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Abstract: Automatic ship detection provides an essential function towards maritime domain aware-
ness for security or economic monitoring purposes. This work presents an approach for training a
deep learning ship detector in Sentinel-2 multi-spectral images with few labeled examples. We design
a network architecture for detecting ships with a backbone that can be pre-trained separately. By
using self supervised learning, an emerging unsupervised training procedure, we learn good features
on Sentinel-2 images, without requiring labeling, to initialize our network’s backbone. The full net-
work is then fine-tuned to learn to detect ships in challenging settings. We evaluated this approach
versus pre-training on ImageNet and versus a classical image processing pipeline. We examined the
impact of variations in the self-supervised learning step and we show that in the few-shot learning
setting self-supervised pre-training achieves better results than ImageNet pre-training. When enough
training data are available, our self-supervised approach is as good as ImageNet pre-training. We
conclude that a better design of the self-supervised task and bigger non-annotated dataset sizes can
lead to surpassing ImageNet pre-training performance without any annotation costs.

Keywords: ship detection; self-supervised learning; transfer learning; Sentinel 2 dataset

1. Introduction

Ship detection is an important challenge in economic intelligence and maritime secu-
rity, with applications in detecting piracy or illegal fishing and monitoring logistic chains.
For now, cooperative transponders systems, such as AIS, provide ship detection and
identification for maritime surveillance. However, some ships may have non-functioning
transponders; many times they are turned off on purpose to hide ship movements. Mar-
itime patrols can help to identify suspect ships, but this requires many resources and their
range is restricted. Therefore, using satellites, such as those from the European Space
Agency Sentinel-2 mission, to detect ships in littoral regions is a promising solution thanks
to their large swath and high revisit time.

Some commercial satellite constellations offer very high resolution images (VHR)
(<1 m/pixel) with low revisit time (1–2 days). However, VHR images are usually limited
to the R, G, B bands and image analysis on such high resolution images is computationally
intensive. On the other hand, synthetic aperture radar (SAR) satellites can also be used,
although their resolution is lower than VHR optical sources (e.g., Sentinel 1 has 5 m
resolution), the analysis of their imagery is the main approach to ship detection since
SAR images can be acquired irrespective of cloud cover and the day and night cycle. The
downsides of SAR are low performance in rough sea conditions, but, most importantly,
detection is only done on seas away from land and is not possible for moored ships in
harbor or for ships smaller than 10 m [1]. Furthermore, SAR is vulnerable to jamming [2].

The Copernicus Sentinel-2 mission of the European Space Agency offers free multi-
spectral images with a refresh rate of maximum 5 days and a resolution down to 10 m,
as detailed in Table 1. Our work focuses on this data source for several reasons. First,
multi-spectral information allows to better extract a ship fingerprint and distinguish it
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from land or man-made structures, as shown in [3,4]. Second, a multi-spectral optical
learning based approach can perform detection in both high seas and harbor contexts,
while also removing the requirement of storing a vector map of coastlines and performing
cloud removal as a pre-processing step. Thus, it could be adapted to a real-time, on-board
satellite setting and is not affected by jamming.

Table 1. Sentinel-2 satellite and capabilities.

flight direction 

nadir

Acquisition mode: Push-Broom
Resolution: 10 m (R,G,B, NIR), 20 m, 60 m (other bands)
Swath: 290 km
Revisit time: 5 days with 2 satellites
Spectral bands: 13, between 443 nm–2190 nm
Data production rate: 2 TB/day

Although ship detection is a challenging task, ship identification in remote-sensing
images is even more difficult [5]. A coarse identification could be made by ship type
(container ship, fishing vessel, barge, cruiseliner, etc.) using supervised classification, with
accuracy that should be closely related to image resolution. However, to establish ship
identity uniquely, it does not seem feasible with the Sentinel-2 sensor to extract features fit
for this purpose, such as measurement of ships to meter precision, extracting exact contours,
or detecting salient unique traits of different ships. Our work focuses on detection but
the approach is generic and could be extended to other sensors with better resolution,
eventually allowing identification.

