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Abstract: Ice Pathfinder (Code: BNU-1), launched on 12 September 2019, is the first Chinese polar
observation microsatellite. Its main payload is a wide-view camera with a ground resolution of 74 m
at the subsatellite point and a scanning width of 744 km. BNU-1 takes into account the balance
between spatial resolution and revisit frequency, providing observations with finer spatial resolution
than Terra/Aqua MODIS data and more frequent revisits than Landsat-8 OLI and Sentinel-2 MSI. It
is a valuable supplement for polar observations. Geolocation is an essential step in satellite image
processing. This study aims to geolocate BNU-1 images; this includes two steps. For the first
step, a geometric calibration model is applied to transform the image coordinates to geographic
coordinates. The images calibrated by the geometric model are the Level1A (L1A) product. Due to
the inaccuracy of satellite attitude and orbit parameters, the geometric calibration model also exhibits
errors, resulting in geolocation errors in the BNU-1 L1A product. Then, a geometric correction method
is applied as the second step to find the control points (CPs) extracted from the BNU-1 L1A product
and the corresponding MODIS images. These CPs are used to estimate and correct geolocation errors.
The BNU-1 L1A product corrected by the geometric correction method is processed to the Level1B
(L1B) product. Although the geometric correction method based on CPs has been widely used to
correct the geolocation errors of visible remote sensing images, it is difficult to extract enough CPs
from polar images due to the high reflectance of snow and ice. In this study, the geometric correction
employs an image division and an image enhancement method to extract more CPs from the BNU-1
L1A products. The results indicate that the number of CPs extracted by the division and image
enhancements increases by about 30% to 182%. Twenty-eight images of Antarctica and fifteen images
of Arctic regions were evaluated to assess the performance of the geometric correction. The average
geolocation error was reduced from 10 km to ~300 m. In general, this study presents the geolocation
method, which could serve as a reference for the geolocation of other visible remote sensing images
for polar observations.

Keywords: geolocation; microsatellite; Ice Pathfinder; BNU-1; geometric correction; image division;
image enhancement

1. Introduction

Visible remote sensing plays an important role in earth observations by providing
super-width and high spatial resolution visual images. Along with its advantages, it has a
wide range of applications in environmental surveying and mapping, disaster monitoring,
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resource investigation, vegetation monitoring, etc. [1–5]. In polar regions, visible remote
sensing provides comprehensive observations of features on the earth’s surface, and thus it
is a supplement to limited field observations. With climate warming, dramatic changes
have taken place in the polar regions where glaciers have retreated [6,7], ice flow has
accelerated [8,9], and sea-ice has shrunk rapidly [10]. However, many of the rapid changes
occurring in polar regions are difficult to monitor due to the trade-off between the temporal
and spatial resolutions of existing satellite sensors (fine spatial resolution with a long revisit
period; coarse resolution with a short revisit period) [4,11]. For example, the Moderate-
Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra/Aqua satellites
can provide daily observations that facilitate the capture of rapid surface changes [4],
but the coarse spatial resolution (250–1000 m) of MODIS sensors is often inadequate for
monitoring the collapse of small glaciers or the disintegration of small icebergs. In contrast,
the Landsat-8 OLI/Sentinel-2 MSI sensor has a higher spatial resolution (30 m/10 m)
than MODIS, providing more details of the snow and ice surface changes. However, the
16-day/10-day revisit period of the Landsat-8 OLI/Sentinel-2 MSI sensor limits its applica-
tion in the study of time-sensitive events, such as sea ice drift, which may evolve rapidly
in a few days. Therefore, a sensor that provides high-resolution remote sensing data on a
daily frequency or satellite constellations are needed for observing the rapid changes in
polar regions.

Launched on 12 September 2019 and developed through the collaboration between Bei-
jing Normal University, Sun Yat-sen University, led by Shenzhen Aerospace Dongfanghong
HIT Satellite Ltd., Ice Pathfinder (Code: BNU-1) is the first Chinese polar-observing mi-
crosatellite. It is in a sun-synchronous orbit (SSO) with an altitude of 739 km above Earth’s
surface, a semi-major axis of 7,116,914.419 m, an inclination of 98.5238 Degrees, and an
eccentricity of 0.000220908. Weighing only 16 kg, BNU-1 carries an optical payload with a
panchromatic band and four multispectral bands. The spatial resolution at the sub-satellite
point is approximately 74 m from the ground. The wide swath of BNU-1 (744 km) provides
a 5-day revisit period of polar regions up to 85◦ latitude. BNU-1 takes into account the
balance between spatial resolution and revisit frequency, providing observations with finer
spatial resolution than Terra/Aqua MODIS data and more revisit frequency than Landsat-8
OLI and Sentinel-2 MSI, benefiting the environmental monitoring of the polar regions. Also,
the low cost of BNU-1 makes it financially feasible to construct a constellation observation
system [12]. A five-satellite constellation system provides the ability to observe polar
environmental elements on a daily basis with a spatial resolution finer than 100 m.

