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Abstract: The Surface Urban Heat Islands (SUHI) phenomenon has adverse environmental con-
sequences on human activities, biophysical and ecological systems. In this study, Land Surface
Temperature (LST) from Landsat and Sentinel-2 satellites is used to investigate the contribution of
potential factors that generate the SUHI phenomenon. We employ Principal Component Analysis
(PCA) and Multiple Linear Regression (MLR) techniques to model the main temporal and spatial
SUHI patterns of Cartago, Colombia, for the period 2001–2020. We test and evaluate the performance
of three different emissivity models to retrieve LST. The fractional vegetation cover model using
Sentinel-2 data provides the best results with R2 = 0.78, while the ASTER Global Emissivity Dataset v3
and the land surface emissivity model provide R2 = 0.27 and R2 = 0.26, respectively. Our SUHI model
reveals that the factors with the highest impact are the Normalized Difference Water Index (NDWI)
and the Normalized Difference Build-up Index (NDBI). Furthermore, we incorporate a weighted
Naïve Bayes Machine Learning (NBML) algorithm to identify areas prone to extreme temperatures
that can be used to define and apply normative actions to mitigate the negative consequences of
SUHI. Our NBML approach demonstrates the suitability of the new SUHI model with uncertainty
within 95%, against the 88% given by the Support Vector Machine (SVM) approach.

Keywords: Surface Urban Heat Island (SUHI); Land Surface Temperature (LST); Principal Component
Analysis (PCA); Multiple Linear Regression (MLR); Machine Learning; Naïve Bayes

1. Introduction

Urban expansion transforms natural areas into surfaces covered with concrete, asphalt,
and buildings (highly impervious materials), reducing evapotranspiration and decreasing
the cooling capacity of the air, which in turn helps to reduce the impacts of high urban
surface temperature on the urban surface. Due to the existing urban growth, the climate
in these areas becomes warmer than the regional areas of the suburban and rural regions,
resulting in the phenomenon of Urban Heat Islands (UHI) [1]. The UHI refers to a phe-
nomenon in which urban areas tend to have higher air or surface temperatures than their
surroundings [2]. Traditionally, terrestrial observation methods, such as ground meteo-
rological stations that record specific values of air temperature, have been used to model
UHI [3]. The difference between air temperature measurements recovered from urban
and rural meteorological stations is a direct method used to model UHI [4]. However,
the high heterogeneity in urban areas makes temperature spatially diverse, making it
difficult for a small number of stations to realistically represent the real variability [5].
When the UHI phenomenon is monitored by remote sensing, it is referred to as Surface
Urban Heat Island (SUHI). The reason is that the parameter considered here is the Land
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Surface Temperature (LST), which differs from studies of air temperature [6]. Therefore,
LST is an essential variable to characterize SUHI, which has been listed as an essential
climate variable of the World Meteorological Organization program. This variable is an
important indicator of the energy balance between the atmosphere and the surface of the
Earth [7]. Zhou et al. [8] presented a broad review of the SUHI phenomenon and suggested
several methods of analysis through the integration of remote sensing data, thermal trends,
field observations, and numerical modeling. Sekerteking and Zadbagher [9] suggest that to
model and simulate LST, it would be important to investigate the performance of various
Machine Learning methods associated with statistical and numerical models. Li et al. [10]
and Mei et al. [11] pointed out that one of the problems to be solved in inference models of
LST or geographic variables is to evaluate the influence of contributing factors.

Land-use land-cover changes (LULC) and spectral indices from satellite data, such as,
e.g., Normalized Difference Vegetation Index (NDVI) or Normalized Difference Water
Index (NDWI), have been used extensively to investigate the relationships between urban
and biophysical systems, as well as their impact on surface temperature [12–15]. LULCs are
due to complex interactions between the urban system and the biophysical environment
that produce significant changes in local temperatures. In a recent work published by
Shi et al. [16], eight parameters were referred to as urban design factors, where thermal
properties of building materials, vegetation, vegetation cover ratio, and ground emissivity
were taken into account. The authors suggested the need to detect more potential factors
affecting this phenomenon.

Understanding and quantifying urban temperatures in space and time are significantly
relevant for city planners in defining policies that generate adaptation strategies to mitigate
the SUHI effects. A very useful tool is Principal Component Analysis (PCA), a multivariate
statistical technique that aims to preserve the total variance and reduce the dimensional-
ity of the data set, while eliminating redundancy in the data [17]. Several authors have
used this technique to detect spatial patterns of biophysical factors by synthesizing in-
formation from a set of images [18–20]. Multiple Linear Regression (MLR) analysis is
an approach used to evaluate the relationship between independent and dependent fac-
tors [21]. This method has also been widely used to determine the relationship of various
environmental factors [22–24].

Advanced nonlinear analysis techniques, such as Machine Learning, have been ap-
plied in numerous studies that require analyzing variables related to urban thermal changes.
Some examples are population density, land cover, and urbanization [25–29]. Voelkel and
Shandas [30] implemented a UHI model to detect a daily distribution of temperatures.
Their results revealed that a random forest (RF) model performed better in predicting tem-
perature. Furthermore, Zumwald et al. [31] developed a model to create high-resolution
air temperature maps. This model makes predictions by integrating an RF algorithm with
low-cost weather stations. It is important to note that the behavior of SUHI varies over
time and is associated with factors such as human development and changes in land use.
In this sense, Kafy et al. [32] formulated a seasonal thermal prediction influenced by LULC
through Cellular Automata and Artificial Neural Network algorithms. Their findings
indicated that by 2039, the urban growth of Cumilla, and Bangladesh, plus the decrease in
land cover, will cause 30% of cities to experience temperatures above 33 ◦C. Shi et al. [33]
noted that the use of time series and Machine Learning techniques is a growing trend in
SUHI research.

