
 

 

 

 
Remote Sens. 2021, 13, 4256. https://doi.org/10.3390/rs13214256 www.mdpi.com/journal/remotesensing 

Article 

A Remote Sensing Approach for Surface Urban Heat Island 

Modeling in a Tropical Colombian City Using Regression  

Analysis and Machine Learning Algorithms 

Julián Garzón 1,2,*, Iñigo Molina 1, Jesús Velasco 1 and Andrés Calabia 3 

1 Dept. of Surveying and Cartography Engineering, Universidad Politécnica de Madrid, Campus Sur UPM, 

C/ Mercator 2, 28031 Madrid, Spain; inigo.molina@upm.es (I.M.); jesus.velasco@upm.es (J.V.) 
2 Programa de Ingeniería Topográfica y Geomática, Universidad del Quindío, Armenia 630004, Colombia 
3 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and  

Technology, Nanjing 210044, China; andres@calabia.com 

* Correspondence: j.garzonb@alumnos.upm.es; Tel.: +57-318-621-5040 

Abstract: The Surface Urban Heat Islands (SUHI) phenomenon has adverse environmental conse-

quences on human activities, biophysical and ecological systems. In this study, Land Surface Tem-

perature (LST) from Landsat and Sentinel-2 satellites is used to investigate the contribution of po-

tential factors that generate the SUHI phenomenon. We employ principal component analysis 

(PCA) and multiple linear regression (MLR) techniques to model the main temporal and spatial 

SUHI patterns of Cartago, Colombia, for the period 2001–2020. We test and evaluate the perfor-

mance of three different emissivity models to retrieve LST. The fractional vegetation cover model 

using Sentinel-2 data provides the best results with R2 = 0.78, while the ASTER Global Emissivity 

Dataset v3 and the land surface emissivity model provide R2 = 0.27 and R2 = 0.26, respectively. Our 

SUHI model reveals that the factors with the highest impact are the Normalized Difference Water 

Index (NDWI) and the Normalized Difference Build-up Index (NDBI). Furthermore, we incorporate 

a weighted Naïve Bayes Machine Learning (NBML) algorithm to identify areas prone to extreme 

temperatures that can be used to define and apply normative actions to mitigate the negative con-

sequences of SUHI. Our NBML approach demonstrates the suitability of the new SUHI model with 

uncertainty within 95%, against the 88% given by the Support Vector Machine (SVM) approach. 

Keywords: surface urban heat island (SUHI); land surface temperature (LST); principal component 

analysis (PCA); multiple linear regression (MLR); machine learning; naïve Bayes 

 

1. Introduction 

Urban expansion transforms natural areas into surfaces covered with concrete, as-

phalt, and buildings (highly impervious materials), reducing evapotranspiration and de-

creasing the cooling capacity of the air, which in turn helps to reduce the impacts of high 

urban surface temperature on the urban surface. Due to the existing urban growth, the 

climate in these areas becomes warmer than the regional areas of the suburban and rural 

regions, resulting in the phenomenon of Urban Heat Islands (UHI) [1]. The UHI refers to 

a phenomenon in which urban areas tend to have higher air or surface temperatures than 

their surroundings [2]. Traditionally, terrestrial observation methods, such as ground me-

teorological stations that record specific values of air temperature, have been used to 

model UHI [3]. The difference between air temperature measurements recovered from 

urban and rural meteorological stations is a direct method used to model UHI [4]. How-

ever, the high heterogeneity in urban areas makes temperature spatially diverse, making 

it difficult for a small number of stations to realistically represent the real variability [5]. 

When the UHI phenomenon is monitored by remote sensing, it is referred to as Surface 
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Urban Heat Island (SUHI). The reason is that the parameter considered here is the Land 

Surface Temperature (LST), which differs from studies of air temperature [6]. Therefore, 

LST is an essential variable to characterize SUHI, which has been listed as an essential 

climate variables of the World Meteorological Organization program. This variable is an 

important indicator of the energy balance between the atmosphere and the surface of the 

Earth [7]. Zhou et al. [8] presented a broad review of the SUHI phenomenon and sug-

gested several methods of analysis through the integration of remote sensing data, ther-

mal trends, field observations, and numerical modeling. Sekerteking and Zadbagher [9] 

suggest that to model and simulate LST, it would be important to investigate the perfor-

mance of various machine learning methods associated with statistical and numerical 

models. Li et al. [10] and Mei et al. [11] pointed out that one of the problems to be solved 

in inference models of LST or geographic variables is to evaluate the influence of contrib-

uting factors. 

Land-use land-cover changes (LULC) and spectral indices from satellite data, such 

as, e.g., Normalized Difference Vegetation Index (NDVI) or Normalized Difference Water 

Index (NDWI), have been used extensively to investigate the relationships between urban 

and biophysical systems, as well as their impact on surface temperature [12–15]. LULCs 

are due to complex interactions between the urban system and the biophysical environ-

ment that produce significant changes in local temperatures. In a recent work published 

by Shi et al. [16], eight parameters were referred to as urban design factors, where thermal 

properties of building materials, vegetation, vegetation cover ratio, and ground emissivity 

were taken into account. The authors suggested the need to detect more potential factors 

affecting this phenomenon. 

Understanding and quantifying urban temperatures in space and time are signifi-

cantly relevant for city planners in defining policies that generate adaptation strategies to 

mitigate the SUHI effects. A very useful tool is Principal Component Analysis (PCA), a 

multivariate statistical technique that aims to preserve the total variance and reduce the 

dimensionality of the data set, while eliminating redundancy in the data [17]. Several au-

thors have used this technique to detect spatial patterns of biophysical factors by synthe-

sizing information from a set of images [18–20]. Multiple Linear Regression (MLR) analy-

sis is an approach used to evaluate the relationship between independent and dependent 

factors [21]. This method has also been widely used to determine the relationship of vari-

ous environmental factors [22–24]. 

Advanced nonlinear analysis techniques, such as Machine Learning, have been ap-

plied in numerous studies that require analyzing variables related to urban thermal 

changes. Some examples are population density, land cover, and urbanization [25–29]. 

Voelkel and Shandas [30] implemented a UHI model to detect a daily distribution of tem-

peratures. Their results revealed that a random forest (RF) model performed better in pre-

dicting temperature. Furthermore, Zumwald et al. [31] developed a model to create high-

resolution air temperature maps. This model makes predictions by integrating an RF al-

gorithm with low-cost weather stations. It is important to note that the behavior of SUHI 

varies over time and is associated with factors such as human development and changes 

in land use. In this sense, Kafy et al. [32] formulated a seasonal thermal prediction influ-

enced by LULC through Cellular Automata and Artificial Neural Network algorithms. 