Image geolocation is an essential process prior to the application of satellites. How-
ever, geolocation errors are commonly found in visible images. For example, the images
from MODIS have a geolocation error of 1.3 km in the along-track direction and 1.0 km in
the along-scan direction without correction [13]. Geolocation errors need to be corrected
because they cause uncertainty in satellite data and have a serious impact on the appli-
cations of satellite data for environmental monitoring [14]. The geolocation errors are
usually corrected by parametric and non-parametric correction models [13,15,16]. Both
these models correct the errors of a satellite image by matching the CPs obtained from
the target image (the image with geolocation errors) and the corresponding points from
the reference image with high geolocation accuracy [17]. The parametric correction model
corrects the errors by optimizing the inner and external orientation parameters in the
geometric calibration model based on the differences between the CPs from the target and
reference images [13,15,18], while the non-parametric model is performed by establish-
ing the coordinates transformation model between coordinates of the target image and
coordinates of the reference images based on the CPs [8,11,12].

Both the parametric and non-parametric correction models are highly dependent on
the amount of CPs [17,19,20]. Various methods have been used to increase the number
of CPs extracted from the images, such as image division [21,22] and histogram equaliza-
tion [22], and GCP sampling optimization [17]. Other methods have been used to eliminate
the mis-matched CPs such as random sample consensus (RANSAC) [17,19], etc. These
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methods are commonly used for images with rich textures at low- and mid-latitudes. How-
ever, due to the high reflectance of ice and snow surfaces at high latitudes, the texture of
images in polar regions is rarely observed. It is necessary to explore methods for correcting
the geolocation errors of the images of polar regions.

This study aims to develop a geolocation method for polar images from BNU-1. The
BNU-1 images for several regions of Antarctica and Greenland were used to demonstrate
the effectiveness of this proposed geolocation method to deliminate the geolocation errors.
This paper is organized as follows. Section 2 describes the data and the study area. Section 3
describes the geolocation method of the BNU-1 images in detail. Section 4 shows the
performance of the geolocation method. The discussion of the results is shown in Section 5.
Conclusions are given in Section 6.

2. Data

BNU-1 Imagery. BNU-1 has obtained more than 6000 images covering Antarctica
and Greenland since it was launched. It provides the observations in panchromatic, blue,
green, red, and red-edge spectral bands. Twenty-eight images of Antarctica and fifteen
images of Greenland in the panchromatic band were collected for geolocation and accuracy
evaluation. As shown in Figure 1, the images of Antarctica are distributed over the Amery
Ice Shelf, Victoria Land, Dronning Maud Land, and Pine Island Glacier. The images of
Greenland cover the west and north of Greenland.
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Figure 1. Distributions of the sample images of BNU-1 for (a) Antarctica and (b) Greenland. Black
and red rectangles refer to the footprints of 43 sample BNU-1 image scenes, in which red rectangles
show the 6 Sample Images (A–F) used for the analysis in this study. Sample Images A–F were
acquired for the Amery Ice Shelf on 8 October 2019, Victoria Land on 11 October 2019, Greenland on
7 July 2020, Greenland on 18 July 2020, Dronning Maud Land on 18 December 2019, and Pine Island
Glacier on 28 December 2019, respectively.

MODIS Imagery. MODIS is a key instrument onboard the Terra and Aqua satellites,
which were launched on 18 December 1999, and 4 May 2002, respectively, providing global
coverage every one to two days. Since the MODIS sensor has high geolocation accuracy (50
m for one standard deviation) [4] and a daily revisit capability, we used MOD02QKM and
MYD02QKM products as the reference images for the geometric correction of the BNU-1
images in this study. The geolocation error of MOD02QKM (MYD02QKM) is 50 m or better,
which is finer than the pixel size of the MODIS image [13,23,24]. It is reasonable to use
MODIS images as the reference data in this study since the spatial resolution of BNU-1
images is 80 m.

Coastline dataset. We used the high-resolution vector polylines of the Antarctic
coastline (7.4) [25] of 2021 from the British Antarctic Survey (BAS). We also used the



Remote Sens. 2021, 13, 4278 4 of 20

MEaSUREs MODIS Mosaic of Greenland (MOG) 2005, 2010, and 2015 Image Maps,
Version 2 [26] from the NASA National Snow and Ice Data Center (NSIDC) to obtain
the Greenland coastline. We evaluated the geolocation error of the BNU-1 image visually
by comparing the coastline dataset with the geolocation of the BNU-1 image.