Several studies have widely documented the influence of spectral indices such as
the NDBI, NDVI and Normalized Difference Water Index (NDWI) on the SUHI phe-
nomenon [34,35]. However, none of these authors considered the weighted contribution
of the factors to temperature changes, while it is an interesting analysis that can iden-
tify which factors generate the greatest influence on SUHI. On the basis of these factors,
specific adaptation measures to thermal change can be defined and applied. The main
novelty of the approach proposed in this work is the application of a weighted Naïve Bayes
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Machine Learning (NBML) algorithm to segment the geographical space into regions of
different thermal intensity, not explored in previous literature.

Understanding and quantifying urban temperatures in space and time is significantly
relevant for city planners in defining policies that generate adaptation strategies in the face
of adverse effects of SUHI. Here we study the application and assessment of modeling
procedures that allow evaluating the contribution of various factors to SUHI. For this
purpose, a combination of PCA and MLR techniques applied along with Machine Learning
Algorithms is used to detect high thermal intensity patterns in the tropical Colombian
Andean city of Cartago. Although SUHI is a derived quantity, expressed as the difference
between urban and rural LST, the delimitation of thermal zones using LST ranges allows
establishing comparisons with other zones, e.g., rural areas, and classifies the space into
zones with greater or lesser thermal activity. In this study, the LST ranges are taken from
Wang et al. [36], as they are based on statistical criteria, and they appear to conveniently
reflect the LST differences of urban areas with their surroundings. The spatial patterns of
the SUHI phenomenon can be represented through LST ranges, which, combined with the
weights of the involved variables, are further classified using Machine Learning algorithms.

The methodology suggested in this article establishes an effective method for assess-
ing SUHI patterns, locally, and attempts to draw several recommendations for planning
sustainable urban development and for the regeneration of areas with thermal excesses.

2. Materials and Methods

2.1. Study Area

The city of Cartago is located in the south-west area of Colombia in the Andean region
at an altitude of 917 m above sea level. It has an extension of 279 km2 with moderate
topographic relief. The geodetic coordinates of the city center are 4.75◦ N and 75.9◦ W.
This area belongs to Valle del Cauca Department and is surrounded by the Cauca and La
Vieja rivers.

The climate in this area is tropical dry and the average air temperature is 23.8 ◦C,
with an annual rainfall of 1578 mm. March is the warmest month with an average temper-
ature of 24.3 ◦C, while October is the coldest with 23.3 ◦C. According to official reports,
the urban population growth rate during 2001–2020 was 12.3%, while the rural population
decreased by 44% [37]. The population density is 464 inhabitants per km2. The appearance
of new urban units (red oval areas in Figure 1) denotes the urban growth from the city
center to the north-east, near the La Vieja River, as well as to the south-east and south-west.
Temperatures in tropical zones show small changes throughout the year. According to
official reports from the study area, the difference between the average temperature of the
warmest month and that of the coldest month is 1 ◦C [38].
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2.2. Data

Data used for the study area (Figure 1a,b) were freely acquired from ESRI World
Countries (https://hub.arcgis.com/, accessed on 20 October 2021). The base cartography
for the construction of thematic maps and the topographic model is available at https:
//geoportal.dane.gov.co/, accessed on 20 October 2021 and https://geoportal.igac.gov.co/,
accessed on 20 October 2021. The primary information sources used are satellite Earth
images from the Thematic Mapper (TM) instrument onboard the Landsat 5 and 7 satellites
(L5TM, and L7ETM+), and from the Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS) onboard the Landsat 8 satellite (L8OLI/TIRS). The images used in this study
are sparsely distributed within the period 2001–2020, as shown in Figure 2. Each Landsat
product contains separated spectral bands in GeoTIFF format and is referenced to the
WGS84 datum in the UTM (18N) cartographic projection. L5TM, L7ETM+ and L8OLI VIS
and NIR bands have a spatial resolution of 30 m, while for the TIR satellite instruments,
the resolutions are 120, 60, and 100 m, respectively. We employ a total of 37 Landsat scenes
(satellite path 009 and row 057) including 2 images of L5TM, 20 of L7ETM+, and 15 of
L8OLI/TIRS. In addition to the Landsat products, 11 multispectral Level-2A atmospheric
corrected images from the Sentinel-2 Multispectral Instrument (S2-MSI) were also used to
extract the so-called Fractional Vegetation Cover (Fcover) biophysical variable. S2-MSI of-
fers a different spatial resolution; the three visible and the near infrared bands have 10
m spatial resolution. The three Red Edge bands, an NIR band, and two SWIR S2-MSI
bands have 20 m spatial resolution. These data are very appropriate for the retrieval of
geophysical surface parameters. Meanwhile, the three other S2-MSI bands (coastal aerosol,
water vapor, and SWIR-Cirrus) have a resolution of 60 m resolution. The reflectance S2-
MSI products are freely available on the European Space Agency (ESA) DataHUB server
(ESA, https://scihub.copernicus.eu/, accessed on 20 October 2021). Details on the retrieval
of Fcover are given in Section 2.3.2. The estimation of LST from the Thermal Infrared Sensor
(TIRS) is highly dependent on the intrinsic properties of the coverage, such as the emissivity
of the land surface. The emissivity retrieval method based on the Fcover is very suitable
due to its ease of application. The performance shown in works such as Sobrino et al. [39]
and Valor and Caselles [40].
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2.3. Methods

The proposed methodology comprises five processing steps: (1) data calibration, (2) ex-
traction of contributing factors, (3) estimation of temperature and emissivity, (4) validation
of temperatures, and (5) modeling of the SUHI phenomenon. These are described in the
following sections.

https://hub.arcgis.com/
https://geoportal.dane.gov.co/
https://geoportal.dane.gov.co/
https://geoportal.igac.gov.co/
https://scihub.copernicus.eu/
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2.3.1. Data Calibration

The conversion of image digital values to top of atmosphere radiance (LTOA) was
carried out using the gain and offset parameters included in the product metadata file.
We use the radiance models provided by the USGS website [41]. Subsequently, the images
were corrected from atmospheric effects to minimize the radiance scattering and absorption
errors caused by water vapor, dust particles, and aerosols. We employ the Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module of ENVI®,
which incorporates the MODerate Resolution Atmospheric TRANsmission (MODTRAN)
model [42]. Given the geographic location of the area of interest, the tropical atmospheric
model is applied to the Landsat products. FLAASH solves the radiative transfer equation
by determining the water vapor for each pixel in the image. Water vapor content (WVC)
retrieval is not a straightforward solution for Landsat bands, so this parameter was taken
from a standard atmospheric model. Regarding the aerosol concentration or aerosol optical
depth (AOD), the dark vegetation reflectance algorithm of Kaufman et al. [43] was applied.
Finally, all images were subset to fit the boundaries of the study area.