Their findings indicated that by 2039, the urban growth of Cumilla, and Bangladesh, plus 

the decrease in land cover, will cause 30% of cities to experience temperatures above 33 

°C. Shi et al. [33] noted that the use of time series and Machine Learning techniques is a 

growing trend in SUHI research. 

Several studies have widely documented the influence of spectral indices such as the 

NDBI, NDVI and Normalized Difference Water Index (NDWI) on the SUHI phenomenon 

[34,35]. However, none of these authors considered the weighted contribution of the fac-

tors to temperature changes, while it is an interesting analysis that can identify which 

factors generate the greatest influence on SUHI. On the basis of these factors, specific ad-

aptation measures to thermal change can be defined and applied. The main novelty of the 
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approach proposed in this work is the application of a weighted Naïve Bayes Machine 

Learning (NBML) algorithm to segment the geographical space into regions of different 

thermal intensity, not explored in previous literature. 

Understanding and quantifying urban temperatures in space and time is significantly 

relevant for city planners in defining policies that generate adaptation strategies in the 

face of adverse effects of SUHI. Here we study the application and assessment of modeling 

procedures that allow evaluating the contribution of various factors to SUHI. For this pur-

pose, a combination of PCA and MLR techniques applied along with Machine Learning 

Algorithms is used to detect high thermal intensity patterns in the tropical Colombian 

Andean city of Cartago. Although SUHI is a derived quantity, expressed as the difference 

between urban and rural LST, the delimitation of thermal zones using LST ranges allows 

establishing comparisons with other zones, e.g., rural areas, and classifies the space into 

zones with greater or lesser thermal activity. In this study, the LST ranges are taken from 

Wang et al. [36], as they are based on statistical criteria, and they appear to conveniently 

reflect the LST differences of urban areas with their surroundings. The spatial patterns of 

the SUHI phenomenon can be represented through LST ranges, which, combined with the 

weights of the involved variables, are further classified using Machine Learning algo-

rithms.  

The methodology suggested in this article establishes an effective method for as-

sessing SUHI patterns, locally, and attempts to draw several recommendations for plan-

ning sustainable urban development and for the regeneration of areas with thermal ex-

cesses.  

2. Materials and Methods 

2.1. Study Area 

The city of Cartago is located in the south-west area of Colombia in the Andean re-

gion at an altitude of 917 m above sea level. It has an extension of 279 km2 with moderate 

topographic relief. The geodetic coordinates of the city center are 4.75°N and 75.9°W. This 

area belongs to Valle del Cauca Department and is surrounded by the Cauca and La Vieja 

rivers.  

The climate in this area is tropical dry and the average air temperature is 23.8 °C, 

with an annual rainfall of 1578 mm. March is the warmest month with an average tem-

perature of 24.3 °C, while October is the coldest with 23.3 °C. According to official reports, 

the urban population growth rate during 2001–2020 was 12.3%, while the rural population 

decreased by 44% [37]. The population density is 464 inhabitants per km2. The appearance 

of new urban units (red oval areas in Figure 1) denotes the urban growth from the city 

center to the north-east, near the La Vieja River, as well as to the south-east and south-

west. Temperatures in tropical zones show small changes throughout the year. According 

to official reports from the study area, the difference between the average temperature of 

the warmest month and that of the coldest month is 1 °C [38]. 
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Figure 1. Location of the study area. (a) South America: Colombia highlighted. (b) Location of 

Valle del Cauca in Colombia. (c) Cartago in Department of Valle del Cauca. (d) Cartago, Landsat 8 

OLI band combination (R:5, G:6, B:4). (e) Digital Elevation Model. 

2.2. Data 

Data used for the study area (Figures 1a and 1b) were freely acquired from ESRI 

World Countries (https://hub.arcgis.com/, accessed on September 2021). The base cartog-

raphy for the construction of thematic maps and the topographic model is available at 

https://geoportal.dane.gov.co/, accessed on August 2021 and https://geopor-

tal.igac.gov.co/, accessed on December 2020. The primary information sources used are 

satellite Earth images from the Thematic Mapper (TM) instrument onboard the Landsat 5 

and 7 satellites (L5TM, and L7ETM+), and from the Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) onboard the Landsat 8 satellite (L8OLI/TIRS). The images 

used in this study are sparsely distributed within the period 2001–2020, as shown in Fig-

ure 2. Each Landsat product contains separated spectral bands in GeoTIFF format and is 

referenced to the WGS84 datum in the UTM (18N) cartographic projection. L5TM, 

L7ETM+ and L8OLI VIS and NIR bands have a spatial resolution of 30 m, while for the 

TIR satellite instruments, the resolutions are 120, 60, and 100 m, respectively. We employ 

a total of 37 Landsat scenes (satellite path 009 and row 057) including 2 images of L5TM, 

20 of L7ETM+, and 15 of L8OLI/TIRS. In addition to the Landsat products, 11 multispectral 

Level-2A atmospheric corrected images from the Sentinel-2 Multispectral Instrument (S2-

MSI) were also used to extract the so-called Fractional Vegetation Cover (Fcover) biophysi-

cal variable. S2-MSI offers a different spatial resolution; the three visible and the near in-

frared bands have 10-m spatial resolution. The three Red Edge bands, an NIR band, and 

two SWIR S2-MSI bands have 20-m spatial resolution. These data are very appropriate for 

the retrieval of geophysical surface parameters. Meanwhile, the three other S2-MSI bands 

(coastal aerosol, water vapor, and SWIR-Cirrus) have a resolution of 60 m resolution. The 

reflectance S2-MSI products are freely available on the European Space Agency (ESA) 

DataHUB server (ESA, https://scihub.copernicus.eu/, accessed on December 2020). Details 

on the retrieval of Fcover are given in Section 2.3.2. The estimation of LST from the Thermal 

Infrared Sensor (TIRS) is highly dependent on the intrinsic properties of the coverage, 

such as the emissivity of the land surface. The emissivity retrieval method based on the 

Fcover is very suitable due to its ease of application. The performance shown in works such 

as Sobrino et al. [39] and Valor and Caselles [40]. 
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Figure 2. Temporal distribution of Landsat and Sentinel 2 

2.3. Methods 

The proposed methodology comprises five processing steps: (1) data calibration, (2) 

extraction of contributing factors, (3) estimation of temperature and emissivity, (4) valida-

tion of temperatures, and (5) modeling of the SUHI phenomenon. These are described in 

the following sections. 