3. Methods

There are two steps for geolocating the BNU-1 images in this study. The first step is
geometric calibration. In this step, a geometric calibration model is constructed to transform
the image coordinates to geographic coordinates. The images with geographic coordinates
are the BNU-1 Level 1A (L1A) product. The second step is the geometric correction. The
geolocation errors of the BNU-1 L1A product are corrected by an automated geometric
correction method in this step. This method is designed to correct the geolocation errors of
the images of polar regions where surface textures rarely exist. The corrected BNU-1 L1A
product, which has high geolocation accuracy, is named the BNU-1 Level 1B (L1B) product.

3.1. Geometric Calibration Model
3.1.1. Description of Geometric Calibration Model

A rigorous geometric calibration model was constructed for transforming the image
coordinates to the geographic coordinates for the BNU-1 images. The timing, position, and
altitude of satellites and camera position parameters are used as inputs of the model. The
model is shown as follows [27]: X

Y
Z


WGS84

=
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Ys(t)
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+ m
(

RWGS84
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where t is the scanning time of an imaginary line.
[

Xs(t) Ys(t) Zs(t)
]T

WGS84 indicates
the coordinates of the Global Positioning System (GPS) antenna phase center, which are
measured by a GPS receiver on the satellite in the WGS84 coordinate system (derived from
ECEF) at t. m is the scale factor determined by the orbital altitude.

(
RWGS84

J2000

)
t
,
(

RJ2000
body

)
t

and Rbody
camera are the rotation matrix of the coordinate system from J2000 to WGS84 at t, the

rotation matrix from the satellite’s body-fixed coordinate system to J2000 coordinate system
at t, and the rotation matrix from the camera coordinate system to the satellite’s body-
fixed coordinate system, respectively.

[
Dx Dy Dz

]T is the coordinates of the GPS

antenna phase center in the satellite’s body-fixed coordinate system.
[

dx dy dz
]T is

the translations of the origin of the camera coordinate system relative to the satellite’s body-
fixed coordinate system.

[
tan ψx tan ψy 1

]T represents the value of the coordinates of
point (x, y) corresponding to the detector direction angle model composed of the camera’s
principal point, focal length, charge coupled device (CCD) installation position, and lens
distortion.

[
X Y Z

]T
WGS84 represents the ground coordinates of the point (x, y) in the

World Geodetic System 1984 (WGS84) coordinate system.
tan ψx and tan ψy describe the directional angle of point (x, y) in the camera coordinate

system [27–29], and this can be calculated by Equation (2), where f is the focal length of
the camera.

tan ψx = x
f

tan ψy = y
f

(2)

This step is conducted on the Windows Server 2016 Standard operating system on the
Intel(R) Xeon(R) Gold 5220R CPU @2.20 GHz, 256 GB RAM. It is a whole-day unattended
automatic data production system.

3.1.2. Uncertainty Evaluation of Geometric Calibration Model

In addition to systematic errors, the geolocation of acquired images is also affected
by random errors. The satellite imaging process is affected by various complex conditions
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such as attitude adjustment, attitude measurement accuracy, and imaging environment.
In addition, as a microsatellite, BNU-1′s low cost and the imaging environment of polar
regions limit, to a certain extent, the overall accuracy and stability of the measurement
equipment of attitude and position. Moreover, due to the wide swath of BNU-1′s camera,
the imaging time of its single-scene image is long. As the satellite attitude is adjusted along
the imaging, random errors in attitude measurement cause random geolocation errors in
single-scene images and multiple-scene images. Since the measurement error of GPS can
be regarded as translation error (Equation (1)), which is equivalent to the satellite rotating
at a small angle, we only designed and carried out an experiment to simulate the influence
of the satellite’s attitude angle change on the geolocation change through Equation 1. The
satellite’s attitude is determined by the roll angle, pitch angle, and yaw angle. We randomly
selected an image and simulated the angles of roll, pitch, and yaw, which changed from 0◦

to 0.5◦ with a step size of 0.1◦, to obtain 216 (6 * 6 * 6) groups of geolocations. The quintic
polynomial method was used to fit the scatter plot.

3.2. Automated Geometric Correction Processing Method

Since the space environment is complex and variable during satellite launch and
operation [15,28,30,31], the geographic coordinates calculated by geometric calibration
models with the pre-launch laboratory measurement parameters usually have geolocation
errors of about several hundred meters to several kilometers [32,33]. In addition, the
random error of the attitude measurement cannot be eliminated due to the lack of ground
control points in polar regions. An automated geometric correction method based on CPs
matching was developed to improve the geolocation accuracy of the BNU-1 L1A product.
There are three steps involved in the method. Firstly, we selected the reference image
with a high geolocation accuracy for the BNU-1 images. Then, the Scale Invariant Feature
Transform algorithm (SIFT) [33] was used to extract the CPs from both the BNU-1 image
and the corresponding reference image. Finally, geometric correction was conducted on
the BNU-1 image based on the CPs. The flow chart is shown in Figure 2. Our experiment
was conducted on the operating system of Windows 10 on the Intel(R) Core (TM) i5-
5200 CPU @2.20 GHz, 8 GB RAM. We used the programming language of python2.7 to
implement the one-stop processing of the automatic geometric correction. In this process,
the programming language of MATLAB was used to realize SIFT algorithm, and the
software of ArcGIS 10.6 was used to realize data preprocessing and geometric correction.
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3.2.1. Step 1: Reference Images Selection

