, so the selected sample has a
certain degree of representativeness. A total of 90 soil samples were collected in this study,
and 30 samples were in Areas A, B, and C respectively. The dataset was divided by the
concentration gradient method. Therefore, 20 samples were selected as the calibration
dataset, and 10 samples were selected as the validation dataset.

3. Simulation Results

The estimation results of All-PSLR, FOD-All-PLSR, and FOD-SLB-PLSR models on
total salt in each area were all sorted out to clearly explain the difference of total salt
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prediction in different areas by different methods. The estimation results of the soil total
salt in Areas A, B, and C are shown in Tables 1–3, respectively.

The All-PSLR model takes the hyperspectral reflectance corresponding to all bands
as the independent variable. The PLSR model based on the five spectra had very poor
predictive ability, and its RPD value was less than 0.5 in Areas A and C, and less than 1 in
Area B, meaning that the total salt content of three regions could not be predicted.

The FOD-All-PLSR model is a method based on the All-PSLR model, which uses the
hyperspectral reflectance of all bands after fractional differentiation as an independent
variable to establish a PLSR model. Compared with the All-PSLR model, its prediction
effect was improved to some extent, but the improvement was still not large. Its RPD value
was less than 1 in the three regions, and it was still unable to effectively predict the total
salt in the three regions.

While the FOD-SLB-PLSR model showed improvement over the FOD-All-PLSR model
that is, taking the significance band reaching 0.01 level as the characteristic band after
fractional-order differential to establish the PLSR model, it eliminated the band variables
with low correlation and obtained an estimation model with good prediction and high
stability. Compared with the All-PSLR and FOD-All-PLSR model, the prediction of this
model was improved greatly.

3.1. Area A
3.1.1. Prediction of Total Salt Content in Area A by Different Estimation Models

There were four models (R of order 1.4, R of order 1.8, 1/lgR of order 1.6, and
√

R of
order 1.8) in the FOD-SLB-PLSR model with RPD values between 1.8 and 2.0 (Figure 7),
and the R2 values were between 0.66 and 0.80. This shows that the four models had good
ability to predict soil total salt content in Area A, and the fitting effect between predicted
and measured values was also good. Among them, RPD, R2, and RMSE of the validation
dataset were 1.8126, 0.7608, and 3.6691, respectively in the R model of order 1.4. Similarly,
these values were 1.8715, 0.7199, and 3.4859, respectively in the R model of order 1.8;
1.8444, 0.6759, and 3.2087, respectively in the

√
R model of order 1.8; and 1.9061, 0.7121,

and 3.2268, respectively in the 1/lgR model of order 1.6. Thus, the optimal model for
predicting the total salt content in Area A was the 1.6 order 1/lgR, in which the RPD was
enhanced by 1.85%, Rc

2 was enhanced by 4.58%, and RMSEv and RMSEc were reduced by
7.43% and 90.44%, respectively, compared to the optimal 1.8 order fractional model of the
original spectrum.

From the above analysis, the optimal FOD-SLB-PLSR model was superior not only
to All-PSLR models, but also to all FOD-All-PLSR models (Table 1). That is to say, the
fractional-order differential model reaching 0.01 level significance test band can eliminate
the redundancy, fully extract hyperspectral information, and model to predict soil salt
information well. Meanwhile, in the FOD-SLB-PLSR models, good prediction was seen
among higher-order differentials (above 1.4 order), and the RPD of optimal FOD-SLB-PLSR
model was enhanced by 1.85% compared with the optimal R-based FOD-SLB-PLSR model
(fractional order 1.8).

Meanwhile, the optimal prediction model for each method was selected for easier
comparison. Among them, All-PLSR represented a PLSR model based on all bands, and
only the prediction results of R and the optimal transformation at the order of 0.0 (i.e.,
when no differential value calculation was performed) are listed. FOD-All-PLSR represents
the PLSR model based on all bands of the fractional-order differential, and only prediction
results of R and the optimal transformation at the optimal differential order are listed.
FOD-SLB-PLSR represents the PLSR model based on the 0.01 significance level bands of
the fractional-order differential, and only the prediction results at the optimal differential
order of each of the five spectra are listed below.
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Table 1. Results of validation and calibration datasets by optimal estimation models using various methods (total salt
content in Area A).