Recent remote sensing approaches based on machine learning require large amounts of
annotated data. Some efforts to collect and annotate data have been made for VHR images,
for SAR and for Sentinel 2, but, for the latter, these works did not target ship detection in
particular. For object detection using convolutional neural networks (CNN), an interesting
way to overcome the lack of data is to use transfer learning. This is achieved either by using
CNNs pretrained on large labeled data sets gathered in a sufficiently “close” domain (such
as digital photographs), or by pretraining a neural network on the satellite image domain.
The latter can be done through an unsupervised pipeline using self-supervised learning
(SSL) [6], a contrastive learning paradigm that extracts useful patterns, learns invariances
and disentangles causal factors in the training data. Features learned this way are better
adapted for transfer learning of few-shot object detectors. We propose to use this paradigm
to create a ship detector with few data.

1.1. Related Work and Motivations

For VHR images, a large amount of literature exists, with the number of works follow-
ing the increasing number of sensors and the quantity of publicly available data [7,8]. Many
of these approaches focused on detecting ships with classical image processing pipelines:
image processing using spectral indices or histograms (e.g., sea-land segmentation, cloud
removal), ship candidate extraction (e.g., threshold, anomaly detection, saliency), and,
then, rule-based ship identification or classification using statistical methods. Virtually
all of these works focus on VHR images with R,G,B, and PAN bands, occasionally with
the addition of NIR, with resolution less than 5 m. Deep learning was applied to images
with under 1m resolution by using object detection convolutional neural networks (CNN):
R-CNNs [9,10], YOLO [11,12], U-Net [13,14].
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For SAR imagery, [1] reviews four operational ship detectors that work on multiple
sensors. All of the approaches use classical processing chains and start by filtering out
land pixels. This filter is either based on shapefiles or on land/water segmentation masks
generated from the SAR image. However, in both cases, a large margin is taken around the
coastlines, eliminating any ships that are moored in ports. Deep learning was also applied
to SAR ship detection, with notable results detailed in [15].

In multi-spectral images, the most notable work is [4] which uses SVMs to identify
water, cloud, and land pixels and then builds a CNN to fuse multiple spectral channels.
This fusion network predicts whether objects in the water are ships. Other approaches, such
as [3], rely on hand made rules on size and spectral values to distinguish between ships,
clouds, islands, and icebergs. The only Sentinel 2 ship dataset publicly available is [16]
but it only includes small size image chips and weak annotations for precise localization,
i.e., a single point for each ship, obtained by geo-referencing AIS GPS coordinates to pixel
coordinates in the chips.

Although large datasets exist for VHR images, for Sentinel-2 none are available
with pixel level annotations while usually thousands of examples are needed to train
deep learning object detectors. Few-shot learning based approaches can bring interesting
perspectives for remote sensing in general and in our setting in particular. Few-shot
learning consists in training a neural network with few labeled samples, most often thanks
to quality feature extractors upon which transfer learning is performed. One recent method
for unsupervised learning of features extractors that enable few-shot learning is contrastive
self-supervised learning [6,17]. Contrastive SSL relies on a “pretext training task”, defined
by the practitioner, that helps the network to learn invariances and latent patterns in the
data [18–20].

Several strategies exist for choosing the pretext task: context prediction [21], jigsaw
puzzle, or simply by considering various augmented views. The latter is used by [22,23]
for remote sensing applications like land use classification and change detection.

1.2. Contributions

In this work, we make two contributions:

(1) A deep learning pipeline for ship detection with few training examples. We take
advantage of self-supervised learning to learn features on large non-annotated datasets
of Sentinel 2 images and we learn a ship detector using few-shot transfer learning;

(2) A novel Sentinel 2 ship detection dataset, with 16 images of harbours with a total of
1053 ship annotations at the pixel level.

2. Materials and Methods

Our approach is based on a U-Net architecture with a ResNet-50 backbone to produce
binary ship/no-ship segmentation masks of the input image. U-Net has been used exten-
sively in remote sensing applications, traditionally with a simple downsampling path of
consecutive convolution blocks with no downward skip connections.

2.1. U-Net Architecture

Although the “vanilla” version of U-Net is usually trained from scratch, in this
work we modify it to use a different backbone, ResNet-50, that can be easily pre-trained
separately using a contrastive objective and then plugged into the U-Net architecture.
Figure 1 describes graphically this architecture.

The network takes as input a 64 × 64 pixel patch with 6 channels corresponding
to the B2 (B), B3 (G), B4 (R), B8 (NIR), and B11 and B12 (SWIR) spectral channels. The
downsampling path reduces the width and height through strided convolution layers
while increasing the numbers of channels. The last layer of the ResNet50 backbone has
2048 channels. A “bridge” is added between this layer and the first UPconv block of the
upsampling branch of the U-Net.
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Figure 1. ResNet50-UNET architecture (s2 = stride 2px). The FC layer of ResNet50 has been removed. Numbers show
output channels of each block.