There were three criteria for selecting a reference image. Firstly, we selected the
MODIS images with the same spatial coverage as the BNU-1 image as well as up to 5 h
of different acquisition times. Secondly, the MODIS images covering the BNU-1 image
and its surrounding 10 km area were chosen (one BNU-1 image corresponds to multiple
MODIS images). Thirdly, the SIFT algorithm was adopted to extract the CPs from each
image pair, where the BNU-1 image and the MODIS image are the target image and the
reference image, respectively. The MODIS image with the most CPs was used as a reference
image for the geometric correction. If more than one MODIS image has the highest number
of CPs, the one whose acquisition time is closer to the BNU-1 image’s acquisition time is
preferred as the reference image. The reference image used for geometric correction of the
BNU-1 image is referred to as the corresponding MODIS image hereinafter.

3.2.2. Step 2: Automatic CPs Extraction

The amount and spatial distribution of CPs are key factors for geometric correction
because they have direct impacts on the geometric correction accuracy of the corrected
images. In this study, we applied the SIFT algorithm based on MATLAB language to extract
the CPs automatically from the BNU-1 L1A and the corresponding MODIS image. Due
to the lack of texture features of snow and ice surfaces at high latitudes, CPs extracted
from the original image pair are usually not sufficient for correcting the geolocation errors.
When the number of CPs extracted from the image pair needs to be increased, image
division and image enhancement methods are used to enhance the texture features of
satellite images [1,21,22,34].

The combination of an image division method and an image enhancement method
was applied to highlight surface features of the BNU-1 and MODIS images in this study.
The extraction of CPs was carried out in three steps in Step 2 (Figure 2). Firstly, we extracted
the CPs from the original BNU1-1 image and the corresponding MODIS image by using
the SIFT algorithm. The Euclidean distances between each pair of CPs from the image
pair were calculated. To avoid mismatches of the points, we eliminated the largest 10%
points in the Euclidean distance. Secondly, we extracted the CPs from the image pair after
processing by different image division schemes. The paired images were divided into
2× 2 = 4 (Scheme 1) and 3× 3 = 9 (Scheme 2) sub-images [22]. Then, an adaptive piecewise
linear enhancement consisting of three rules for low, middle, and high reflectance ranges
was used to enhance each sub-image [34]. We extracted the CPs from all the pairs of the
sub-images again by the SIFT algorithm. The largest 30% of the extracted CPs in Euclidean
distance were eliminated in this step. Finally, the CPs extracted in the above two steps
were merged and de-duplicated to obtain the CPs with the largest number, which were
taken as the final CPs for the geometric correction.

3.2.3. Step 3: Geometric Correction

This study performed the geometric correction of the BNU-1 L1A product with the
original spatial resolution (74 m) by using a quadratic polynomial (POLYORDER2) model in
ArcGIS 10.6 software. We obtained the BNU-1 L1B product by resampling the geolocation
error-corrected image to 80 m spatial resolution using the nearest resampling method.

3.3. Geolocation Accuracy Evaluation

To evaluate the geolocation accuracy of the BNU-1 L1A/L1B product, we re-extracted
the CPs from the BNU-1 L1A/L1B product by the SIFT algorithm as the verification points
and calculated the root mean squared error (RMSE) of the verification points:

RMSE =

√
∑n

i = 1[Rxi
2 + Ryi

2]

n
(3)
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where n is the number of points participating in the accuracy evaluation, Rxi and Ryi
represent the residuals of the i-th extracted points from the BNU-1 and the reference
MODIS image in the X and Y coordinates, respectively.