2.3.2. Definition and Extraction of Contributing Factors

Spectral indices such as NDBI, NDVI, and NDWI are used to examine the underlying
properties of SUHI formation. Analytical expressions of these indices can be found in Zha
et al. [44], Tucker [45], and Gao [46]. Moreover, the components of the tasseled cap (TC)
components (brightness, greenness, and wetness) are also computed [47]. The rationale for
the selection of these biophysical indices is as follows.

• Energy exchange between latent and sensible heat is related to NDBI, since it detects
impervious surfaces that reduce humidity and increase the average temperature of
the environment [48].

• Temperature and vegetation maintain a spatially dependent relationship [49].
Vegetation reduces surface irradiation and increases humidity through physiolog-
ical processes that allow energy exchange, while producing a cooling effect. In this
sense, an index for measuring this photosynthetic activity is the NDVI.

• The presence of water bodies has a cooling effect on urban temperature [50]. In this
scheme, the NDWI quantifies the water content in the vegetation, while suggesting a
significant effect in reducing SUHI. Likewise, rivers play an important role as thermal
regulators of urban climate, increasing the cooling potential through evaporation and
facilitating airflow. Given that the urban center is the main point for the development
of socioeconomic activities, two additional variables were considered to describe the
expression of the proximity, i.e., the proximity map of the water body (PW) and the
proximity map (PW) and the city center (PUC). A greater distance would imply a lower
thermal intensity [51]. The proximity indices are computed by means of a Euclidean
distance using the inverse weight distance operator in ArcGIS® (https://esri.com/,
accessed on 20 October 2021).

The above indices conform to the contributing factors to our proposed SUHI model.
To compute the emissivity values required to retrieve LST from Landsat thermal bands,
a novel method is proposed through extracting Fcover biophysical variable, although this
information can be derived indirectly from NDVI, Leaf area index (LAI), or other bio-
physical variables [52–54]. Bacour et al. [55] proposed a robust procedure based on the
Neural Network training of the PROSAIL (PROSPECT leaf optical properties model and
SAIL canopy bidirectional reflectance) model. This Fcover variable is implemented in the
ESA’s Sentinel Application Platform (SNAP (https://step.esa.int/main/toolboxes/snap/,
accessed on 20 October 2021), and requires S2-MSI images. Detailed descriptions of this
scheme are available in Weiss and Baret [56]. The Fcover variable provides the emissivity
values necessary to compute LST with the L8OLI/TIRS thermal band 10. Compared to
traditional methods based on NDVI, this new approach for extracting the emissivity is
suitable for thermal radiation models. Due to temporal synchronization between S2-MSI
and L8OLI/TIRS images, this method is only applicable since 2015.

https://esri.com/
https://step.esa.int/main/toolboxes/snap/
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2.3.3. Estimation of Land Surface Temperature and Emissivity

Land surface temperatures are retrieved from L5TM, L7ETM+, and L8OLI/TIRS.
For L8OLI/TIRS, only band 10 is used, since band 11 has large uncertainties, as reported
by the USGS [57]. The consistency of Landsat 5, 7 and 8 satellite thermal instruments
in recovering LST was compared by Sekertekin and Bonafoni [58] and validated with in
situ LST measurements. The RMSE values were 2.39 ◦C, 2.57 ◦C and 2.73 ◦C, respectively,
resulting in an average difference of 0.2 ◦C between the sensors. The uncertainty values
are adequate uncertainty for the purpose of this study. In Figure 3, our model to retrieve
LST is presented in a flow chart. Temperatures are derived using the radiative components
implemented by Barsi et al. [59] for single-channel algorithms. This method simulates the
attenuation effects of the atmosphere that disturb the TIR signal.
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Radiance and transmissivity values are available at https://atmcorr.gsfc.nasa.gov/,
accessed on 20 October 2021. The data is a compendium of atmospheric transmissivity
values, along with upwelling and downwelling radiances for a given geographical location.

https://atmcorr.gsfc.nasa.gov/
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The radiative values can be used in atmospheric correction models, e.g., Equation (1),
taking also into account the correction of spectral emissivity.

LTOA = τ · ε · LT + Lλ↑ + τ · (1− ε) · Lλ↓ (1)

In this equation, LTOA is the spectral radiance at the top of the atmosphere (registered by
the sensor), τ is the atmospheric transmittance, ε is the spectral emissivity, LT is the spectral
radiance of a black-body target of kinetic temperature T, Lλ↑ and Lλ↓ are the upwelling
atmospheric path radiance and the downwelling or sky radiance, respectively.

Implementing Equation (1) requires the supply of adequate emissivity values for a
suitable estimation of LST. Since different land covers emit thermal radiation differently,
spectral emissivity corrections are necessary [60]. In this work, three emissivity models are
tested to accurately estimate LST. First, the field-measured LSE (land surface emissivity)
values are obtained from different authors, and are listed in Table 1. Then the emissivity
data of the ASTER-GEDv3 product [61] were considered.

Then, the Fcover model of Valor and Caselles [40] is applied; this model allows the
calculation of the emissivity in the Landsat 8 thermal band, considering the Fcover index
and the minimum and maximum values of the emissivity in the corresponding spectral
band. Finally, the three LST models are compared and validated. In this study, land
use features are categorized into seven classes. These are water bodies, cropland, forest,
low vegetation, bare soil, urban/densely built, and suburban/medium built. We applied
this scheme following the land cover classes proposed by Park et al. [62]. Since impervious
surfaces exhibit a large spectral variation [63], two classes are used to represent artificial
surfaces: urban/dense and suburban/medium. These classes are particularly identified by
the impact on emissivity.