The output layer uses pointwise convolution, equivalent to applying a fully-connected
layer at each pixel, to produce a 2-dimensional vector p = pi, i ∈ {0, 1}. This vector
contains class probabilities of the pixel belonging to the ship class i = 1. The classification
decision p is taken by argmax(p) of this output vector in each pixel, giving a binary mask
at the resolution of the input image.

The input patch size, 64 × 64 pixels, is chosen such that SSL training of the ResNet-50
backbone is technically possible on a desktop GPU, as detailed in the following section.

2.2. Self-Supervised Learning of ResNet-50 Backbone

We chose the MoCo architecture [24] for the self-supervised pretraining of the ResNet-
50 backbone. In this approach, a dictionary of embeddings from previous versions of the
feature extractor are cached to provide, without additional computation, a large amount of
negative examples to a contrastive loss at each iteration.

The main advantage of MoCo is that it does not require large batch sizes [6] and,
thus, can be trained on a single desktop GPU. In this approach, only few embeddings of
negatives are computed in each training iteration using the current version of the encoder.
Many other embeddings, computed with previous versions of the encoder, are cached
and, thus, reused. The encoder is updated using a momentum rule based on the encoder
weights, thus converging more slowly towards the encoder.

The Moco algorithm is described in Figure 2. Here xq and xk are two 64 × 64 pixel
patches. We designate xq as the query patch and xk− as “negatives”. At each training
iteration a new query patch is considered and a “positive” patch k+ is generated by the
pretext task. A number of random negative patches are sampled and passed through the
momentum encoder to produce “negative” embeddings. The similarity, q · k is computed
between the query patch and the embedding of the positive patch and of the negatives.
The embeddings of the negatives are the union of those computed from the negatives in
the current batch and those taken from a FIFO queue of negative embeddings. We use the
NTXent loss on the similarity measure:

Lq = −log
exp(q · k+/τ)

∑K
i=0 exp(q · ki

−/τ)
(1)

The encoder and momentum encoder are both ResNet-50 networks, as described in
the backbone block of Figure 1 but with an additional average pooling and fully connected
layers on top. The fully connected layer has 512 output neurons and produces the embed-
ding. The encoder’s parameters θq are updated with SGD while the momentum encoder’s
parameters θk are updated using Equation (2) where m = 0.99 is the momentum value:

θk ← mθk + (1−m)θq (2)

Patches in SSL are pre-processed by first clipping to the 3rd and 97th percentile
computed, for each band, over the pre-training dataset. Then the patches are standardized
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by subtracting the mean and dividing by the standard deviation computed on a part of the
EuroSAT dataset [25].

encoder
momentum

encoder

xq ,xk+

q k+, k-

q.k

contrastive loss

gradient

xk-

i

momentum

encoder i-1

momentum

encoder i-2

 k-  k-queue

Figure 2. MoCo training algorithm [6]: negative embeddings from momentum encoders at previous
iterations (i− 1, i− 2, etc.) are cached and reused at iteration i.

2.3. Pretext Task Settings

We implemented two pretext tasks in this work:

• Data-Augmentations (A): it consists in choosing data-augmentations according to the
invariances our network needs to learn. In our case, it has to identify ships no matter
their orientation, size, even if the water is turbulent or if the background is noisy.
Therefore, we applied an augmentation function aug to our query patch, where aug
is one of: color jitter, random rotations, crop and resize with a small scale difference,
slight Gaussian noise: xk+ = aug(xq)

• Region-wise similarity and data augmentations (RA): learns features that increase
the similarity between two patches of the same geographical region. This task is
illustrated in Figure 3 and can be formalized as xk+ = aug(sample_neighbor(xq)),
where aug is the same as above and sample_neighbor generates a geographically close
patch. Inspired by [26], this strategy aims to help the network to better cluster together
similar regions (land, water bodies, etc.). The maximum distance can be varied to
control the average overlap of sampled patches. Larger distance induces increased
diversity but can generate patches that are too different from each other (ex: water
and land when applying to littoral regions). We test two variants: high distance (RA)
and low (RA-lo).