2.3.1. Data Calibration  

The conversion of image digital values to top of atmosphere radiance (LTOA) was 

carried out using the gain and offset parameters included in the product metadata file. 

We use the radiance models provided by the USGS website [41]. Subsequently, the images 

were corrected from atmospheric effects to minimize the radiance scattering and absorp-

tion errors caused by water vapor, dust particles, and aerosols. We employ the Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module of ENVI®, 

which incorporates the MODerate Resolution Atmospheric TRANsmission (MODTRAN) 

model [42]. Given the geographic location of the area of interest, the tropical atmospheric 

model is applied to the Landsat products. FLAASH solves the radiative transfer equation 

by determining the water vapor for each pixel in the image. Water vapor content (WVC) 

retrieval is not a straightforward solution for Landsat bands, so this parameter was taken 

from a standard atmospheric model. Regarding the aerosol concentration or aerosol opti-

cal depth (AOD), the dark vegetation reflectance algorithm of Kaufman et al. [43] was 

applied. Finally, all images were subset to fit the boundaries of the study area. 

2.3.2. Definition and Extraction of Contributing Factors  

Spectral indices such as NDBI, NDVI, and NDWI are used to examine the underlying 

properties of SUHI formation. Analytical expressions of these indices can be found in Zha 

et al. [44], Tucker [45], and Gao [46]. Moreover, the components of the tasseled cap (TC) 

components (brightness, greenness, and wetness) are also computed [47]. The rationale 

for the selection of these biophysical indices is as follows.  

 Energy exchange between latent and sensible heat is related to NDBI, since it detects 

impervious surfaces that reduce humidity and increase the average temperature of 

the environment [48].  

 Temperature and vegetation maintain a spatially dependent relationship [49]. Vege-

tation reduces surface irradiation and increases humidity through physiological pro-

cesses that allow energy exchange, while producing a cooling effect. In this sense, an 

index for measuring this photosynthetic activity is the NDVI.  

 The presence of water bodies has a cooling effect on urban temperature [50]. In this 

scheme, the NDWI quantifies the water content in the vegetation, while suggesting a 
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significant effect in reducing SUHI. Likewise, rivers play an important role as ther-

mal regulators of urban climate, increasing the cooling potential through evaporation 

and facilitating airflow. Given that the urban center is the main point for the devel-

opment of socioeconomic activities, two additional variables were considered to de-

scribe the expression of the proximity, i.e., the proximity map of the water body (PW) 

and the proximity map (PW) and the city center (PUC). A greater distance would 

imply a lower thermal intensity [51]. The proximity indices are computed by means 

of a Euclidean distance using the inverse weight distance operator in ArcGIS® 

(https://esri.com/, accessed on October 2020). 

The above indices conform to the contributing factors to our proposed SUHI model. 

To compute the emissivity values required to retrieve LST from Landsat thermal bands, a 

novel method is proposed through extracting Fcover biophysical variable, although this in-

formation can be derived indirectly from NDVI, Leaf area index (LAI), or other biophysi-

cal variables [52–54]. Bacour et al. [55] proposed a robust procedure based on the Neural 

Network training of the PROSAIL (PROSPECT leaf optical properties model and SAIL 

canopy bidirectional reflectance) model. This Fcover variable is implemented in the ESA’s 

Sentinel Application Platform (SNAP (https://step.esa.int/main/toolboxes/snap/, accessed 

on October 2020), and requires S2-MSI images. Detailed descriptions of this scheme are 

available in Weiss and Baret [56]. The Fcover variable provides the emissivity values neces-

sary to compute LST with the L8OLI/TIRS thermal band 10. Compared to traditional 

methods based on NDVI, this new approach for extracting the emissivity is suitable for 

thermal radiation models. Due to temporal synchronization between S2-MSI and 

L8OLI/TIRS images, this method is only applicable since 2015. 

2.3.3. Estimation of Land Surface Temperature and Emissivity 

Land surface temperatures are retrieved from L5TM, L7ETM+, and L8OLI/TIRS. For 

L8OLI/TIRS, only band 10 is used, since band 11 has large uncertainties, as reported by 

the USGS [57]. The consistency of Landsat 5, 7 and 8 satellite thermal instruments in re-

covering LST was compared by Sekertekin and Bonafoni [58] and validated with in situ 

LST measurements. The RMSE values were 2.39 °C, 2.57 °C and 2.73 °C, respectively, re-

sulting in an average difference of 0.2 °C between the sensors. The uncertainty values are 

adequate uncertainty for the purpose of this study. In Figure 3, our model to retrieve LST 

is presented in a flow chart. Temperatures are derived using the radiative components 

implemented by Barsi et al. [59] for single-channel algorithms. This method simulates the 

attenuation effects of the atmosphere that disturb the TIR signal.  

Radiance and transmissivity values are available at https://atmcorr.gsfc.nasa.gov/, 

accessed on September 2020. The data is a compendium of atmospheric transmissivity 

values, along with upwelling and downwelling radiances for a given geographical loca-

tion. The radiative values can be used in atmospheric correction models, e.g., Equation 

(1), taking also into account the correction of spectral emissivity. 

L��� = τ ⋅ ε ⋅ L� + L�↑ + τ ⋅ (1 − ε) ⋅ L�↓ (1)

In this equation, L��� is the spectral radiance at the top of the atmosphere (registered 

by the sensor), τ is the atmospheric transmittance, ε is the spectral emissivity, L� is the 

spectral radiance of a black-body target of kinetic temperature T, L�↑  and L�↓  are the 

upwelling atmospheric path radiance and the downwelling or sky radiance, respectively.  

Implementing Equation (1) requires the supply of adequate emissivity values for a 

suitable estimation of LST. Since different land covers emit thermal radiation differently, 

spectral emissivity corrections are necessary [60]. In this work, 3 emissivity models are 

tested to accurately estimate LST. First, the field-measured LSE (land surface emissivities) 

values are obtained from different authors, and are listed in Table 1. Then the emissivity 

data of the ASTER-GEDv3 product [61] were considered. 
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Then, the Fcover model of Valor and Caselles [40] is applied; this model allows the 

calculation of the emissivity in the Landsat 8 thermal band, considering the Fcover index 

and the minimum and maximum values of the emissivity in the corresponding spectral 

band. Finally, the 3 LST models are compared and validated. In this study, land use fea-

tures are categorized into 7 classes. These are water bodies, cropland, forest, low vegeta-

tion, bare soil, urban/densely built, and suburban/medium built. We applied this scheme 

following the land cover classes proposed by Park et al. [62]. Since impervious surfaces 

exhibit a large spectral variation [63], two classes are used to represent artificial surfaces: 

urban/dense and suburban/medium. These classes are particularly identified by the im-

pact on emissivity. 