For this purpose, an object-based classification is carried out using Trimble’ s eCogni-
tion Developer software (https://geospatial.trimble.com/products-and-solutions/ecognition,
accessed on 20 October 2021).

Table 1. Reference values for the LSE model with L8OLI/TIRS band 10.

Land Cover Emissivity Reference

Waterbodies 0.992 FROM-GLC cited by [64]
Cropland 0.971 FROM-GLC cited by [64]

Forest 0.995 FROM-GLC cited by [64]
Low vegetation 0.986 Tan et al. [65]

Soil 0.972 Tan et al. [65]
Urban/densely built 0.973 FROM-GLC cited by [64]

Suburban/medium built 0.971 Tan et al. [65]

The second emissivity dataset in this work is the ASTER Global Emissivity Dataset v3
(ASTER-GEDv3) [61], (https://emissivity.jpl.nasa.gov/aster-ged, accessed on 20 October
2021). This method was developed by the NASA Jet Propulsion Laboratory (JPL) as an
algorithm based on temperature and emissivity separation along with an atmospheric
correction model. More details can be found in Hulley and Hook [66].

The third emissivity model requires knowledge of the Fcover variable [40]. This method
provides the emissivity of a heterogeneous surface as follows:

ε = εv · Fcover + εg · (1− Fcover) + 4 · 〈dε〉 · Fcover · (1− Fcover) (2)

In this equation, εv = 0.985 and εg = 0.960 are reference vegetation and bare soil
emissivity, respectively. ‘dε’ is the cavity effect associated with the indirect radiance emitted
due to internal reflections between the interfaces. Here, Fcover is obtained from S2-MSI Level
2A products (see Section 2.3.2). The procedure to retrieve the Fcover variable differs from
the NDVI methods [67,68], and is presented as a novel alternative for thermal modeling
with Landsat data. In tropical areas, throughout the year, vegetation dynamics does not

https://geospatial.trimble.com/products-and-solutions/ecognition
https://emissivity.jpl.nasa.gov/aster-ged
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exhibit abrupt changes, and this implies that Fcover lacks significant seasonal variations.
For the L5TM and L7ETM+ thermal instruments, the emissivity model of Equation (3) [69]
is used. This last method to obtain Fcover is based on the NDVI parameter.

ε = εnonveg (1− Fcover) · εveg · Fcover (3)

In this equation, εnonveg and εveg are the reference emissivity values for nonvegetated
and vegetated areas, being 0.97 and 0.99, respectively [70]. In this work, the Fcover variable
is recovered using the NDVI, as it effectively reflects the conditions of vegetation cover [42].
This is estimated by Equation (4).

Fcover =

[
NDVI−NDVIs

NDVIv −NDVIs

]2
(4)

In this equation, NDVIs is the NDVI value of pure soil, and NDVIv is the NDVI of
pure vegetation obtained from the NDVI image.

This method is based on the Carlson and Ripley [69] model. Finally, the conversion
from LTOA to LST is estimated by using the constants for sensor calibration and the
inversion of the Planck equation [71].

2.3.4. Assessment of the Land Surface Temperature Retrieved from L8TIRS B10

Landsat-retrieved LST was verified with in situ measurements. Unfortunately, due to
the Landsat overpasses schedule, starting in 2001, it was impossible to undertake a val-
idation by means of field surveys for the entire Landsat time series. Due to these incon-
veniences, the comparison was limited only to two overpasses of L8OLI/TIRS band 10.
The L5TM and L7ETM+ data, the Carlson and Ripley results [69] can be used as a refer-
ence. In situ temperatures were measured using 30 thermometers assembled into DS18B20
digital sensors. The direct calibration method was applied, which consists in recording the
readings of the test and standard thermometers. The latter are preserved in an isothermal
medium. This calibration procedure produced standard deviations of ±0.5 ◦C. The field
survey consists of distributing 30 devices, as shown in Figure 4. LST measurement coinci-
dent with the two L8OLI/TIRS overpasses were recorded on 22 January and 9 September
2019. Each device recorded the temperature values by means of a probe in contact with the
ground surface. The ground sensors were placed in areas with homogeneous land cover to
minimize the spatial thermal variation caused by different emissivity values. These records
will be used to contrast the LST values derived from satellite measurements. In Section 3.1,
we perform a sensitivity analysis for the three emissivity models.
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2.3.5. Modelling the SUHI Phenomenon

According to Rasul et al. [72], SUHI modeling consists of identifying the spatial varia-
tion in time of thermal features in urban areas. Here, through the combination of thermal
images from remote sensing and sparse measurements on field, our SUHI model employs
the PCA to analyze space-time data. The PCA is a multivariate statistical technique that
preserves the total variance of a dataset while reducing its dimensionality [73]. In this way,
the PCA can retrieve the main spatial patterns of variability in a time-series. The application
of PCA provides a generalization of the changes that characterize the variability patterns
in a time series of images [18].

Then, the impacts of the eight factors considered in this study are assessed using a MLR
approach. The MLR technique is a parametric model that adjusts the relationship between
explanatory variables, that is, the contributing factors, and the response variable, e.g., LST.
The inclusion or elimination of predictors depends on the significance of these variables
within the model, which is defined by a test hypothesis based on the coefficients associated
with the response variable. When using MLR techniques, it is important to examine the key
assumptions of autocorrelation, normality of residuals, and multicollinearity. These factors
determine the reliability of the model [74]:

• Autocorrelation of a variable represents its self-dependence and implies redundant
information that makes the estimator lose efficiency. The Durbin-Watson statistic is
used to measure autocorrelation [75].

• The normality of a residuals guarantees a satisfactory representation of the model.
• Multicollinearity occurs when the predictor variables are highly correlated.