4. Results
4.1. Geolocation Accuracy of the BNU-1 L1A Product

The BNU-1 L1A images with 50% transparency are superimposed on the correspond-
ing MODIS images in Figure 3. The sub-figures (a), (b), (c), and (d) correspond to the
Sample Images A, B, C, and D shown in the red box in Figure 1. The prominent features
in the images, such as coastlines, rocks, sea ice, etc., are blurred, indicating the mismatch
of the geometric position between the BNU-1 images and the corresponding MODIS im-
ages. Obvious geolocation errors are observed in the BNU-1 L1A images. Table 1 shows
the geolocation errors of the 42 scene BNU-1 L1A images. The errors of the BNU-1 L1A
images range from 3 to 20 km, with an average of about 10 km. The geolocation errors
of the sub-graphs in Figure 3a–d are 6544.83 m, 7919.60 m, 15,071.02 m, and 7778.63 m,
respectively (Table 1).
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Figure 3. BNU-1 L1A images superimposed on the corresponding MODIS images. Red polygons refer to the outline of the
Sample Image scenes shown in Figure 1. (a) Sample Image A; (b) Sample Image B; (c) Sample Image C; (d) Sample Image D.
The images in the yellow boxes below are the enlarged versions of the part in the sample images.
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Table 1. Geolocation errors of the BNU-1 L1A/L1B product (unit: meter).

Scene ID
RMSE

Scene ID
RMSE

L1A L1B L1A L1B

Amery Ice Sheet Victoria Land
1 (A) 1 6544.83 270.19 1 7639.83 412.85

2 8613.73 180.87 2 (B) 7919.60 253.40
3 5061.16 234.17 3 4683.40 277.69
4 10,848.59 175.13 4 17,855.48 277.47
5 7079.49 245.66 5 8602.73 293.14
6 9572.81 237.79 6 17,380.35 339.21

Dronning Maud Land Greenland
1 5642.45 362.99 1 16,236.81 283.33
2 6916.70 243.97 2 19,828.19 189.23
3 3625.91 189.88 3 15,870.7 229.51
4 5680.75 203.38 4 12,435.58 299.84
5 6761.34 258.69 5 9959.07 321.84
6 8142.78 220.03 6 10,836.43 258.28
7 8012.31 324.15 7 7854.03 339.87
8 8036.76 484.89 8 18,738.91 178.34
9 7759.36 279.76 9 13,244.36 216.14

10 7007.99 203.37 10 (C) 15,071.02 269.83
11 6786.16 242.65 11 13,489.89 265.7
12 5045.67 506.19 12 17,819.43 414.26
13 10,215.28 458.47 13 19,880.35 331.14
14 6880.00 575.88 14 16,219.35 292.06

15 (E) 7309.43 221.59 15 (D) 7778.63 302.29
Pine Island Glacier

1(F) 19,765.58 783.90

Average L1A: 10,480.31 L1B: 301.14
1 (A) indicates Sample Image A.

Figure 4 shows the distributions of the geolocation errors of the CPs in the X and
Y directions for each image shown in Figure 3. The length and direction of the vectors
in Figure 4 represent the magnitude and direction of the CPs’ geolocation errors. The
directions and the magnitude of geolocation errors for each image are not consistent
(Figure 4). For example, the CPs’ geolocation errors of Sample Image A, B, and D are less
than 12 km, while most CPs’ geolocation errors of Sample Image C are up to 19 km. And
the geolocation errors in the middle part of Sample Image A are smaller than the errors
in the edges of the image, while Sample Image B shows a quite different distribution of
geolocation errors. In addition, the direction of the geolocation errors of the CPs shown
in Sample Images B, C, and D are also different from the center to the periphery of the
images. The CPs’ geolocation errors within an image also vary significantly. For example,
geolocation errors in Sample Image C are less than 2000 m in the center-west parts and
more than 15,000 m in the east and southwest parts (Figure 4). The results illustrate that
the distribution of the CPs’ geolocation errors varies in each image and indicates that some
local distortions exist in the BNU-1 L1A product.
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Figure 4. Displacement vectors of the CPs for the four sample BNU-1 L1A images and the corre-
sponding MODIS images in Figure 3. The vectors start and end at the CPs’ coordinates in polar
stereographic projection on the BNU-1 L1A images and the corresponding MODIS images, respec-
tively. The color of the vectors represents the error magnitude according to the legend.

4.2. Uncertainty Evaluation of Geolocation of BNU-1 L1A Product

Figure 5 shows the three-dimensional scatter diagram of the influence of the change in
the satellite’s attitude angle—roll, pitch, and yaw—on the geolocation change. The results
show that when the angles of roll, pitch, and yaw change from 0.1◦ to 0.5◦, the geolocation
change in the upper left corner point of the image changes from −6256 m to 6594 m in the
longitude and from −13,915 m to −112 m in the latitude. Similarly, the geolocation change
in the center point of the image changes from −6431 m to 4998 m in the longitude and from
−11,889 m to −251 m in the latitude. These geolocation changes are non-linear (Figure 5).
Under imaging conditions in polar regions, the random error of attitude measurement
cannot be eliminated due to the lack of ground control points in polar regions [28]. To
obtain high-precision geolocation products, it is necessary to add CPs to the image for
geometric correction. Since there are few textures observed on high-reflectance ice and
snow surface in polar regions, the extraction of CPs is the key to geometric correction.
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Figure 5. Three-dimensional scatter diagram of the influence of the satellite’s attitude angle change
on the geolocation change. (a,b) show the impact of the satellite’s attitude changes on the longitude
change and the latitude change of the upper left corner point of the image, respectively. (c,d) show
the impact of the satellite’s attitude changes on the longitude change and the latitude change of the
center point of the image, respectively. The color of the scatters represents the longitude/latitude
change according to the legend.