. 

Figure 3. Flowchart for LST estimation and assessment of the emissivity models used in this study. 

For this purpose, an object-based classification is carried out using Trimble’ s eCog-

nition Developer software (https://geospatial.trimble.com/products-and-solutions/ecog-

nition, accessed on October 2020).  
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Table 1. Reference values for the LSE model with L8OLI/TIRS band 10. 

Land cover Emissivity Reference 

Waterbodies 0.992 FROM-GLC cited by [64] 

Cropland 0.971 FROM-GLC cited by [64] 

Forest 0.995 FROM-GLC cited by [64] 

Low vegetation 0.986 Tan et al. [65] 

Soil 0.972 Tan et al. [65] 

Urban/densely built 0.973 FROM-GLC cited by [64] 

Suburban/medium built 0.971 Tan et al. [65] 

The second emissivity dataset in this work is the ASTER Global Emissivity Dataset 

v3 (ASTER-GEDv3) [61], (https://emissivity.jpl.nasa.gov/aster-ged, accessed on 1 June 

2020). This method was developed by the NASA Jet Propulsion Laboratory (JPL) as an 

algorithm based on temperature and emissivity separation along with an atmospheric 

correction model. More details can be found in Hulley and Hook [66].  

The third emissivity model requires knowledge of the Fcover variable [40]. This method 

provides the emissivity of a heterogeneous surface as follows: 

ε = ε� ⋅  F����� + ε� ⋅ (1 − F�����) + 4 ⋅ 〈dε〉 ⋅ F����� ⋅ (1 − F�����) (2)

In this equation, ε� = 0.985 and ε� = 0.960 are reference vegetation and bare soil 

emissivity, respectively. ‘dε’ is the cavity effect associated with the indirect radiance emit-

ted due to internal reflections between the interfaces. Here, Fcover is obtained from S2-MSI 

Level 2A products (see Section 2.3.2). The procedure to retrieve the Fcover variable differs 

from the NDVI methods [67,68], and is presented as a novel alternative for thermal mod-

eling with Landsat data. In tropical areas, throughout the year, vegetation dynamics does 

not exhibit abrupt changes, and this implies that Fcover lacks significant seasonal variations. 

For the L5TM and L7ETM+ thermal instruments, the emissivity model of Equation (3) [69] 

is used. This last method to obtain Fcover is based on the NDVI parameter. 

ε = ε������ ∙ (1 − F�����) ⋅ ε��� ⋅ F�����   (3)

In this equation, ε������ and  ε��� are the reference emissivity values for nonvege-

tated and vegetated areas, being 0.97 and 0.99, respectively [70]. In this work, the Fcover 

variable is recovered using the NDVI, as it effectively reflects the conditions of vegetation 

cover [42]. This is estimated by Equation (4). 

Fcover = �
NDVI − NDVI�

NDVIv − NDVI�

� 

2

  (4) 

In this equation, NDVI� is the NDVI value of pure soil, and NDVI� is the NDVI of 

pure vegetation obtained from the NDVI image. 

This method is based on the Carlson and Ripley [69] model. Finally, the conversion 

from LTOA to LST is estimated by using the constants for sensor calibration and the in-

version of the Planck equation [71]. 

2.3.4. Assessment of the Land Surface Temperature retrieved from L8TIRS B10  

Landsat-retrieved LST was verified with in situ measurements. Unfortunately, due 

to the Landsat overpasses schedule, starting in 2001, it was impossible to undertake a val-

idation by means of field surveys for the entire Landsat time series. Due to these incon-

veniences, the comparison was limited only to 2 overpasses of L8OLI/TIRS band 10. the 

L5TM and L7ETM+ data, the Carlson and Ripley results [69] can be used as a reference. In 

situ temperatures were measured using 30 thermometers assembled into DS18B20 digital 

sensors. The direct calibration method was applied, which consists in recording the read-

ings of the test and standard thermometers. The latter are preserved in an isothermal me-
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dium. This calibration procedure produced standard deviations of ± 0.5 °C. The field sur-

vey consists of distributing 30 devices, as shown in Figure 4. LST measurement coincident 

with the two L8OLI/TIRS overpasses were recorded on 22 January and 9 September 2019. 

Each device recorded the temperature values by means of a probe in contact with the 

ground surface. The ground sensors were placed in areas with homogeneous land cover 

to minimize the spatial thermal variation caused by different emissivity values. These rec-

ords will be used to contrast the LST values derived from satellite measurements. In Sec-

tion 3.1, we perform a sensitivity analysis for the 3 emissivity models. 

 

Figure 4. Location of in situ ground LST measurements. 

2.3.5. Modelling the SUHI Phenomenon 

According to Rasul et al. [72], SUHI modeling consists of identifying the spatial var-

iation in time of thermal features in urban areas. Here, through the combination of thermal 

images from remote sensing and sparse measurements on field, our SUHI model employs 

the PCA to analyze space-time data. The PCA is a multivariate statistical technique that 

preserves the total variance of a dataset while reducing its dimensionality [73]. In this 

way, the PCA can retrieve the main spatial patterns of variability in a time-series. The 

application of PCA provides a generalization of the changes that characterize the varia-

bility patterns in a time series of images [18].  

Then, the impacts of the 8 factors considered in this study are assessed using a MLR 

approach. The MLR technique is a parametric model that adjusts the relationship between 

explanatory variables, that is, the contributing factors, and the response variable, e.g., LST. 

The inclusion or elimination of predictors depends on the significance of these variables 

within the model, which is defined by a test hypothesis based on the coefficients associ-

ated with the response variable. When using MLR techniques, it is important to examine 

the key assumptions of autocorrelation, normality of residuals, and multicollinearity. 

These factors determine the reliability of the model [74]: 

 Autocorrelation of a variable represents its self-dependence and implies redundant 

information that makes the estimator lose efficiency. The Durbin-Watson statistic is 

used to measure autocorrelation [75].  

 The normality of a residuals guarantees a satisfactory representation of the model. 
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 Multicollinearity occurs when the predictor variables are highly correlated. Multicol-

linearity increases the variance, causing instability of the regression and thus increas-

ing the standard error [76]. Multicollinearity is measured with the Variance Inflation 

Factor (VIF).  