Models Original and
Transformation

Differential
Order

Validation Dataset Calibration Dataset

RPD Rv
2 RMSEv Rc

2 RMSEc

All-PSLR
R 0.0 0.2926 0.1576 4.1986 0.0527 4.3519

1/lgR 0.0 0.3279 0.1660 4.1735 0.0577 4.3404

FOD-All-PLSR
R 0.7 0.8775 0.1278 5.1410 0.4817 2.4384

1/lgR 0.7 0.9574 0.1339 5.8328 0.6122 1.5247

FOD-SLB-PLSR

R 1.8 1.8715 0.7199 3.4859 0.9095 1.3450

1/lgR 1.6 1.9061 0.7121 3.2268 0.9512 0.1286
√

R 1.8 1.8444 0.6759 3.2087 0.9063 1.3689

1/R 1.3 1.5719 0.6304 3.2749 0.8391 1.7938

lgR 1.8 1.4382 0.4966 4.2714 0.9050 1.3780

Note: All represents all bands; PLSR represents partial least squares regression method; FOD represents fractional-order differential;
SLB represents bands where correlation coefficients reach 0.01 significance level; R represents original hyperspectral; and

√
R, 1/R, lgR,

and 1/lgR represent the corresponding spectra after the root mean square, reciprocal, logarithmic, and reciprocal transformation of R
respectively; and the order of 0.0 represents that no differential value calculation was performed.
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Figure 7. The calibration and validation results on total salt content in Area A of FOD-SLB-PLSR model: (a) validation
dataset R2, (b) calibration dataset R2, (c) validation dataset RMSE, (d) calibration dataset RMSE, (e) validation dataset RPD.

3.1.2. Scatter Plots of Prediction Models

The sample data of the validation dataset was used for testing in order to verify the
prediction accuracy of the total salt for the estimation model with five spectra (Figure 8).
The black dotted line represents the 1:1 regression line, and the blue solid line represents the
fitted equation line between the predicted value and the measured value. When the fitting
equation line is closer to the 1:1 regression line, it indicates that the prediction accuracy of
the model is higher. The data points in the All-PSLR and FOD-All-PLSR models are very
scattered on both sides of the fitted line.

It can be seen from Figure 8 showing the FOD-SLB-PLSR model that the measured
and predicted data of the 1.6-order 1/lgR, 1.8-order

√
R, and 1.8-order R models are more

evenly distributed on both sides of the fitting line. The fitting degrees of these three models
are better. However, the prediction effect based on the 1.6-order 1/lgR model is the best:
the maximum RPD is 1.9061, the smaller RMSE is 3.2268, the larger R2 is 0.7121, and the
fitting equation is expressed as y = 1.1223 ∗ x + 2.327.
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model was the optimal model for predicting soil total salt content in Area B, and predic-
tion results showed an improvement in RPD by 19.06% and in Rv2 by 5.56% with a re-
duction in RMSEv by 40.23% compared with the optimal 1.6-order fractional model of the 
original spectrum. 

In summary, we see that the optimal model for predicting total salt content in Area B 
was the optimal FOD-SLB-PLSR model, and a few models with relatively good predict-
ing ability were mainly concentrated in the fractional orders of 1.7 and 1.9 of 1/R. The 
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Figure 8. Scatter plot of the measured and predicted values of total salt in Area A: (a1) 0.0 order R of All-PSLR, (a2) 0.0 order
1/lgR of All-PSLR, (b1) 0.7 order R of FOD-All-PLSR, (b2) 0.7 order 1/lgR of FOD-All-PLSR, (c1) 1.8 order R of FOD-SLB-
PLSR, (c2) 1.6 order 1/lgR of FOD-SLB-PLSR, (c3) 1.8 order

√
R of FOD-SLB-PLSR, (c4) 1.3 order 1/R of FOD-SLB-PLSR,

(c5) 1.8 order lgR of FOD-SLB-PLSR.