4.3. Influence of Image Division and Enhancement on the CPs Extraction

Sample Image E is a typical image for polar regions. Most of the features in the
image are ice sheets and snow with limited boundary features, and only a few of them
are sea ice with well-defined boundaries. However, due to the high reflectance of ice
and snow surfaces in polar regions, the textures of the ice sheet and snow can rarely be
observed in images. The ice sheet area of Sample Image E is a good case for evaluating the
effectiveness of various image enhancement methods for increasing the control points on
the ice sheet. Five image enhancement methods, which are linear enhancement, piecewise
linear enhancement, Gaussian enhancement, equalization enhancement, and square root
enhancement, were applied to enhance Sample Image E. Figure 6 shows the distributions
of CPs extracted from the images enhanced by different image enhancement methods. The
numbers of CPs extracted from the original image and the image stretched by the five
enhancement methods were 31, 32, 76, 37, 27, and 22, respectively. By comparing these five
enhancement methods, we found that the piecewise linear enhancement method makes the
surface textures in the interior of the ice sheet more distinct, and as a result, the most CPs
were extracted from the image. Therefore, the piecewise linear enhancement (Figure 6c) is
considered to be more suitable for enhancing the images of polar regions.



Remote Sens. 2021, 13, 4278 12 of 20
Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 6. Comparisons of the number and distribution of CPs in the original image (a) and the image adopting different 

enhancement methods: (b) Linear; (c) Piecewise Liner; (d) Gaussian; (e) Equalization; (f) Square Root. 

Sample Image E was also used to assess the influence of image division on CPs ex-

traction. The image was divided into four sub-images (Scheme 1) and nine sub-images 

(Scheme 2) and then each sub-image was individually enhanced with the piecewise linear 

stretching method. Figure 7 shows the distribution of CPs extracted from the original im-

age by Scheme 1, and by Scheme 2, respectively. The number of extracted points are 245, 

435, and 596, respectively. More CPs are extracted in the center and the lower right corner 

of the image (the blue border area) divided by Scheme 2 (Figure 7c) compared to the orig-

inal image (Figure 7a) and the image divided by Scheme 1 (Figure 7b). As shown in Table 

2, the amount of CPs extracted from the image increases by 30% to 182% when the image 

division and piecewise linear enhancement were applied to the images. However, this 

does not mean we can get more CPs if the image is divided into more sub-images. The 

amount of CPs extracted from the Sample Image A, B, C, and D is less when Scheme 2 is 

applied to divide these images. 

 

Figure 7. Schematic diagram of the number and distribution of the CPs extracted by different division strategies. (a) The 

original image; (b) Scheme 1; (c) Scheme 2. 

Figure 6. Comparisons of the number and distribution of CPs in the original image (a) and the
image adopting different enhancement methods: (b) Linear; (c) Piecewise Liner; (d) Gaussian;
(e) Equalization; (f) Square Root.

Sample Image E was also used to assess the influence of image division on CPs
extraction. The image was divided into four sub-images (Scheme 1) and nine sub-images
(Scheme 2) and then each sub-image was individually enhanced with the piecewise linear
stretching method. Figure 7 shows the distribution of CPs extracted from the original
image by Scheme 1, and by Scheme 2, respectively. The number of extracted points are
245, 435, and 596, respectively. More CPs are extracted in the center and the lower right
corner of the image (the blue border area) divided by Scheme 2 (Figure 7c) compared to
the original image (Figure 7a) and the image divided by Scheme 1 (Figure 7b). As shown
in Table 2, the amount of CPs extracted from the image increases by 30% to 182% when the
image division and piecewise linear enhancement were applied to the images. However,
this does not mean we can get more CPs if the image is divided into more sub-images. The
amount of CPs extracted from the Sample Image A, B, C, and D is less when Scheme 2 is
applied to divide these images.

The CPs extracted from Sample Image E were used to correct the geolocation er-
rors of the image. The BNU L1A/L1B image with 50% transparency is superimposed
on the corresponding MODIS image in Figure 8. There is a distinct displacement be-
tween the BNU-1 L1A image and the MODIS image, while the displacement between
the BNU-1 L1B image and the MODIS image can barely be discerned. This result indi-
cates that the geolocation correction method improves the geolocation accuracy of the
BNU-1 L1Aproduct.
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Figure 7. Schematic diagram of the number and distribution of the CPs extracted by different division
strategies. (a) The original image; (b) Scheme 1; (c) Scheme 2.