Finally, outliers can also alter the modelling approach, causing problems with regres-

sion assumptions [77,78], and these must be controlled or removed from the dataset. Here, 

our MLR analysis is an equation capable of describing the thermal intensity depending on 

the contributing factors. To verify the relative importance of each individual predictor of 

the LST model, a normalization procedure was previously performed to standardize the 

coefficients. We use the deviation of the mean values, which is divided by the standard 

deviation of the response variable in LST. This allows us to derive the standardized coef-

ficients [79]. Subsequently, the contribution of each variable to LST is obtained by 

weighting the absolute value of each variable. The resulting weights are further used for 

assessing the subsequent Machine Learning procedure that derives the multitemporal in-

tensity of the SUHI model. This provides a technical basis for analyzing the factors that 

influence the thermal environment, which is of great significance for rational urban plan-

ning and sustainability. 

The methodological workflow in Figure 5 shows the spatiotemporal model followed 

to characterize the impact of environmental factors on the thermal changes. First, the mul-

titemporal factors, such as LST, spectral indices, and other variables, are derived from the 

Landsat 2001–2020 dataset. Then, the PCA technique is applied to extract the main pat-

terns of variability. Subsequently, all the variables involved are included in the MLR 

scheme to model the possible dependences on LST. The MLR is implemented with the 

software R Studio (https://rstudio.com/, accessed on February 2021).  

 

Figure 5. Flowchart of the proposed SUHI model. 

Finally, the SUHI phenomenon is segmented into different zones depending on the 

thermal intensity. Thermal value ranges follow the categories of Wang et al. [36], which 

consider the average temperature of the land surface and its standard deviation (SD). Seg-

mentation provides a definitive SUHI product that categorizes the urban environment 

according to specific conditions. Here we test 2 different Machine Learning methods for 
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classification; Support Vector Machine (SVM) and Naïve Bayes Machine Learning 

(NBML). Both SVM and NBML methods have shown in previous research their robust-

ness for the characterization of various types of geospatial data [80,81]. The SVM method 

defines a separate hyperplane in a higher-dimensional space that optimally classifies the 

data. This method is particularly useful for solving nonlinear relations [82], and is availa-

ble as open-source software in Orfeo ToolBox (OTB) at https://www.orfeo-toolbox.org/, 

accessed on 1 June 2020. The NBML technique is based on the Bayes theorem for condi-

tional probability and assumes independence between predictors, variables, or features 

[83]. 

NBML is often referred to as the maximum a posteriori decision rule [84], and its 

code can be easily written in any programming language. NBML assigns the most likely 

class to a certain observation by estimating the probability density of the training classes 

[85]. An observation is classified as a certain class when the posterior probability reaches 

the maximum value according to the following expression: 

�(�) = ��� ���� p(C�) � p(x�|C�)

�

���

  (5)

In this equation, �(�) is the maximum a posteriori of x� for the class labeled as C�, 

p(C�) is the prior probability for class C�, p(x�|C�) represents the conditional probability 

distribution of x� given C�, and (w�) is a particular weight applied to each factor. Usu-

ally, the independence assumption is not fulfilled, and the weighting of the features in-

volved in the assignment process can satisfy the required assumptions [86]. Here, each 

feature or factor is affected by a particular weight (w�), which can be formally defined by: 

�(�) = ��� ���� p(C�) � p(x�|C�)��

�

���

  (6)

In this equation, w� denotes the weight value of the ith attribute, with values re-

stricted to the range [0,1]. In this work, attributes are the contributing factors involved in 

the SUHI phenomenon, while the C� classes are the seven temperature categories defined 

by Wang et al. [36]. These are described in Table 2. 

Table 2. Range of LST intervals. TS represents land surface temperature; Ta is the average land 

surface temperature. SD is the standard deviation. 

Temperature grade Range 

Extreme high temperature (EHT) TS > Ta + 2SD 

High temperature (HT) Ta + SDTS ≤ Ta + 2SD 

Sub-high temperature (SHT) Ta + SD/2TS ≤ Ta + SD   

Medium temperature (MT) Ta - SD/2TS ≤ Ta + SD/2 

Sub-medium temperature (SMT) Ta - SDTS ≤ Ta - SD/2 

Low temperature (LT) Ta – 2SDTS ≤ Ta – SD 

Sub-low temperature (SLT) TS < Ta + 2SD 

The prior p(C�) and conditional probabilities p(x�|C�) are determined through a 

training process. Then, Equation (6) becomes: 

�(�) = ��� ���� p�(C�) � p�(x�|C�)��

�

���

  (7)

In this equation, p�(C�) and p�(x�|C�) are estimates of the probabilities density func-

tions (PDFs). These are derived from the frequency of their respective arguments in the 

training sample. Here, p�(C�) can also be estimated from a preliminary outcome of a SVM 

process. 

Equation (7) allows us to weight each environmental factor to generate the final SUHI 

product. The resulting map is generated according to the architecture shown in Figure 6, 
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which is based on the NB decision rule. This approach categorizes the urban environment 

according to a specific condition and assigns a specific type of action based on each tem-

perature category. This analytical procedure allows one to obtain a map that delimits the 

areas of different thermal intensities. The resulting areas are based on the spatiotemporal 

trends of the contributing factors, facilitating the management and application of 

measures to mitigate/adapt the SUHI phenomenon. 

 

Figure 6. Architecture of the NBML modelling for generating the SUHI product. 

3. Results 

3.1. Land Surface Temperature 

Sensitivity analysis of the three emissivity models is performed prior to retrieving 

land surface temperatures from the 37 Landsat images; the results of the assessment for 

the LST retrieved from L8/TIRS B10 (described in 2.3.4) are presented here. Figure 7 shows 

the differences between LST derived from the three models evaluated in this study 

(Fcover, AS-TER-GEDv3, and LSE), and these are compared with in situ LST. In this fig-

ure, the minimum, maxima, median and mean values are shown for (a) January 2019 and 

(b) September 2019. In both cases, the lowest differences agree with the LST values from 

our Fcover emissivity model. 

 

Figure 7. Boxplots of LST results from Fcover, ASTER-GEDv3, and LSE. The white horizontal line 

in each box is the median. (a) January 2019; (b) September 2019. 