Figure 3. Region based pretext task. Patches xq and xk+ (yellow) constitute a positive pair whereas
patches xq and xk− (red and yellow) form a negative pair.
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2.4. U-Net Ship Detector Training

We consider full-size training images and their associated ground truth that is a binary
pixel mask for each multi-spectral image. In the mask, pixels with a value of one are ship
pixels, and are zeroed otherwise. Next, we sample random 64 × 64 pixel patches from
these images, ensuring, however, that at least five pixels of the patch belong to a ship. Since
ships are scarce in the images this step re-balances the distribution of ship vs. non-ship
pixels in training.

During training we further take into account the class imbalance of pixels by using
the focal loss [27] to train the U-Net model. For a prediction p̂ = so f tmax(p) ∈ [0, 1]2 and
ground truth y:

FL(pt) = −αt(1− pt)
γlog(pt) (3)

pt =

{
p̂i if y = 1
1− p̂i otherwise

(4)

We set γ = 2, α0 = 0.05 (corresponding to background pixels) and α1 = 0.25 (corre-
sponding to ship pixels). We train the U-Net detector with the ADAM optimizer while also
introducing some data augmentation in training: random vertical and horizontal flips.

We normalize the training patches in the same way as in the pretext task (see Section 2.3).

2.5. Inference

To detect ships with our model we first cut the target image into patches of the same
size as in training-64 × 64 pixels-using a regular grid. However, for inference we take these
patches with an overlap of 32 pixels. It is well known that U-Net architectures, and CNNs
in general have lower performance on the borders of the image than in the center, due to
the influence of padding in the backbone. Since our backbone is trained with a contrastive
objective task during SSL, this type of padding was the most straightforward approach.
When transferred to the U-Net setting, 0-padding introduces artifacts on image borders.
We chose to simply cut out 16 pixel wide borders of the patches.

Finally, the full image binary mask is produced by stitching the individual patch masks
together. We apply the connected components algorithm with 4-connectivity to extract
blobs in this mask. Each blob is considered as a detected ship, without additional filtering.

2.5.1. Filtering Stage

Optionally, we can filter these detections with a water/land mask generated from
OpenStreetMap coastline vector data. When enabled, we perform filtering by multiplying
the image binary prediction mask with the water mask, before extracting connected compo-
nents. In this way, ships that are moored will be detected without spillover to peers or land
masses. A variation of this filtering involves a water mask than removes littoral regions (in
a 600 m range), in order to perform detection only in open sea. This second open-sea mask
is obtained by thresholding a distance-transform of the water/land mask. Our pipeline,
thus, has an optional filtering stage with two variations: coastline (CO) or open-sea (OS).

2.6. Ship Detection Dataset: S2-SHIPS

To the best of our knowledge, no ship detection Sentinel-2 datasets for both moving
and static ships with pixel level annotations has yet to be published. We introduce a novel
ship detection dataset made up of littoral and harbor regions images.

This dataset includes 16 L2A images of coastline, ports, and the Suez canal. Figure 4
shows the geographical distribution of the data. The images are of size 1783 × 938, cover
167 sq. km each, and are annotated at the pixel level with a total of 1053 distinct ships. We
also provide earth/water masks for these images, rasterized from OpenStreetMap layers.

The ships are from various size, with areas ranging from 100 m2 (e.g., pleasure boats,
small fishing ships) to more than 5000 m2 (e.g., cargo ships). Since the Sentinel 2 mission
does not provide high sea tiles, the images are taken near coasts and we annotated moored
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ships and ships at sea separately. Our dataset also provides images taken under different
weather conditions, including turbulent seas, clouds, or sun glint. Thus, the complex
environment surrounding ships in our dataset makes it challenging for ship detection.
Several samples are shown in Figure 5.

Figure 4. S2-SHIPS geographical distribution of image tiles. Points on Western Europe map (middle) represent image tiles
in data set for ports of: Southampton, Portsmouth, Brest, Rotterdam (3 tiles), Toulon, Rome, Marseilles.

Figure 5. S2-SHIPS dataset patch samples: Brest (FR), Toulon (FR), Rotterdam (NL), Colon (PA), Suez Canal (EG). Note that
some images have partial cloud cover or rough sea conditions.

We rasterize OpenStreetMap water layers (ocean, major rivers, canals) on the 16 geo-
referenced images to produce binary masks of water. These layers sometimes have the
contours of peers, jetties, but the annotation of these entities as land is not insured.