3.2. Area B
3.2.1. Estimation of Total Salt Content in Area B by Each Modeling Method

The RPD values of two models (1/R of order 1.7 and 1/R of order 1.9) in the FOD-
SLB-PLSR model were greater than those calculated with 1.8 (Figure 9), and R2 values were
between 0.66 and 0.80, indicating that the predicted and measured values of these two
models fitted well. Of these, the RPD, R2, and RMSE of the verification dataset were 1.8315,
0.6876, and 6.5592, respectively in the 1.9-order 1/ R model; and 2.0761, 0.7458, and 6.9361,
respectively in the 1.7-order 1/R model. This indicates that the 1/R model of order 1.9 had
a good prediction ability for total salt content. The 1.7-order 1/R model was the optimal
model for predicting soil total salt content in Area B, and prediction results showed an
improvement in RPD by 19.06% and in Rv

2 by 5.56% with a reduction in RMSEv by 40.23%
compared with the optimal 1.6-order fractional model of the original spectrum.

In summary, we see that the optimal model for predicting total salt content in Area B
was the optimal FOD-SLB-PLSR model, and a few models with relatively good predicting
ability were mainly concentrated in the fractional orders of 1.7 and 1.9 of 1/R. The fractional
differentiation of 1/R can eliminate the noise of soil spectral reflectance in areas with
moderate disturbance. Furthermore, the RPD in the optimal FOD-SLB-PLSR model was
enhanced by 19.06% compared with the optimal fractional 1.6-order of FOD-SLB-PLSR
model based on R.
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Table 2. Results of validation and calibration datasets by optimal estimation models using various methods (total salt
content in Area B).

Models Spectrum Differential Order
Validation Dataset Calibration Dataset

RPD Rv
2 RMSEv Rc

2 RMSEc

All-PSLR
R 0.0 0.5381 0.0147 12.6955 0.1652 11.0038

1/lgR 0.0 0.6449 0.0537 13.4174 0.1806 10.9021

FOD-All-PLSR
R 0.7 0.5949 0.0145 17.9912 0.4267 5.8565

1/lgR 0.7 0.7777 0.0283 22.4536 0.5361 4.5055

FOD-SLB-PLSR

R 1.6 1.7438 0.7065 11.6040 0.9687 1.3244

1/R 1.7 2.0761 0.7458 6.9361 0.8874 4.0410
√

R 1.9 1.7979 0.6598 7.6436 0.9612 1.1533

lgR 1.6 1.7258 0.6525 10.3598 0.9752 1.8960

1/lgR 1.6 1.5153 0.6048 15.8096 0.9636 1.1116
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Figure 9. The calibration and validation results on total salt content in Area B by the FOD-SLB-PLSR model: (a) validation
dataset R2, (b) calibration dataset R2, (c) validation dataset RMSE, (d) calibration dataset RMSE, (e) validation dataset RPD.

3.2.2. Scatter Plots of Prediction Models

The accuracy of the prediction model to estimate the total salt with the validation
dataset data is shown in Figure 10. The data points in the All-PSLR and FOD-All-PLSR
models are scattered and not distributed around the fitted line.

It can be seen from Figure 10 showing the FOD-SLB-PLSR model that the data points
of the 1.7-order 1/R model are very evenly distributed on both sides of the fitting line,
and the fitting equation is y = 1.0727 ∗ x + 1.6932. The RPD, R2, and RMSE values of
the validation dataset are 2.0761, 0.7458, and 6.9361, respectively. Moreover, the data
points of the 1.6-order R, 1.9-order

√
R, and 1.6-order lgR models are also relatively evenly

distributed on both sides of the fitting line, but the fitting effect is not as good as that of the
1.7-order 1/R model.
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3.3. Area C
3.3.1. Prediction of Total Salt Content in Area C by Various Methods