Multicollinearity increases the variance, causing instability of the regression and thus
increasing the standard error [76]. Multicollinearity is measured with the Variance
Inflation Factor (VIF).

Finally, outliers can also alter the modelling approach, causing problems with regres-
sion assumptions [77,78], and these must be controlled or removed from the dataset. Here,
our MLR analysis is an equation capable of describing the thermal intensity depending
on the contributing factors. To verify the relative importance of each individual predictor
of the LST model, a normalization procedure was previously performed to standardize
the coefficients. We use the deviation of the mean values, which is divided by the stan-
dard deviation of the response variable in LST. This allows us to derive the standardized
coefficients [79]. Subsequently, the contribution of each variable to LST is obtained by
weighting the absolute value of each variable. The resulting weights are further used for
assessing the subsequent Machine Learning procedure that derives the multitemporal
intensity of the SUHI model. This provides a technical basis for analyzing the factors
that influence the thermal environment, which is of great significance for rational urban
planning and sustainability.

The methodological workflow in Figure 5 shows the spatiotemporal model followed
to characterize the impact of environmental factors on the thermal changes. First, the mul-
titemporal factors, such as LST, spectral indices, and other variables, are derived from the
Landsat 2001–2020 dataset. Then, the PCA technique is applied to extract the main patterns
of variability. Subsequently, all the variables involved are included in the MLR scheme to
model the possible dependences on LST. The MLR is implemented with the software R
Studio (https://rstudio.com/, accessed on 20 October 2021).

Finally, the SUHI phenomenon is segmented into different zones depending on
the thermal intensity. Thermal value ranges follow the categories of Wang et al. [36],
which consider the average temperature of the land surface and its standard deviation (SD).
Segmentation provides a definitive SUHI product that categorizes the urban environment
according to specific conditions. Here we test two different Machine Learning methods
for classification; Support Vector Machine (SVM) and Naïve Bayes Machine Learning
(NBML). Both SVM and NBML methods have shown in previous research their robust-
ness for the characterization of various types of geospatial data [80,81]. The SVM method
defines a separate hyperplane in a higher-dimensional space that optimally classifies the

https://rstudio.com/
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data. This method is particularly useful for solving nonlinear relations [82], and is avail-
able as open-source software in Orfeo ToolBox (OTB) at https://www.orfeo-toolbox.org/,
accessed on 20 October 2021. The NBML technique is based on the Bayes theorem for condi-
tional probability and assumes independence between predictors, variables, or features [83].
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NBML is often referred to as the maximum a posteriori decision rule [84], and its code
can be easily written in any programming language. NBML assigns the most likely class
to a certain observation by estimating the probability density of the training classes [85].
An observation is classified as a certain class when the posterior probability reaches the
maximum value according to the following expression:

k(x) = argmaxkp(Ck)
n

∏
i=1

p(xi |C k) (5)

In this equation, k(x) is the maximum a posteriori of xi for the class labeled as Ck,
p(Ck) is the prior probability for class Ck, p(xi |C k) represents the conditional probability
distribution of xi given Ck, and (wi) is a particular weight applied to each factor. Usually,
the independence assumption is not fulfilled, and the weighting of the features involved
in the assignment process can satisfy the required assumptions [86]. Here, each feature or
factor is affected by a particular weight (wi), which can be formally defined by:

k(x) = argmaxkp(Ck)
n

∏
i=1

p(xi |C k)
wi (6)

In this equation, wi denotes the weight value of the ith attribute, with values restricted
to the range [0, 1]. In this work, attributes are the contributing factors involved in the
SUHI phenomenon, while the Ck classes are the seven temperature categories defined by
Wang et al. [36]. These are described in Table 2.

https://www.orfeo-toolbox.org/
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Table 2. Range of LST intervals. Ts represents land surface temperature; Ta is the average land
surface temperature. SD is the standard deviation.

Temperature Grade Range

Extreme high temperature (EHT) TS > Ta + 2SD
High temperature (HT) Ta + SDTS ≤ Ta + 2SD

Sub-high temperature (SHT) Ta + SD/2TS ≤ Ta + SD
Medium temperature (MT) Ta − SD/2TS ≤ Ta + SD/2

Sub-medium temperature (SMT) Ta − SDTS ≤ Ta − SD/2
Low temperature (LT) Ta − 2SDTS ≤ Ta − SD

Sub-low temperature (SLT) TS < Ta + 2SD

The prior p(Ck) and conditional probabilities p(xi |C k) are determined through a
training process. Then, Equation (6) becomes:

k(x) = argmaxkp̂(Ck)
n

∏
i=1

p̂(xi |C k)
wi (7)

In this equation, p̂(Ck) and p̂(xi |C k) are estimates of the probabilities density func-
tions (PDFs). These are derived from the frequency of their respective arguments in the
training sample. Here, p̂(Ck) can also be estimated from a preliminary outcome of a
SVM process.

Equation (7) allows us to weight each environmental factor to generate the final
SUHI product. The resulting map is generated according to the architecture shown in
Figure 6, which is based on the NB decision rule. This approach categorizes the urban
environment according to a specific condition and assigns a specific type of action based
on each temperature category. This analytical procedure allows one to obtain a map
that delimits the areas of different thermal intensities. The resulting areas are based on
the spatiotemporal trends of the contributing factors, facilitating the management and
application of measures to mitigate/adapt the SUHI phenomenon.
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3. Results

3.1. Land Surface Temperature

Sensitivity analysis of the three emissivity models is performed prior to retrieving
land surface temperatures from the 37 Landsat images; the results of the assessment for the
LST retrieved from L8/TIRS B10 (described in Section 2.3.4) are presented here. Figure 7
shows the differences between LST derived from the three models evaluated in this study
(Fcover, AS-TER-GEDv3, and LSE), and these are compared with in situ LST. In this figure,
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the minimum, maxima, median and mean values are shown for (a) January 2019 and (b)
September 2019. In both cases, the lowest differences agree with the LST values from our
Fcover emissivity model.
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Figure 7. Boxplots of LST results from Fcover, ASTER-GEDv3, and LSE. The white horizontal line in
each box is the median. (a) January 2019; (b) September 2019.