2.7. Backbone Pre-Training Datasets

For backbone pre-training with SSL, we look at existing large scale Sentinel 2 datasets.
Several have been published in recent years and usually focus on land cover classification
or segmentation. Since we do not use labels for pre-training we can use these types of data
easily and in large quantities. Some well-known datasets are:

• EuroSAT [25], which is a 10 class land-cover classification dataset containing 27,000 multi-
spectral patches of size 64 × 64 pixels. We apply the (A)ugmentation pretext task on this
dataset;

• BigEarthNet [28], which is a very large scale multi-label land-cover classification
dataset. It contains 590,326 multi-spectral image patches of size 120 × 120 pixels. We
randomly crop 320,000 64 × 64 pixel patches from the original dataset and we apply
the (A)ugmentation pretext task for BigEarthNet;

• SEN12MS [29], which is a very large curated land cover segmentation dataset, made
of Sentinel 1, 2 and MODIS images. It contains 180,662 Sentinel 2 multi-spectral
patches of size 256 × 256. For this dataset, we apply both the (A)ugmentation and
the region-wise and augmentation (RA) pretext task. For the first one we sample
1,337,360 patches 64 × 64 patches from the 256 × 256 patches in the dataset. For the
(RA) and (RA-lo) tasks we sample patches xq and xk+ of size 64 × 64 pixels randomly
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from the same 256 × 256 patch. The distance between these two “positive” patches
can thus be at most 1.2 km for (RA) and 640 m for (RA-lo), while sometimes there can
be an overlap.

2.8. Experimental Settings and Parameters

We run the pre-training SSL pipeline for 100 epochs with a learning rate of 0.001 and a
cosine annealing schedule. For the augmentation (A) task, we used a batch size of 500 for
the EuroSAT and BigEarthNet pretraining and a batch size of 900 for SEN12MS. We trained
the pretext task on one GPU with 12 Go of memory for the EuroSAT and BigEarthNet
datasets, and on a multi-gpu machine for SEN12MS dataset to accelerate the learning
process. The region based pretext (RA) task was applied to SEN12MS using the same
hyperparameters as for (A), with a batch size of 500.

Next, we copied the parameters of the ResNet-50 backbone trained with SSL into the
corresponding layers of the U-Net. We train the network in two ways: fine-tuning (FT) and
transfer learning (TL). The first one, FT, corresponds to training all the layers of the U-NET
on the ship detection task, while for the latter, TL, we froze the layers of the backbone.

For the ship detection task, both in the TL and FT modes, we train the network with
100 epochs, with a batch size of 20 and a learning rate of 0.001.

We evaluate our method as a one class object detection algorithm, using the pycoco-
tools package. We focused on object-wise precision, recall and F1-score (harmonic mean
of precision and recall) metrics. We also compute the recall for each ship size (a ship is
considered as small if its area is under 2500 m², otherwise it is considered as being large),
and for each ship location (moored ships or sailing ships).

2.9. Baselines

1. ImageNet transfer learning: Instead of pre-training the backbone with SSL, this
baseline uses a ResNet-50 encoder pretrained on ImageNet as implemented by the
torchvision package. Since these encoders are trained on RGB images, we copy
the weights of the first 3 channels of the first layer in order to initialize the channels
corresponding to spectral bands B8, B11, and B12. Both the TL and FT ship detector
training approach can be applied to this baseline;

2. Random initialization: Instead of using a trained backbone network, we initialize the
ResNet-50 encoder randomly following the standard Kaiming initialization. Only
the fine-tuning (FT) detector training mode is applied when initializing the weights
randomly;

3. BL-NDWI—Water segmentation baseline with NDWI: We develop a simple baseline
which is based on classical image processing techniques. We use the NDWI spectral
index NDWI = B03−B08

B03+B08 and we threshold its value to segment water and non-
water pixels. The threshold for the NDWI segmentation is chosen to obtain the
best performance on the whole dataset, which may lead to suboptimal choices for
some images.
Next, we eliminate land pixels using the water/land segmentation (CO) (Section 2.5.1)
map, giving a ship proposal map. We consider non-water pixels in what are normally
water regions to potentially be ships. We extract connected components and we
eliminate those that have a width and height greater than 50 pixels (500 m) since no
ships larger than this size exist. These are due to islands or sandbanks not correctly
mapped in OpenStreetMap layers or thin water banks where the coastline annotation
in OpenStreetMap is imprecise.
Finally, we do several filtering passes on the resulting proposal map: morphological
opening and we apply watershed segmentation on the resulting map to identify
individual ships.
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3. Results

Our evaluation has three objectives: (1) study the impact of the SSL pre-training
strategy of the backbone on the final performance of the ship detector, (2) compare our
SSL-trained U-Net to the baselines and, (3) analyze the few-shot performance of SSL.