The RPD values of FOD-SLB-PLSR model in two models (lgR of order 1.8 and lgR
of order 1.9) were between 2.0 and 2.5 (Figure 11) and R2 values were between 0.75 and
0.85. Among these values, the RPD, R2, and RMSE for the verification dataset were 2.2892,
0.8202, and 6.6363, respectively, under the 1.8-order lgR model; and 2.1370, 0.7996, and
5.3727, respectively, under the 1.9-order lgR model. Therefore, the lgR of order 1.9 shows
a good prediction strength for total salt content, and the fitting effect between predicted
values and measured values was favorable. The 1.8-order lgR model is the optimal model
for predicting soil total salt content in Area C and has a good prediction strength for total
salt content. The fit between predicted and measured values was also good. Compared
with the optimal 1.8-order fractional model of the original spectrum, RPD was enhanced
by 46.23%, Rv

2 was enhanced by 45.92%, and Rc
2 was enhanced by 23.63%, while RMSEv

and RMSEc were reduced by 25.05% and 31.09%, respectively.
It can be concluded that under FOD-SLB-PLSR models, a few models with good

prediction ability were concentrated near the fractional orders of 1.8 and 1.9 for lgR. This
indicates that estimation of soil total salt content in areas with severe human disturbance
not only requires the original data’s spectral transformation (especially the logarithmic
transformation), but also fractional-order differential processing. If these conditions are
satisfied, the model can estimate the total salt content in Area C. Furthermore, compared
with the optimal FOD-SLB-PLSR model (1.8 order) based on R, the optimal FOD-SLB-PLSR
model RPD values were enhanced by 46.23%.
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Table 3. Results of validation and calibration datasets by optimal estimation models using various methods (total salt content in
Area C).

Models Spectrum Differential Order
Validation Dataset Calibration Dataset

RPD Rv
2 RMSEv Rc

2 RMSEc

All-PSLR
R 0.0 0.2999 0.1889 10.7050 0.1053 14.1151

1/R 0.0 0.3994 0.2204 10.3488 0.1040 14.1251

FOD-All-PLSR
R 0.7 0.6997 0.1938 12.2275 0.5603 5.6623

1/R 0.7 0.8203 0.2148 10.5617 0.5328 10.2004

FOD-SLB-PLSR

R 1.8 1.5655 0.5621 8.8542 0.6897 8.3127

lgR 1.8 2.2892 0.8202 6.6363 0.8527 5.7279

1/R 1.0 1.8671 0.7813 8.7165 0.8366 6.0329
√

R 1.8 1.6512 0.6005 8.1945 0.7303 7.7502

1/lgR 1.2 0.8315 0.2059 11.3146 0.3549 11.9855
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3.3.2. Scatter Plots of Prediction Models

The test results of the prediction model to estimate the total salt are shown in Figure 12.
The data points in the All-PSLR and FOD-All-PLSR models are very scattered on both sides
of the fitted line.

The test results of the optimal FOD-SLB-PLSR model for Figure 12(c1–c5) show that the
data points of the 1.8-order lgR model are most evenly distributed around the fitting line,
and the RPD, R2, and RMSE of the validation dataset are 2.2892, 0.8202, 6.6363, respectively.
The fitting equation is y = 1.2395 ∗ x + (−4.0369), so this model has the best prediction
effect on the total salt in Area C. The 1.2-order 1/lgR model has the worst test effect, and
the data points are very scattered on both sides of the fitted line. The data points of the
1.8-order R and

√
R models are also scattered around the fitting line. The data points of the

1.0-order 1/R model are relatively evenly distributed around the fitting line.
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4. Discussion
4.1. Compare the Prediction Performance of the Different Human Disturbance Areas Based on
Optimal FOD-SLB-PLSR Model

The disturbance of the ecosystem has become a widespread phenomenon. In the arid
and semi-arid areas of China, because there is interference such as human grazing and
agricultural activities, humans have reclaimed large areas of wasteland into cultivated
land and forest land. However, few scientists have compared and analyzed the predic-
tion performance of soil salinity models in different human interference environments.
Duan et al. [26] adopted a multiple linear regression model to predict the salt content of the
three interference regions, but did not use the preprocessing method of fractional-order dif-
ferential modeling. Tian et al. [40] employed a multiple regression model to quantitatively
estimate soil total potassium content in one region, and did not compare the estimation
effect of different research areas. Fu et al. [41] only studied the pretreatment effect of soil
total phosphorus content in one region, but did not analyze the prediction performance.
Moreover, this paper compares the prediction effects of total soil salt models in different
interference regions in detail. The results of the proposed FOD-SLB-PLSR model vary
greatly on the prediction of total salt content in different human disturbance areas, which
can be seen from Tables 1–3.