The interquartile ranges show a narrower dispersion for the Fcover model compared 

to the ASTER-GEDv3 and the LSE model. This feature is obvious for the campaign in 

September 2019. The regression analysis between the LST from ground-based sensors and 

that of the L8OLI/TIRS band 10 is shown in Figure 8. The dark gray areas represent the 
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confidence boundaries of 95%, while the solid lines represent the line of best fit between 

the computed and in situ LST. The best determination coefficient is given by Fcover with R2 

= 0.78 and SD = 0.73 (Figure 8a). For the other two cases, the coefficients are R2 = 0.27 and 

R2 = 0.26 for the ASTER-GEDv3 and LSE models, respectively.  

 

Figure 8. Regression analysis between LST from L8OLI/TIRS and that from ground measurements. 

Color code: Orange, January; Green, September (a) Fcover; (b) ASTER-GEDv3; (c) LSE model. 

3.2. Principal Component Analysis 

The PCA was carried out using all contributing factors during the period 2001–2020 

(37 images for each variable). Figure 9 shows the contribution to the total variance of each 

PCA component. We can observe that the first PCA component (PCA1) of T-cap Bright-

ness and T-cap Wetness provide a lower contribution to the total variance, with 54% and 

64%, respectively. On the other hand, the rest of the variables show larger patterns of var-

iability with only the first PCA component (above 75%).  
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Figure 9. Contribution of the main PCA components to the total variance for the different varia-

bles used in this study. 

Regarding the explained variance (%) of the second principal component or the T-

cap Brightness, it is observed that it still retains a large amount of variance (12%), when 

compared to other factors. Since the goal of the PCA is to reduce the set of variables, in 

the case of the T-cap Brightness, the former dataset cannot be strictly explained by the first 

principal component, as it is the case of the remaining factors. This implies that further 

analysis is addressed towards investigating the second or even third components of the 

T-cap Brightness. 

We employ the Jenks Natural Breaks grouping model [87] to identify the main groups 

and the inherent patterns that minimize the deviation of each class with respect to the 

mean value of the other groups. This method reduces the variance within the classes and 

maximizes the variance between classes. In this scheme, we obtain four groups for each 

factor, representing the spatio-temporal trends between 2001–2020. Figure 10 shows the 

resulting maps where the results for LST (Figure 10a) show the maximum concentration 

of temperature in densely populated areas, similar to the results of NDBI (Figure 10b). 

The LST results show gradual variations from low to high temperatures near the perime-

ter of urban areas. Regions with lower temperatures are mainly located in areas close to 

water bodies and dense vegetation. Vegetation areas can be identified in the NDVI results 

(Figure 10c). The NDVI and T-Cap Greenness maps Figures 10c,f have high similarity, 

while the T-Cap Brightness and Wetness maps Figures 10e,g lack spatial correlation with 

the thermal phenomenon. In the next section, we analyze the spatial correlations in more 

detail. 

 

Figure 10. First PCA components for the main factors during the period 2001–2020: (a) land sur-

face temperature; (b) normalized difference built-up index; (c) normalized difference vegetation 
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index; (d) normalized difference water index; (e) T-cap brightness; (f) T-cap greenness; (g) T-cap 

wetness. 

3.3. Multiple Linear Regression 

A large number of outliers were identified and removed in the brightness and hu-

midity factors to avoid introducing “noise” into the MLR analysis. All residuals greater 

than 3σ standard deviation from the mean value are considered outliers and thus re-

moved. Since NDVI and Greenness factors are highly redundant (R2 = 0.99), the latter was 

excluded. Concerning the Brightness factor, under the special circumstances observed in 

Section 3.2, the two first principal components only explain 66% of the total variance. 

Moreover, the low spatial correlation with LST (Figure 10) suggests excluding this varia-

ble. 

Then, in the Fisher hypothesis test for the PW factor is larger than 0.1, and it was 

removed. Finally, the scrutiny explanatory variables are NDBI, NDVI, NDWI, and PUC, 

and the resulting MLR model outcomes as follows: 

LSTtrend =  0.29 +  .48 NDBItrend +  .21 NDVItrend −  .61 NDWItrend −  .51 PUC (8) 

The regression analysis coefficients are shown in Table 3. In this table, p (>|t = 0.05|) 

represents the probability of observing any value larger than t. In our model, all p-values 

are below the significance level (0.05). This implies that NDBI, NDVI, NDWI and PUC are 

statistically significant predictors. The model has a high coefficient of determination (R2 = 

0.82), this means that these variables explain 82% of the variability observed in the LST. 

Table 3. Multiple linear regression coefficients. 

Factors Estimate SD t value p (> t = 0.05|) 

(Intercept) 0.29 0.01 34.79 <  0.001*** 

NDBI 0.48 0.05 9.91 <  0.001*** 

NDVI 0.21 0.02 13.21 <  0.001*** 

NDWI -0.61 0.03 -23.65 <  0.001*** 

PUC -0.51 0.01 -39.60 <  0.001*** 

* Significant p < 0.05; **very significant p < 0.01; ***extremely significant p < 0.001. 

The p-values of the regression analysis are shown in Table 3. All p-values are smaller 

than 0.05, indicating that the relationships between independent and dependent variables 

are statistically significant. Finally, to support the validity of the model, the following key 

assumptions were verified: autocorrelation, normality, and multicollinearity. The result-

ing values are given in Table 4. 

Table 4. Fulfillment of the Assumptions. 

Autocorrelation Normality Multicollinearity (VIF) 

D-W p-value K-S p-value NDBI NDVI NDWI PUC 

2.00 0.80 0.02 < 0.001 45.03 9.12 45.75 1.26 

 

In this table, we can appreciate that the NDBI and NDWI VIF values are greater than 

10, thus exceeding the tolerance. This implies that these two variables should be disre-

garded. As stated by Szymanowski and Kryza [88], the variables that exceed this tolerance 

may be considered to improve a regression model. Moreover, these two predictors are 

very important variables in many UHI studies [89–91]. In the UHI study by Cruz et al. 

[92], after performing a multicollinearity test, explanatory variables with VIFs between 50 

and 70 were selected for their multiregression analysis. These were considered an im-

portant component for modeling this phenomenon. These are the reasons for maintaining 

the NDBI and NDWI as explanatory variables in this study. 
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The independence between residuals was verified using the Durbin–Watson statistic 

(D-W) with a value of 2.0, which falls within the critical values of 1.5 < D-W < 2.5, indicat-

ing the absence of autocorrelation. The normality of the residuals was proved by applying 

a Kolmogorov–Smirnov (K-S) test, which confirms the normal distribution. Figure 11 

shows the scatter diagrams, the histograms, and the correlation values for each pair of 

explanatory variables in the model. To verify our model assumptions, four scatterplots of 

residuals vs. fitted values are investigated. Figure 12 suggests that the data are randomly 

distributed around zero, with constant variability. There are no patterns that indicate that 

the assumptions of the model are fulfilled for the dataset. 