3.1. Self-Supervised Learning Approach Analysis

We train the ship detector on the S2-SHIPS dataset in the leave-one-out setting: out of
N images we choose N− 1 for training and one for testing. For certain geographical regions
there are several images in the dataset while for others only one. Therefore, by varying
the testing and training images we measure the transferability of the learned detector, for
different levels of domain difference between training and testing sets. We do not perform
cross-validation, the hyperparameters for U-Net are chosen a priori and not optimized.

We obtain 16 folds with 15 training images and one testing image. The training set
consists of patches that match the ship presence criterion described in Section 2.4, extracted
from the original images. This sampling produced about 1800 patches on average per fold.
We report precision, recall, and F1-score averaged over the 16 folds, averaged over 5 runs of
the experiments. We do not report standard deviations as they were always insignificant.

Our initial aim is to evaluate the overall performance of the detector, irrespective of
land cover in the images. Thus, we first test without the filtering stage, and the precision
results reflect false positives both on land and at sea.

Table 2 presents the results of this comparison. First, we can observe that there is a
strong relationship between the dataset size and the performance attained. To see this in
more detail, in Figure 6 we show graphically the difference in F1 score depending on the
size of the pre-training dataset, under the (A)ugmentation pre-text task, using transfer
learning (TL).

Table 2. Average performance measures for the various SSL settings, over 5 runs over the 16 folds of the S2-SHIPS dataset.
Best results are presented in bold font. Note that the F1-score here is the average of F1 scores over folds.

Pre-Training Dataset SSL Pretext Task
Transfer Learning Fine-Tuning

Precision Recall F1 Precision Recall F1

EuroSAT A 17.0 80.1 24.7 - - -

BigEarthNet A 19.3 81.5 27.1 18.4 78.1 26.0

SEN12MS A 21.3 76.7 29.1 22.5 74.3 29.5

SEN12MS RA 21.9 76.9 29.1 25.2 76.4 33.0

SEN12MS RA-lo 21.0 77.1 28.4 25.7 77.4 33.0

Using the large SEN12MS dataset we obtain four percentage points of F1 score more
than with EuroSAT for the same pretext task. In Table 2, we note that this gain in perfor-
mance is due to a stronger gain of relative precision than the loss of relative recall.

Table 2 also shows that the region-wise similarity, coupled to augmentation (RA),
outperforms augmentation-only pre-training (four F1 percentage points in the FT setting).
Furthermore, a large maximum positive patch distance is beneficial, compared to low-
distance/high overlap (RA-lo).

Additionally, Table 3 shows how the false alarm rate drastically decreases from
1.70 ship/km² for EuroSAT to 1.20 ship/km² for SEN12MS-A without filtering, and down
to 0.14 ships/km² for the open-sea setting (OS).
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Figure 6. Impact of dataset size on F1 score in the TL settings with the A pretext task.

Table 3. False alarm rates for the various SSL settings (Transfer Learning). Best results are presented in bold font.

Pre-Training Dataset SSL Pretext Task
False Alarm (FA) Rate (ship/km²)

No Filt. CO Filt. OS Filt. ∆FA 1 ∆FA 2

EuroSAT A 1.70 0.92 0.22 −0.78 −1.48

BigEarthNet A 1.60 0.84 0.16 −0.76 −1.44

SEN12MS A 1.20 0.63 0.14 −0.57 −1.06

SEN12MS RA 1.19 0.65 0.19 −0.54 −1.00

SEN12MS RA-lo 1.23 0.68 0.21 −0.55 −1.02

3.2. Comparison of SSL to Baseline Approaches

Next, we compare our best pre-training method (SEN12MS+RA) to the ImageNet
pretraining and to the BL-NDWI baseline. Table 4 presents this comparison, Table 5
analyzes the false alarm rate for the different methods and Figure 7 compares the results
by image.

Table 4. Ship detection performance—best SSL based approach versus baselines. Average precision, recall, and F1-score
computed over the 16 folds. Best results are presented in bold font.