The interquartile ranges show a narrower dispersion for the Fcover model compared to
the ASTER-GEDv3 and the LSE model. This feature is obvious for the campaign in Septem-
ber 2019. The regression analysis between the LST from ground-based sensors and that of
the L8OLI/TIRS band 10 is shown in Figure 8. The dark gray areas represent the confidence
boundaries of 95%, while the solid lines represent the line of best fit between the computed
and in situ LST. The best determination coefficient is given by Fcover with R2 = 0.78 and SD
= 0.73 ◦C (Figure 8a). For the other two cases, the coefficients are R2 = 0.27 and R2 = 0.26
for the ASTER-GEDv3 and LSE models, respectively.
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3.2. Principal Component Analysis

The PCA was carried out using all contributing factors during the period 2001–2020
(37 images for each variable). Figure 9 shows the contribution to the total variance of each
PCA component. We can observe that the first PCA component (PCA1) of T-cap Brightness
and T-cap Wetness provide a lower contribution to the total variance, with 54% and 64%,
respectively. On the other hand, the rest of the variables show larger patterns of variability
with only the first PCA component (above 75%).
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used in this study.

Regarding the explained variance (%) of the second principal component or the
T-cap Brightness, it is observed that it still retains a large amount of variance (12%),
when compared to other factors. Since the goal of the PCA is to reduce the set of variables,
in the case of the T-cap Brightness, the former dataset cannot be strictly explained by the
first principal component, as it is the case of the remaining factors. This implies that further
analysis is addressed towards investigating the second or even third components of the
T-cap Brightness.

We employ the Jenks Natural Breaks grouping model [87] to identify the main groups
and the inherent patterns that minimize the deviation of each class with respect to the
mean value of the other groups. This method reduces the variance within the classes and
maximizes the variance between classes. In this scheme, we obtain four groups for each
factor, representing the spatiotemporal trends between 2001–2020. Figure 10 shows the
resulting maps where the results for LST (Figure 10a) show the maximum concentration
of temperature in densely populated areas, similar to the results of NDBI (Figure 10b).
The LST results show gradual variations from low to high temperatures near the perimeter
of urban areas. Regions with lower temperatures are mainly located in areas close to
water bodies and dense vegetation. Vegetation areas can be identified in the NDVI results
(Figure 10c). The NDVI and T-Cap Greenness maps Figure 10c,f have high similarity,
while the T-Cap Brightness and Wetness maps Figure 10e,g lack spatial correlation with the
thermal phenomenon. In the next section, we analyze the spatial correlations in more detail.
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3.3. Multiple Linear Regression

A large number of outliers were identified and removed in the brightness and hu-
midity factors to avoid introducing “noise” into the MLR analysis. All residuals greater
than 3σ standard deviation from the mean value are considered outliers and thus removed.
Since NDVI and Greenness factors are highly redundant (R2 = 0.99), the latter was excluded.
Concerning the Brightness factor, under the special circumstances observed in Section 3.2,
the two first principal components only explain 66% of the total variance. Moreover, the low
spatial correlation with LST (Figure 10) suggests excluding this variable.

Then, in the Fisher hypothesis test for the PW factor is larger than 0.1, and it was
removed. Finally, the scrutiny explanatory variables are NDBI, NDVI, NDWI, and PUC,
and the resulting MLR model outcomes as follows:

LSTtrend = 0.29 + 0.48 NDBItrend + 0.21 NDVItrend − 0.61 NDWItrend − 0.51 PUC (8)

The regression analysis coefficients are shown in Table 3. In this table, p (>|t = 0.05|)
represents the probability of observing any value larger than t. In our model, all p-values
are below the significance level (0.05). This implies that NDBI, NDVI, NDWI and PUC
are statistically significant predictors. The model has a high coefficient of determination
(R2 = 0.82), this means that these variables explain 82% of the variability observed in
the LST.

Table 3. Multiple Linear Regression coefficients.

Factors Estimate SD t Value p (>t |0.05|)

(Intercept) 0.29 0.01 34.79 <0.001
NDBI 0.48 0.05 9.91 <0.001
NDVI 0.21 0.02 13.21 <0.001
NDWI −0.61 0.03 −23.65 <0.001
PUC −0.51 0.01 −39.60 <0.001

The p-values of the regression analysis are shown in Table 3. All p-values are smaller
than 0.05, indicating that the relationships between independent and dependent variables
are statistically significant. Finally, to support the validity of the model, the following key
assumptions were verified: autocorrelation, normality, and multicollinearity. The resulting
values are given in Table 4.
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Table 4. Fulfillment of the Assumptions.

Autocorrelation Normality Multicollinearity (VIF)

D-W p-Value K-S p-Value NDBI NDVI NDWI PUC

2.00 0.80 0.02 <0.001 45.03 9.12 45.75 1.26

In this table, we can appreciate that the NDBI and NDWI VIF values are greater than 10,
thus exceeding the tolerance. This implies that these two variables should be disregarded.
As stated by Szymanowski and Kryza [88], the variables that exceed this tolerance may
be considered to improve a regression model. Moreover, these two predictors are very
important variables in many UHI studies [89–91]. In the UHI study by Cruz et al. [92],
after performing a multicollinearity test, explanatory variables with VIFs between 50 and
70 were selected for their multiregression analysis. These were considered an important
component for modeling this phenomenon. These are the reasons for maintaining the
NDBI and NDWI as explanatory variables in this study.