Table 2. The number of the extracted CPs with different image division schemes.

Sample Image
Number of CPs

Extracted from the
Original Image

Number of CPs
Extracted from

Scheme 1

Number of CPs
Extracted from

Scheme 2

Optimal Increment of
CPs (%) 2

A 1071 2100 1 1840 96
B 935 2280 1 1624 144
C 1334 2236 1 1905 68
D 447 580 1 579 30
E 245 435 596 1 143
F 17 32 48 1 182

1 represents the optimal number of the extracted CPs for geometric correction. 2 represents the ratio of the difference between the optimal
number and the original image number to the original image number.
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Figure 8. The BNU-1 images superimposed on the corresponding MODIS images. (a) BNU-1 L1A
image; (b) BNU-1 L1B image. Red boxes refer to the extent of the BNU-1 L1A/L1B images.

In addition to Sample Image E, Sample Image F was also selected to evaluate the
effectiveness of the CPs extraction scheme proposed. Most of the areas of Sample Image F
are covered by the ice sheet, and only a few areas are fjords. Figure 9 shows the image after
geometric correction of the BNU-1 L1A image using the CPs extracted from the original
image and the optimal control point extraction scheme (Scheme 2). The CPs extracted
from the original image are few and unevenly distributed. If these points are directly used
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for geometric correction of the BNU-1 L1A image, the corrected image will be severely
distorted (Figure 9a). More, and more evenly distributed CPs are extracted of the image
divided by Scheme 2 (Figure 9b) compared to the original image (Figure 9a). The corrected
BNU-1 image overlaps well with the MODIS image (Figure 9b).
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from the original image (a) and Scheme 2 (b). The corrected image with 50% transparency is
superimposed on the corresponding MODIS image in (b).

4.4. Geolocation Accuracy of the BNU-1 L1B Product

The verification points used to evaluate the geolocation errors of the BNU-1 L1B
product for the Sample Images A, B, C, and D are shown in Figure 10a. We compared
the coordinates of verification points in the BNU-1 L1A/L1B images with those in the
corresponding MODIS images in Figure 10b, c. The verification points extracted from the
BNU-1 L1A product (green dots) are distributed on one side of the 1:1 line (black diagonal
line), which means that geolocation errors exist in the BNU-1 L1A product, while the
verification points extracted from the BNU-1 L1B product (red dots) are almost scattered
on the 1:1 line. We fitted the linear relationships between the coordinates of the verification
points from BNU-1 L1A/BUN-1 L1B and the MODIS image. The regression coefficients,
intercepts, and determined coefficients of the relationship fitted by the BNU-1 L1B product
are significantly better than those fitted by BNU-1 L1A. The coordinates of the points from
the BNU-1 L1B product show great consistency with the coordinates from the MODIS
images. The geolocation accuracy of the BNU-1 L1B images was improved significantly.
After geometric correction, the average geolocation error was reduced from 10,480.31 m to
301.14 m (Table 1).

We obtained the image mosaics of the Amery Ice Shelf and Victoria Land in Antarctica
and northern Greenland in the panchromatic band of BNU-1 (Figure 11). Mismatches in
the coastlines were found in the image mosaics from the BNU-1 L1A product. However,
the coastlines in the image mosaics from the BNU-1 L1B product are consistent with the
existing coastline dataset [25]. Even though the junction of adjacent images in the image
mosaic from the BNU-1 L1B product has greatly improved coherence compared to the
BNU-1 L1A product, the BNU-1 L1B product still has an average geolocation error of
~300 m. For example, the discontinuous waters at the junction are found in Victoria Land
(obvious mismatches in the yellow circle in Figure 11a) from the BNU-1 L1A product,
while the mosaic from the BNU-1 L1B product has consistent waters at the junction regions
(slight mismatches in the green circle in Figure 11a).
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Figure 10. Spatial distribution of the verification points for accuracy evaluation of BNU-1 L1B
Sample Images A, B, C, and D (a); and the coordinates comparison of the verification points of BNU-1
L1A/L1B Sample Image A, B, D, and E and their corresponding MODIS images, in X-direction (b) and
Y-direction (c), respectively. Green and red dots represent the verification points on the BNU-1 L1A
image and the BNU-1 L1B image, respectively. The black diagonal line in the sub-figures represents
that the coordinates of points in the BNU-1 image are almost equal to those in the corresponding
MODIS image. The two small graphs in each sub-graph are the enlarged version of the orange and
blue rectangular areas on the black diagonal line.
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5. Discussion

Although microsatellites have the advantages of compactness, low cost, and flexibility,
their flight attitude may be unstable occasionally and the equipment measuring the attitude
and position may be inaccurate or perform poorly, which leads to large geolocation errors
in the images [35]. For example, the geolocation errors in UNIFORM-1′s visible images are
50–100 km [35]. The BNU-1 L1A product has smaller geolocation errors, but the average
geolocation error can still be up to 10 km, which is close to that of the Luojia 1-01 data [30].