Method (w. CO Filtering)
Transfer Learning Fine-Tuning

Precision Recall F1 Precision Recall F1

Scratch - - - 46.9 73.3 53.1

ImageNet 39.2 76.5 47.9 42.9 76.8 50.2

SEN12MS+RA 39.5 76.4 47.9 44.4 75.5 52.2

BL-NDWI 25.0 39.0 27.8 25.0 39.0 27.8
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Table 5. Average false alarm rate comparison of the best SSL result versus the baselines. Best results are presented in
bold font.

Method
False Alarm (FA) Rate (ship/km²)

No Filtering CO Filtering OS Filtering ∆FA 1 ∆FA 2

BL-NDWI - 0.83 0.71 - −0.12

Scratch (fine-tuning) 0.85 0.48 0.15 −0.37 −0.70

ImageNet 1.02 0.57 0.14 −0.45 −0.88

SEN12MS+RA 1.19 0.65 0.19 −0.54 −1.00

Figure 7. F1-score variation on all S2-SHIPS dataset for NDWI, SEN12MS-RA (no filt.) and SEN12MS-
RA with CO filt.

Table 4 shows that when all methods are filtered with land/sea map, deep learning
algorithms lead to largely better results than the BL-NDWI method: in transfer learning
mode, it gains 20 percentage points of F1 and double the recall. This means that many ships
are not detected with BL-NDWI, and one explanation could be the threshold choice for the
NDWI that is not generally optimal to all images. The problem of sub-optimal threshold
can be seen in Figure 7, where, for some test images, such as Suez 1 and 2, the threshold is
almost perfectly chosen, whereas on Suez 3, Suez 5, and Suez 6 the detection is really weak.
As the threshold of the NDWI is chosen to maximize performance over the whole dataset,
it is suboptimal on individual images.

For deep learning methods, such as SEN12MS-RA, generalizing problems are evi-
denced on images Suez 2, Panama, and Rotterdam 2, but this is mainly due to the challeng-
ing conditions induced by those test images, rather than domain difference : large land
cover (Suez canal), clouds (Rotterdam, Panama), and turbulent sea (Panama).

Our SSL based pipeline achieves similar results to ImageNet pre-training in the transfer
learning setting and two percentage points higher F1 score in the fine-tuning setting. It
is worth noticing that training from scratch achieved better F1 score in the fine-tuning
setting. When training on 15 images, learning from scratch seems a better choice due to
simplicity and better performance. Indeed, most works use this setting for remote sensing
applications. However, our aim is to study few shot learning performance and in this
setting, as shown in the following sections, learning from scratch is disadvantaged.

Generally, deep learning methods are weak in areas with dark background (grass,
cloud shadow), waves or large boat trail, where they lead to many false positives.
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Figure 8 presents a qualitative analysis of their results. In these conditions, networks
trained from scratch or pretrained on EuroSAT and BigEarthNet lead to the worst results.
Some piers and docks are also confused with ships. Deep learning methods seem to be
robust to brightness, water color, or environment difference, and they also rarely predict
small islands as ships.

Context BL-NDWI ImageNet SEN12MS-RA

Large ships in open sea

Moored ships

Small ships

Ship trails

Waves, clouds

Moored ships, canals, shadows

Figure 8. Ship detection samples, in various conditions. In green are drawn true positives, in red false positives and in
yellow missed ships (false negatives). Best viewed in color.
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3.3. Few-Shot Performance of the Methods under Study

To evaluate the performance dynamics of the proposed method in the few-shot learn-
ing setting we split the dataset into two parts. The training set contains 13 images and the
test set three: one from the Suez canal, a second from Brest and the last one from Rotterdam.
We vary the number of training images from 1 to 13, which corresponds to a variation in the
number of distinct ships from 42 to 742. This experiment aims to highlight the network’s
robustness towards training dataset size and diversity (sun glint, water color, etc.).

Varying the number of training samples shows that SSL methods trained on large
datasets, especially with the region based pretext task, achieve competitive and even better
results than ImageNet pretrained networks fine-tuned on a small amount of data. Indeed,
in Figure 9, we see that having only between 200 and 300 training examples is sufficient for
SEN12MS-RA method to get close to a F1 score of 35%, while ImageNet network needs at
least 350 samples to reach this performance. This experiment also confirms the importance
of the pretext task: the region invariances induced by SEN12MS-RA method increased
considerably the performances. Indeed, only 290 ships are needed by SEN12MS-RA to get
92% of the best performances obtained with 750 training ships, while other methods need
at least a third more training ships.