The independence between residuals was verified using the Durbin–Watson statis-
tic (D-W) with a value of 2.0, which falls within the critical values of 1.5 < D-W < 2.5,
indicating the absence of autocorrelation. The normality of the residuals was proved
by applying a Kolmogorov–Smirnov (K-S) test, which confirms the normal distribution.
Figure 11 shows the scatter diagrams, the histograms, and the correlation values for each
pair of explanatory variables in the model. To verify our model assumptions, four scatter-
plots of residuals against fitted values are investigated. Figure 12 suggests that the data
are randomly distributed around zero, with constant variability. There are no patterns that
indicate that the assumptions of the model are fulfilled for the dataset.
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In this figure, good correlation of NDBI and NDWI with LST is observed.
The contribution of each variable (wi) was obtained through the standardized regres-

sion coefficients (ŵi), which are weighted means absolute value. The resulting standardized
regression coefficients and the contribution of the factors to the model are presented in
Table 5. In this table, we can observe that the main contributing factors are the variables
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NDWI and NDBI, followed by NDVI and PUC. The derived weights are used in the next
section to derive the SUHI model.
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Table 5. Standardized Regression Coefficients and Contribution of each Factor.

Factor Standardized Coefficients
^
wi Weighted Contribution wi (%)

NDBI 0.21 21.38
NDVI 0.13 12.84
NDWI −0.51 51.46
PUC −0.14 14.32

3.4. SUHI Modeling

The SUHI phenomenon depends on the properties of land cover properties which,
combined with their energy absorption capacity, produce a thermal increase on the surface
and represent a threat to the thermal regime of urban ecosystems. Our modeling approach
is based on segmentation through the identification of potential thermal areas. Here we
employ the seven temperature zones defined by Wang et al. [36]. The definition of the
training areas is achieved with the LST variable (Figure 10a). The thermal ranges for the
training process are those defined in Table 2. These ranges are based on LST averages and
the standard deviations. We test both the SVM and NBML algorithms. The application
of the NBML method requires estimating the conditional probability functions for each
contributing factor. The Gaussian and Logistic probabilities density functions showed the
best results for the respective training frequencies of observation/category. Each condi-
tional probability was weighted according to Table 5. Moreover, the weighting capability
of the NBML method allows taking into account the relevance of each factor for deriving
the SUHI product. This feature is not possible with the SVM method.

The segmentation results for both methods are shown in Figure 13. In both cases,
the results were validated with the criteria established in Table 2. Table 6 reports the Kappa
index for SVM and NBML are approximately 88% and 94%, and the overall accuracy are
88% and 95%, respectively.
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Figure 13. Temperature classification results. (a) SVM; (b) naïve Bayes.

Table 6. Kappa Index and Precision of SVM and NBML.

Algorithm Kappa Index Overall Accuracy

SVM 0.88 0.88
NBML 0.94 0.95

Figures 13 and 14 show the final SUHI map that categorizes the urban environment
according to a specific SUHI state and assigns a specific type of action based on temperature.
The proposed actions are: intervene, monitor, strengthen, and preserve. The intervene action
is directly related to the SUHI areas exposed to the maximum thermal concentration.
These areas need to be immediately intervened in and are considered an ‘Extreme-high’
class. The monitor action groups ‘High’ and ‘Sub-high’ categories, and points to the
SUHI areas that should be kept under observation and intervened in a medium term.
The strengthen action classifies the ‘Medium’ and ‘Sub-medium’ classes into SUHI areas that
have gradually presented a temporary thermal trend increase. The preserve action contains
the ‘Low’ and ‘Very-low’ classes and comprises the SUHI areas that must be preserved.
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4. Discussion

4.1. Sensitivity Analysis

The results of the January 2019 campaign (Figure 7a) suggest that the amplitude of
the errors in recovering LST is similar between the models evaluated. The September 2019
measurement records (Figure 7b) indicated that the Fcover model provides the smallest
deviation with a mean error of 1.14 ◦C. This is very obvious compared to ASTER-GEDv3
and the LSE model, which shows mean deviations of 3.67 ◦C and 3.85 ◦C, respectively.
As shown in the Results section, the Fcover model exhibited better performance with a
mean error of 1.33 ◦C. Data reported by Duan et al. [93], and Malakar et al. [94] showed
differences for L5TM, L7ETM+, and L8OLI/TIRS among recovered LST and in situ LST
between 0.7 and 1.2 ◦C. Furthermore, we observed mean differences between 1.1 ◦C and
1.3 ◦C. Authors such as Chen and Zhang [14] and Liu and Li [95] have analyzed the SUHI
phenomena with similar differences. In this work, the Fcover model provided the smallest
errors in LST recovery among all the tested schemes, and it is considered the most suitable
for this kind of studies.

4.2. Statistical Analyses

The PCA was applied to derive the time trend of each variable and to analyze the
LST variation. Then, the main PCA component was employed in the MLR. We achieve a
coefficient of determination of approximately R2 = 0.82. These results are in agreement
with recent studies that have used regression models to quantify the impact of contributing
factors on LST [16,96]. Moreover, the combination of these factors defines how the different
types of land cover absorb temperatures. These absorptions manifest themselves with the
corresponding increase in emissivity and surface temperature. Our findings confirm results
of earlier studies, such as those of Rasul et al. [72], who modeled with the MLR method
the spatiotemporal trend of temperature data, and provided robust results in determining
SUHI areas.

Regarding the conditions for ensuring the validity of our proposed approach, several
considerations must be addressed. First, the multicollinearity of the predictor variables
and their effect on the model need to be validated with the VIF. Our results show that
two of the VIF parameters exceeded the value of 10, which would exclude two of the
explanatory variables of the prediction model. However, it is found that NDBI and NDWI
are the factors with the highest contribution, while NDVI and PUC have lower VIF values,
contributing to a lesser extent. Strong correlations, 0.89 and −0.89, were found between
the LST and NDBI and NDWI, respectively. A similar correlation was found between
NDVI and NDWI. It is important to note that removing highly correlated variables can
benefit the overall result and simplify the approach. However, having high contributing
predictor variables such as NDBI and NDWI may indeed improve prediction products,
as noted in [88]. Although some collinearity was presented, the Pearson correlation indices
and the fulfillment of independence and normality of the residuals have denoted a very
reliable model.