 

Figure 11. Histograms of the model variables (i.e., LST, NDBI, NDVI, NDWI, and PUC) in the 

main diagonal. Scattergrams between the model variables (below main diagonal), and the corre-

sponding Pearson correlation (above main diagonal). 

In this figure, good correlation of NDBI and NDWI with LST is observed. 
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Figure 12. Performance of the linearity of the model. Graphs of the regression analysis residuals vs 

fitted lines. (a) NDBI vs residuals. (b) NDVI vs residuals. (c) NDWI vs residuals. (d) PUC vs resid-

uals. 

The contribution of each variable (w�) was obtained through the standardized regres-

sion coefficients (w��), which are weighted means absolute value. The resulting standard-

ized regression coefficients and the contribution of the factors to the model are presented 

in Table 5. In this table, we can observe that the main contributing factors are the variables 

NDWI and NDBI, followed by NDVI and PUC. The derived weights are used in the next 

section to derive the SUHI model. 

Table 5. Standardized Regression Coefficients and Contribution of each Factor. 

Factor Standardized coefficients ��� Weighted contribution �� (%) 

NDBI 0.21 21.38 
NDVI 0.13 12.84 
NDWI -0.51 51.46 
PUC -0.14 14.32 

3.4. SUHI Modeling 

The SUHI phenomenon depends on the properties of land cover properties which, 

combined with their energy absorption capacity, produce a thermal increase on the sur-

face and represent a threat to the thermal regime of urban ecosystems. Our modeling ap-

proach is based on segmentation through the identification of potential thermal areas. 

Here we employ the seven temperature zones defined by Wang et al. [36]. The definition 

of the training areas is achieved with the LST variable (Figure 10a). The thermal ranges 

for the training process are those defined in Table 2. These ranges are based on LST aver-

ages and the standard deviations. We test both the SVM and NBML algorithms. The ap-

plication of the NBML method requires estimating the conditional probability functions 

for each contributing factor. The Gaussian and Logistic probabilities density functions 

showed the best results for the respective training frequencies of observation/category. 

Each conditional probability was weighted according to Table 5. Moreover, the weighting 

capability of the NBML method allows taking into account the relevance of each factor for 

deriving the SUHI product. This feature is not possible with the SVM method. 
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The segmentation results for both methods are shown in Figure 13. In both cases, the 

results were validated with the criteria established in Table 2. Table 6 reports the Kappa 

index for SVM and NBML are approximately 88% and 94%, and the overall accuracy are 

88% and 95%, respectively.  

 

Figure 13. Temperature classification results. (a) SVM; (b) naïve Bayes. 

Table 6. Kappa Index and Precision of SVM and NBML. 

Algorithm Kappa index Overall Accuracy 

SVM 0.88 0.88 

NBML 0.94 0.95 

Figures 13 and 14 show the final SUHI map that categorizes the urban environment 

according to a specific SUHI state and assigns a specific type of action based on tempera-

ture. The proposed actions are: intervene, monitor, strengthen, and preserve. The intervene 

action is directly related to the SUHI areas exposed to the maximum thermal concentra-

tion. These areas need to be immediately intervened in and are considered an ‘Extreme-

high’ class. The monitor action groups ‘High’ and ‘Sub-high’ categories, and points to the 

SUHI areas that should be kept under observation and intervened in a medium term. The 

strengthen action classifies the ‘Medium’ and ‘Sub-medium’ classes into SUHI areas that 

have gradually presented a temporary thermal trend increase. The preserve action contains 

the ‘Low’ and ‘Very-low’ classes and comprises the SUHI areas that must be preserved.  
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Figure 14. Final SHUI product from NBML. The legend recommendations are specific types of 

action based on temperature warnings. 

4. Discussion 

4.1. Sensitivity Analysis 

The results of the January 2019 campaign (Figure 7a) suggest that the amplitude of 

the errors in recovering LST is similar between the models evaluated. The September 2019 

measurement records (Figure 7b) indicated that the Fcover model provides the smallest de-

viation with a mean error of 1.14 °C. This is very obvious compared to ASTER-GEDv3 and 

the LSE model, which shows mean deviations of 3.67 °C and 3.85 °C, respectively. As 

shown in the Results section, the Fcover model exhibited better performance with a mean 

error of 1.33 °C. Data reported by Duan et al. [93], and Malakar et al. [94] showed differ-

ences for L5TM, L7ETM+, and L8OLI/TIRS among recovered LST and in situ LST between 

0.7 and 1.2 °C. Furthermore, we observed mean differences between 1.1 °C and 1.3 °C. 

Authors such as Chen and Zhang [14] and Liu and Li [95] have analyzed the SUHI phe-

nomena with similar differences. In this work, the Fcover model provided the smallest errors 

in LST recovery among all the tested schemes, and it is considered the most suitable for 

this kind of studies. 

4.2. Statistical Analyses  

The PCA was applied to derive the time trend of each variable and to analyze the 

LST variation. Then, the main PCA component was employed in the MLR. We achieve a 

coefficient of determination of approximately R2 = 0.82. These results are in agreement 

with recent studies that have used regression models to quantify the impact of contrib-

uting factors on LST [16,96]. Moreover, the combination of these factors defines how the 

different types of land cover absorb temperatures. These absorptions manifest themselves 

with the corresponding increase in emissivity and surface temperature. Our findings con-

firm results of earlier studies, such as those of Rasul et al. [72], who modeled with the 

MLR method the spatiotemporal trend of temperature data, and provided robust results 

in determining SUHI areas.  

Regarding the conditions for ensuring the validity of our proposed approach, several 

considerations must be addressed. First, the multicollinearity of the predictor variables 

and their effect on the model need to be validated with the VIF. Our results show that two 
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of the VIF parameters exceeded the value of 10, which would exclude two of the explan-

atory variables of the prediction model. However, it is found that NDBI and NDWI are 

the factors with the highest contribution, while NDVI and PUC have lower VIF values, 

contributing to a lesser extent. Strong correlations, 0.89 and - 0.89, were found between 

the LST and NDBI and NDWI, respectively. A similar correlation was found between 

NDVI and NDWI. It is important to note that removing highly correlated variables can 

benefit the overall result and simplify the approach. However, having high contributing 

predictor variables such as NDBI and NDWI may indeed improve prediction products, as 

noted in [88]. Although some collinearity was presented, the Pearson correlation indices 

and the fulfillment of independence and normality of the residuals have denoted a very 

reliable model. 