In the area with slight human activity, the FOD-SLB-PLSR model based on the 1/lgR
transform spectrum of 1.6-order was the best model for predicting the total soil salt in Area
A, and its RPD, R2, and RMSM were 1.9061, 0.7121, 3.2268, respectively. The prediction
effect based on the R original spectrum of 1.8-order for RPD, R2, and RMSM were 1.8715,
0.7199, 3.4859, respectively. Those results indicate that the prediction accuracy of the soil
total salt content model based on the original spectral data preprocessed by fractional-order
differential modeling is almost the same as that of the optimal model based on the 1/lgR
transformed spectral preprocessed by fractional-order differential modeling.

In the area of moderate human activity, the optimal model for predicting soil total salt
content was based on the 1/R transformation of the original spectrum then processed by
fractional-order differential modeling. This best model was the 1/R transform spectrum of
1.7-order, and its RPD, R2, and RMSM were 2.0761, 0.7458, 6.9361, respectively. It shows
that the prediction capability of the best model was very good.
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In the area with severe human activity, the model based on lgR transformation through
1.8-order fractional-order differential pretreatment was best; its RPD, R2, and RMSM were
2.2892, 0.8202, 6.6363, respectively, and its prediction capability was very good due to its
RPD value between 2.0 and 2.5.

These results may indicate that the greater the degree of disturbance to the soil, the
greater the need to transform the original spectrum. Meanwhile, the RPD values that
provided an optimal FOD-SLB-PLSR model for each area were: Area A (1.9061) < Area B
(2.0761) < Area C (2.2892). This indicates that the prediction effect of data processed by
fractional-order differential calculation increases with human disturbance increases and
results in a higher-precision model.

4.2. Compare the Prediction Effect of FOD-SLB-PLSR Model with the Other Two Models

The results of Tables 1–3 show that the prediction performance of the optimal FOD-
SLB-PLSR model for each area was superior to corresponding All-PSLR, and FOD-All-
PLSR models for soil total salt content. It indicates that the original soil hyperspectral data
undergo spectral transformation and fractional-order differential processing is insufficient.
This is because a total of 1759 all band variables were included in the All-PSLR and FOD-
All-PLSR models, and there were a large number of redundant band variables, which
will not only lead to low accuracy of the prediction model, but also make the calculation
of the model large. Therefore, it was necessary to further select the characteristic band
information. This paper chose the characteristic band based on the 0.01 significance level
band (SLB). The PLSR model established based on the characteristic waveband not only
reduced the calculation required of the model, but also improved the prediction accuracy
of the model.

Therefore, in order to achieve a good or relatively good prediction ability for these
models, it is necessary to carry out fractional-order differential processing and use a model
with bands that achieve a 0.01 significance level test. The method of extracting feature
bands based on the significance level in this paper is consistent with previous research
results of scientists. For example, Chen et al. [42] estimated the nitrogen concentration of
rubber trees using fractional calculus, and the PLSR was utilized to develop the estimation
models with the wavelengths selected by significant test of correlation coefficient at 0.01
level. Zhang et al. [43] studied the quantitative estimation of salt content of saline soil, and
bands whose correlation coefficient passed the significance test at the level of 0.01 were
used as features to participate in the modeling process.

4.3. Compare the Prediction Performance between Optimal FOD-SLB-PLSR Model and
IOD-SLB-PLSR Model

IOD-SLB-PLSR represents a PLSR model based on significance level bands of integral
differentials (1.0 and 2.0). The results of the optimal FOD-SLB-PLSR model compared with
the optimal IOD-SLB-PLSR model are shown in Table 4.