The non-parametric geometric correction methods are widely applied to geolocation
correction of images without distinguishing the error sources [16,31], such as HJ-1A/B CCD
images [36] and Unmanned Aerial Vehicle (UAV) images [37]. The geolocation accuracy of
these geometric correction methods relies mainly on adequate CPs. However, the limited
texture features of the ice and snow surface in polar images make it difficult to extract
the CPs. Some studies prove that image division and image enhancement have the ability
to increase the amount of extracted CPs [1,21,22,34]. However, images used by these
previous studies are from low- and mid- latitudes and contain rich land surface features.
The correction for polar images with few texture features is rarely documented. This study
proposes the geometric correction method to reduce the geolocation errors of the visible
images for polar regions. The results indicate that piecewise linear enhancement highlights
more surface features of ice and snow surfaces than other image enhancement methods.
Some other studies have also proved that piecewise linear enhancement is effective in
highlighting more texture features of the ice and snow surfaces in polar images [34]. More
CPs can be observed after the image pair is processed by image division and piecewise
linear enhancement. Different division schemes can be adopted to obtain more CPs for
different image pairs.

In addition, we compared the geolocation accuracy of Sample Image A–F after the
correction through the CPs extracted from the original image and the geolocation accuracy
after correction through the optimal CPs extraction scheme (Table 3). It was found that the
geolocation accuracy of Sample Image A–E was not significantly improved. The geolocation
accuracy of Sample Image A–E after geometric correction based on the CPs extracted from
the original image was close to the level of 250 m (the pixel size of MODIS image), and it
was difficult to further improve by adding CPs on this basis. However, for some images
where the ice sheet is widely distributed, such as Sample Image F, the proposed method
effectively prevents the distortion of the corrected image caused by the lack of CPs on the
ice sheet by adding CPs. The increase in CPs can remarkably improve the geolocation
accuracy of such images. Therefore, the automatic geometric correction method proposed
in this study is of great significance for the correction of images in polar regions with rare
feature points.

Table 3. Comparison of the geolocation accuracy of the BNU-1 images corrected through different
CPs extraction Scheme.

Sample Image

Geolocation Accuracy of the Corrected
BNU-1 Image (m) Improvement in

Geolocation
Accuracy (%)

Corrected by the CPs
Extracted from the

Original Image

Corrected by the CPs
Extracted from the
Optimal Scheme

A 279.42 270.19 3.30
B 260.80 253.40 2.84
C 275.79 269.83 2.16
D 305.28 302.29 0.98
E 242.43 221.59 8.60
F /(Serious distortion) 783.90 /

Although the method presented in this study has some advantages in correcting the
geolocation errors of polar images, it also has its limitations. For example, only two division
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schemes were applied in the BNU-1 images, and the division fractions for different images
are still worth further study. Besides, the geolocation accuracy of some sub-images with
relatively uniform surface features is difficult to improve by using the proposed method.
This indicates that the SIFT algorithm has its limitation for finding more CPs. Therefore, it
is necessary to explore some other CPs extraction methods for increasing the number of
CPs. Since deep learning methods have been widely used in image registration [38,39], it is
worth exploring the possible application of deep learning methods on CPs extraction from
the images of polar regions.

6. Conclusions

In this study, we present the geolocation method for BNU-1 images including two
steps. For the first step, a rigorous geometric calibration model was applied to transform
the image coordinates to the geographic coordinates for the BNU-1 images. The images
geolocated by the geometric calibration model are the BNU-1 L1A product. For the second
step, an automated geometric correction method was used to reduce the geolocation errors
of the BNU-1 L1A product. The images corrected by the geometric correction method are
the BNU-1 L1B product.

The geometric correction method is commonly used for improving the geolocation
errors of the visible image. However, the texture features of the ice and snow surfaces are
rarely seen in polar images, which makes it difficult to find the CPs. The combination of the
image division method and piecewise linear image enhancement method was applied to
the BNU-1 L1A product and the corresponding MODIS images, and the results indicate that
the CPs extracted increased by 30% to 182%, which can effectively improve the geometric
accuracy of the BNU-1 images.

The geolocation method was applied to 28 images of Antarctica and 15 images of
Arctic regions. The average geolocation error was reduced from 10 km to ~300 m. The
coastlines in the image mosaics from the BNU-1 L1B product were consistent with the
coastline dataset. These results suggest that the geolocation method has the ability to
improve the geolocation errors of BNU-1 images and other satellite images in polar regions.
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