Regarding the direct relationships of LST with the different physical variables and 

contributing factors, a strong correlation with NDBI was observed: building construction. 

This justifies why impervious areas have high caloric retention capacity and low water 

storage capacity, in turn reducing humidity. Previous studies have demonstrated strong 

correlations between LST and NDBI [97,98]. In contrast, a strong correlation was found 

between LST and NDVI/NDWI. Please note that temperature decrease follows increases 

in vegetation and humidity. The higher the vegetation cover, the lower the surface tem-

perature becomes. The reason for this may be strongly related to the soil moisture content 

in vegetated areas, which alters the energy balance and causes variation effects from solar 

radiation. These results are in line with those obtained by Ibrahim and Rasul Faqe [99], 

who reported a strong negative correlation between these variables. Our results show ur-

ban planners that the identification of factors and their contribution to the SUHI phenom-

enon serves as a support to define adaptation measures to cities for thermal change, al-

lowing them to adapt with other territorial planning priorities. 

A moderate correlation was found between LST and PUC, indicating that LST in-

creases moderately according to the proximity to the urban center. This correlation may 

be related to urban density distribution and road infrastructure, which, compared to the 

distance variable, are responsible for generating a complex structure not well represented 

by linear models. Bonafoni and Keeratikasikorn [100] also implemented a ring-based 

method and analyzed LST as a function of building density and proximity to urban cen-

ters. This issue is to be addressed in future research. 

4.3. The SUHI Model 

To reveal the multitemporal intensity of the SUHI phenomenon, two Machine Learn-

ing techniques were tested, the SVM and the NBML. Both algorithms performed satisfac-

torily, with Kappa indices of 89% and 93%, respectively. Better performance was observed 

for certain categories for the NBML algorithm (Figure 13b). Although both procedures are 

able to detect high-density urban areas affected by extremely high temperatures, NBML 

allows coupling criteria to assign individual weights to each class, increasing the quality 

of the results. Conventional NBML classifiers consider the model to be applicable when 

the Gaussian probability density function is present in the data set [84]. Molina et al. [101] 

showed that the combination of the best-fit distribution model (not necessarily Gaussian), 

and the weights of each variable led to satisfactory results. 

The SUHI phenomenon is a complex system that occurs as a result of the interaction 

of various factors [102]. This interactivity produced by anthropic effects generates thermal 

imbalances requiring intervention, monitoring, strengthening, and preservation, as a fun-

damental expression between causes and effects of urban/rural ecosystems. Our results 

show that the highest temperatures are concentrated in the central area of the city and 

gradually decrease toward the periphery. The characterization of the space through the 

four proposed classes of actions (intervene, monitor, strengthen, and preserve) makes it 

possible to regulate the conditions that could mitigate the SUHI effect. The areas desig-

nated as intervene correspond to the center of the city and tend to have a higher population 

density and old buildings. It is recommended to change black roofs to less thermic roofs 
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that have reduced solar energy absorption and increased energy savings, as suggested by 

Alshayeb and Chang [103]. Since these areas do not have appropriate physical space to 

create green areas, an alternative might be the use of road dividers to plant trees with 

large foliage and roots that do not weaken existing infrastructure. An interesting measure 

that allows the reduction of anthropogenic heat is to restrict the transit of private vehicles 

and limit access to specific areas. The access methods can be substituted for public trans-

portation or cycling. These measures have already been implemented in many locations. 

The areas identified as monitor should implement small tree-lined sites and natural corri-

dors to refresh the space. Rainwater irrigation channeled through sewerage systems can 

be used as a contribution to the restoration of urban wetlands. The areas indicated as 

strengthen show less thermal intensity than the above areas and are associated with urban 

growth. Within this policy, the morphology of these areas should integrate green spaces 

that allow increased water infiltration and cooling [104]. In general, the use of highly re-

flective building materials is recommended, reducing the amount of solar radiation ab-

sorbed by the surface, such as, for example, the use of cool pavements suggested by the 

U.S. Environmental Protection Agency [105]. Finally, areas marked as preserve have the 

highest vegetation cover and play an important role in the urban ecosystem. They reduce 

carbon dioxide emissions, becoming spaces that reduce the radiant load produced by var-

ious economic activities, and generate thermal regulation. In addition, these have a great 

potential for ecotourism. 

Further development of this research can be undertaken by applying simulation tech-

niques with Machine Learning Algorithms that allow the integration of weights to the 

variables involved in the predictive model, and that allow characterization of future ther-

mal scenarios associated with the spatio-temporal trends of the explanatory variables. The 

interactions produced by biophysical factors and the geometric changes that are trans-

forming cities make the relationships between objects and phenomena increasingly com-

plex. In this sense, it would be very pertinent to further explore the classification of local 

climatic zones in tropical cities in countries such as Colombia. These are highly vulnerable 

to climate change. 

5. Conclusions 

The results of this work demonstrate that emissivity data have a large impact on the 

retrieval of LST. Here, LST is obtained from L8OLI/TIRS band 10 and LSE from Sentinel-

2. Both sources are more accurate and homogeneous than using traditional ground-based 

methods. Our innovative approach proposes quantifying the SUHI phenomenon from a 

set of contributing factors. We first employ the PCA to retrieve the main spatiotemporal 

variations in the initial data. Then, MLR is applied to integrate the dependencies and to 

analyze their impacts on SUHI. According to our regression model, the most influential 

factors in the SUHI are NDWI with a contribution of 52%, NDBI with 21%, NDVI with 

13%, and PUC with a 14%. Finally, the integration of these predictors within an SVM and 

a NBML approaches confirms the existence of coupling mechanisms between each varia-

ble. The satisfactory results of the NBML confirm the suitability of the proposed approach, 

with an overall accuracy of 95%. We expect to improve the results of the model with future 

upgrades associated with structural complexity of the landscapes. The spatial variation of 

SUHI points out an enhanced phenomenon towards areas of high urban density. Our re-

search demonstrates the suitability of Machine Learning Algorithms for mapping SUHI 

intensities, providing spatially explicit descriptions of urban heat distribution. The de-

rived products are crucial for defining sustainable urban planning policies, as well as for 

adequate responses to thermal risks. These actions will in turn make it possible to define 

mitigation and adaptation strategies. 
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