In Area A, compared with the model based on 1.0-order 1/lgR in prediction perfor-
mance of the total salt content, the RPD of the optimal FOD-SLB-PLSR model was enhanced
by 9.83%, Rc

2 was enhanced by 0.38%, and RMSEv and RMSEc were reduced by 27.83%
and 40.76%, respectively. Compared with the model based on 2.0-order 1/R, the RPD of
the optimal FOD-SLB-PLSR model was improved by 21.91%, Rv

2 was improved by 22.63%,
and Rc

2 was improved by 3.62%, while RMSEv and RMSEc were reduced by 29.90% and
89.96%, respectively (Table 4). Furthermore, compared with the best integral order differ-
ential model (IOD-SLB-PLSR of 1.0-order 1/lgR), the RPD of the optimal FOD-SLB-PLSR
model was enhanced by more than 9%.

In Area B, compared with the IOD-SLB-PLSR model based on 1.0-order 1/lgR pre-
diction, the optimal FOD-SLB-PLSR model had a 59.26% improvement in RPD, 106.76%
improvement in Rv

2, 8.90% in Rc
2, and a 51.69% reduction in RMSEv and 22.01% reduction

in RMSEc. Compared with the IOD-SLB-PLSR model based on R of 2.0-order, the RPD of
the optimal FOD-SLB-PLSR model improved by 45.66%, Rv

2 improved by 59.50%, and
RMSEv was reduced by 35.37%. Furthermore, compared with the optimal IOD-SLB-PLSR
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model (2.0-order R), the RPD in the optimal FOD-SLB-PLSR model was enhanced by more
than 45%.

In Area C, compared with the 1/R of 1.0-order under the IOD-SLB-PLSR model in
prediction performance of total salt content, the optimal FOD-SLB-PLSR model showed
a 22.61% improvement in RPD, 4.98% improvement in Rv

2, and 1.92% improvement in
Rc

2, while a 23.87% reduction was seen in RMSEv and a 5.06% reduction was seen in
RMSEc. Compared with the lgR of 2.0-order under the IOD-SLB-PLSR model, RPD was
enhanced by 51.17%, Rv

2 was enhanced by 46.75%, and RMSEv was reduced by 15.25%.
Furthermore, compared with the best integral differential model (IOD-SLB-PLSR), the
optimal FOD-SLB-PLSR model RPD values were enhanced by more than 22%.

The optimal model was revealed in the fractional order results instead of the integer
order results in the three regions, which is consistent with previous research results of
scientists. For example, Wang et al. [44] combined fractional-order differential and PLSR
models to predict the organic matter content; the optimal model also was revealed in
the fractional order of 1.8. Hong et al. [23] used the partial least square–support vector
machine (PLS–SVM) model to estimate the soil organic matter content, and the 1.25-order
derivative spectra exhibited the best model performance. Zhang et al. [25] found the 1.05-
to 1.45-order range of PLS–SVM had the highest signal-to-noise ratio and was most suitable
for soil organic matter content analysis.

Table 4. Results of the optimal FOD-SLB-PLSR model compared with optimal IOD-SLB-PLSR model.

Areas Models Original and
Transformation

Differential
Order

Validation Dataset Calibration Dataset

RPD Rv
2 RMSEv Rc

2 RMSEc

Area A

FOD-SLB-PLSR 1/lgR 1.6 1.9061 0.7121 3.2268 0.9512 0.1286

IOD-SLB-PLSR
1/lgR 1.0 1.7355 0.8164 4.4714 0.9476 0.2171

1/R 2.0 1.5635 0.5807 4.6030 0.9180 1.2807

Area B

FOD-SLB-PLSR 1/R 1.7 2.0761 0.7458 6.9361 0.8874 4.0410

IOD-SLB-PLSR
1/lgR 1.0 1.3036 0.3607 14.3573 0.8149 5.1813

R 2.0 1.4253 0.4676 10.7313 0.9354 0.8753

Area C

FOD-SLB-PLSR lgR 1.8 2.2892 0.8202 6.6363 0.8527 5.7279

IOD-SLB-PLSR
1/R 1.0 1.8671 0.7813 8.7165 0.8366 6.0329

lgR 2.0 1.5143 0.5589 7.8305 0.8644 5.4947

Note: IOD represents integral differential. The IOD-SLB-PLSR represents the PLSR model based on the significance level bands of the
integral differential, and only the prediction results of the corresponding optimal spectra at the integral order 1.0 and 2.0 are listed.