Regarding the direct relationships of LST with the different physical variables and
contributing factors, a strong correlation with NDBI was observed: building construction.
This justifies why impervious areas have high caloric retention capacity and low water
storage capacity, in turn reducing humidity. Previous studies have demonstrated strong
correlations between LST and NDBI [97,98]. In contrast, a strong correlation was found
between LST and NDVI/NDWI. Please note that temperature decrease follows increases in
vegetation and humidity. The higher the vegetation cover, the lower the surface tempera-
ture becomes. The reason for this may be strongly related to the soil moisture content in
vegetated areas, which alters the energy balance and causes variation effects from solar
radiation. These results are in line with those obtained by Ibrahim and Rasul Faqe [99],
who reported a strong negative correlation between these variables. Our results show
urban planners that the identification of factors and their contribution to the SUHI phe-
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nomenon serves as a support to define adaptation measures to cities for thermal change,
allowing them to adapt with other territorial planning priorities.

A moderate correlation was found between LST and PUC, indicating that LST in-
creases moderately according to the proximity to the urban center. This correlation may
be related to urban density distribution and road infrastructure, which, compared to the
distance variable, are responsible for generating a complex structure not well represented
by linear models. Bonafoni and Keeratikasikorn [100] also implemented a ring-based
method and analyzed LST as a function of building density and proximity to urban centers.
This issue is to be addressed in future research.

4.3. The SUHI Model

To reveal the multitemporal intensity of the SUHI phenomenon, two Machine Learning
techniques were tested, the SVM and the NBML. Both algorithms performed satisfactorily,
with Kappa indices of 89% and 93%, respectively. Better performance was observed for
certain categories for the NBML algorithm (Figure 13b). Although both procedures are able
to detect high-density urban areas affected by extremely high temperatures, NBML allows
coupling criteria to assign individual weights to each class, increasing the quality of the
results. Conventional NBML classifiers consider the model to be applicable when the
Gaussian probability density function is present in the data set [84]. Molina et al. [101]
showed that the combination of the best-fit distribution model (not necessarily Gaussian),
and the weights of each variable led to satisfactory results.

The SUHI phenomenon is a complex system that occurs as a result of the interaction
of various factors [102]. This interactivity produced by anthropic effects generates thermal
imbalances requiring intervention, monitoring, strengthening, and preservation, as a
fundamental expression between causes and effects of urban/rural ecosystems. Our results
show that the highest temperatures are concentrated in the central area of the city and
gradually decrease toward the periphery. The characterization of the space through the four
proposed classes of actions (intervene, monitor, strengthen, and preserve) makes it possible
to regulate the conditions that could mitigate the SUHI effect. The areas designated as
intervene correspond to the center of the city and tend to have a higher population density
and old buildings. It is recommended to change black roofs to less thermic roofs that have
reduced solar energy absorption and increased energy savings, as suggested by Alshayeb
and Chang [103]. Since these areas do not have appropriate physical space to create green
areas, an alternative might be the use of road dividers to plant trees with large foliage and
roots that do not weaken existing infrastructure. An interesting measure that allows the
reduction of anthropogenic heat is to restrict the transit of private vehicles and limit access
to specific areas. The access methods can be substituted for public transportation or cycling.
These measures have already been implemented in many locations. The areas identified as
monitor should implement small tree-lined sites and natural corridors to refresh the space.
Rainwater irrigation channeled through sewerage systems can be used as a contribution
to the restoration of urban wetlands. The areas indicated as strengthen show less thermal
intensity than the above areas and are associated with urban growth. Within this policy,
the morphology of these areas should integrate green spaces that allow increased water
infiltration and cooling [104]. In general, the use of highly reflective building materials is
recommended, reducing the amount of solar radiation absorbed by the surface, such as,
for example, the use of cool pavements suggested by the U.S. Environmental Protection
Agency [105]. Finally, areas marked as preserve have the highest vegetation cover and
play an important role in the urban ecosystem. They reduce carbon dioxide emissions,
becoming spaces that reduce the radiant load produced by various economic activities,
and generate thermal regulation. In addition, these have a great potential for ecotourism.

Further development of this research can be undertaken by applying simulation
techniques with Machine Learning Algorithms that allow the integration of weights to
the variables involved in the predictive model, and that allow characterization of future
thermal scenarios associated with the spatiotemporal trends of the explanatory variables.
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The interactions produced by biophysical factors and the geometric changes that are
transforming cities make the relationships between objects and phenomena increasingly
complex. In this sense, it would be very pertinent to further explore the classification
of local climatic zones in tropical cities in countries such as Colombia. These are highly
vulnerable to climate change.

5. Conclusions

The results of this work demonstrate that emissivity data have a large impact on the
retrieval of LST. Here, LST is obtained from L8OLI/TIRS band 10 and LSE from Sentinel-2.
Both sources are more accurate and homogeneous than using traditional ground-based
methods. Our innovative approach proposes quantifying the SUHI phenomenon from a
set of contributing factors. We first employ the PCA to retrieve the main spatiotemporal
variations in the initial data. Then, MLR is applied to integrate the dependencies and to
analyze their impacts on SUHI. According to our regression model, the most influential
factors in the SUHI are NDWI with a contribution of 52%, NDBI with 21%, NDVI with
13%, and PUC with a 14%. Finally, the integration of these predictors within an SVM
and a NBML approaches confirms the existence of coupling mechanisms between each
variable. The satisfactory results of the NBML confirm the suitability of the proposed
approach, with an overall accuracy of 95%. We expect to improve the results of the
model with future upgrades associated with structural complexity of the landscapes.
The spatial variation of SUHI points out an enhanced phenomenon towards areas of high
urban density. Our research demonstrates the suitability of Machine Learning Algorithms
for mapping SUHI intensities, providing spatially explicit descriptions of urban heat
distribution. The derived products are crucial for defining sustainable urban planning
policies, as well as for adequate responses to thermal risks. These actions will in turn make
it possible to define mitigation and adaptation strategies.
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