4.4. Advantages of Fractional-Order Differential Model

Figure 13 shows the number of bands where the correlation coefficients between the
five spectra and total salt passed the 0.01 significance level test. When the fractional order
in Area A was from 0.0-order to 0.5-order, in Area B is from 0.0-order to 0.4-order, and in
Area C from 0.0-order to 0.2-order, none of the correlation coefficients of any bands passed
the 0.01 significance level test. It can be seen that the number of bands that passed the
0.01 significance level test in the fractional order was obviously more than those in the
integer order, and these bands were concentrated in the high-order fractional order. For
example, they were mostly around the 1.2-order in the slight human interference region,
around the 1.8-order in the moderate interference region, and around the 1.3-order in the
severe interference region.

The FOD-SLB-PLSR models with optimal prediction ability were all concentrated at
the higher order differential. The results of this paper are basically consistent with those
of previous scientists. For instance, Lao et al. [45] found that the optimal fractional-order
differential spectra of Ca2+, CO3

2− and Cl− were on the 1.65-, 1.90-, and 1.55-order deriva-
tive spectra, respectively. Xu et al. [46] found that the optimal performance was achieved
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by the 1.8-order, 1.6-order, and 1.2-order spectra for Hg, Cr, and Cu, correspondingly.
Wang et al. [47] found the most effective model was established based on random forest
with the 1.5-order derivative.
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4.5. Analysis of Original R Spectra and Its Optimal Transform Spectra under
FOD-SLB-PLSR Model

No matter which spectrum transformation was used under the FOD-SLB-PLSR model,
the fractional-order differential order of the optimal model was often similar to that of the
optimal model based on the fractional-order differential of the original spectrum (Table 5).
For instance, the fractional-order differential order of optimal model was the 1.6-order
based on the1/lgR transform spectrum in Area A, while it was the 1.8-order based on the
R spectrum. In addition, it was the 1.7-order of optimal model based on the 1/R transform
spectrum in Area B, while it was the 1.6-order based on the R spectrum. Moreover, it was
the 1.8-order of the R spectrum and the optimal lgR transform spectrum in Area C. This
suggests that the order of the optimal model of the fractional-order differential is closely
related to its optimal model for the original spectral differential.
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Table 5. Optimal models of R and its transformation under FOD-SLB-PLSR by level of human disturbance.

Areas Original and
Transformation

Differential
Order

Validation Dataset Calibration Dataset

RPD Rv
2 RMSEv Rc

2 RMSEc

Area A
R 1.8 1.8715 0.7199 3.4859 0.9095 1.3450

1/lgR 1.6 1.9061 0.7121 3.2268 0.9512 0.1286

Area B
R 1.6 1.7438 0.7065 11.6040 0.9687 1.3244

1/R 1.7 2.0761 0.7458 6.9361 0.8874 4.0410

Area C
R 1.8 1.5655 0.5621 8.8542 0.6897 8.3127

lgR 1.8 2.2892 0.8202 6.6363 0.8527 5.7279

5. Conclusions

The FOD-SLB-PLSR model proposed in this paper not only eliminates band variables
with low correlation, but also improves the resolution ability between spectral peaks
due to the combination of the fractional-order differential for transformed spectra and
characteristic bands achieving a 0.01 significance level. As such, an estimation model with
good prediction strength and high stability was obtained. The prediction performance
of the optimal FOD-SLB-PLSR model for each area of total salt content was superior not
only to the All-PSLR model based on all bands, but also to the FOD-All-PLSR based on
all bands of the fractional-order differential. Moreover, this model was also superior to
the IOD-SLB-PLSR model based on significance level bands from the integral differential.
Furthermore, optimal FOD-SLB-PLSR models provided good prediction strength for total
salt content in moderately and severely disturbed areas, while also providing a relatively
good prediction strength for the total salt content of the slightly disturbed area. It can thus
be concluded that the corresponding FOD-SLB-PLSR model based on various kinds of
spectral data (R,

√
R, 1/R, lgR, 1/lgR) is an optimal model for prediction of salt content in

areas with slight, moderate, and severe human activity.
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