Figure 9. Impact of the number of training ships variation on mean F1 score calculated on Brest,
Rotterdam, and Suez canal.

Moreover, in a few-shot setting, with 126 training examples, Figure 10 analyzes the
performance of the methods under study on different sub-classifications of the ships: small
vs large and moored or at sea. SEN12MS-A and SEN12MS-RA have a better recall than
ImageNet or training from scratch by far. SEN12MS pretraining is significantly better at
detecting moored ships than other methods, including ImageNet.

The weakness of ImageNet may come from the fact that it needs to fine-tune its
weights further, because of the large domain difference that exists when transferring the
knowledge learned on object-centric datasets to remote sensing images. Therefore, robust
SSL methods give a good boost when having few training samples, unlike networks trained
from scratch or pretrained on ImageNet.
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Figure 10. Ship detection performance according on ship size and location, with a frugal setting
(126 training ships).

4. Discussion

Globally, the results allow us to conclude that deep learning techniques achieve
promising results. In all cases (close to shore and open-sea) recall is high, more than 75%.
We obtained less than 0.14 false alerts per square kilometer in the open sea and close to the
sea shore, the false alarm rate is around 1 ship/km2. Although the BL-NDWI baseline could
be improved by finding more optimal NDWI thresholds for each image, the performance
difference with respect to deep learning approaches seems hard to make up for.

Networks trained with SSL achieve better results compared with ImageNet pretrained
ones. In the few-shot setting, SSL pre-training is usually better and more stable. When
sufficient examples are available SSL pretraining is as good as ImageNet or training from
scratch. We notice also that performance increases with the size of the pre-training datasets.
Since these are not annotated it is easy to build such datasets. The ones chosen here have
no relation to the ship detection problem at hand, thus no significant effort is needed to
select the images in these datasets.

The pretext task needs to be chosen according to the downstream task in order to learn
the needed invariances. The region based pretext task looks promising probably because
it helps the encoder to better cluster together similar elements, such as water, agriculture
crops, or residential areas, while a simple pretext task data-augmentation only focuses on
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color or noise invariances. The benefit of such pretext task can be seen in our case as it
lowers the number of false positives over land and near the shore.

In terms of computational complexity, the difference between all deep learning meth-
ods lies in the way we pre-train the weights. Compared to the supervised pipelines that
can be used to train a ResNet-50 on ImageNet dataset, the self-supervised pipeline has a
similar complexity but requires much larger batch size. This is particularly problematic for
multi-spectral images, and a GPU with at least 8 Go of memory is necessary. The pretext
task training is time-consuming: it took us nearly two days to train it on SEN12MS dataset
using a multi-GPU machine (4 GPU with a total of 64 Go of memory). Training on a single
desktop GPU with at least 8 Go of memory is feasible, but lasts longer.

5. Conclusions

We presented a method to train a ship detector in Sentinel-2 images using self-
supervised learning. Our method plugs in a SSL-trained backbone in a U-NET architecture.
It achieved better or similar results to standard deep-learning approaches and significantly
better results than a spectral index based method. The choice of pretext task in the SSL
stage is a major source of performance improvements.

Further studies should focus on the design of a more effective pretext task. Our work
shows that there is room for improvement although the direction towards this goal remains
unclear. Instead of hand-designed pretext tasks, learning a better pretext task could be a
fruitful avenue of research. However, the computational cost of pre-training is high, so
it would be necessary to first reduce this cost or to approximate the pre-training stage
performance with a light-weight proxy model.

The SSL pipeline can be applied to networks where no ImageNet pretraining is
available, such as custom architectures specific to remote sensing. Thus, an interesting
research goal would be training, through SSL, a feature extractor designed for remote-
sensing applications, that improves upon learning from scratch or ImageNet pretraining
by a large margin.

For ship detection, our image-based approach is still two orders of magnitude away
from the false alert performance of methods applied on SAR images [1]. To improve
image-based ship detection, a better network backbone could be studied, more adapted to
small objects. Furthermore, it would be better to include cloud filtering and land/water
classification explicitly in the network. Although adding more data is always a good
idea, the few-shot setting is more challenging and can bring about more methodological
improvements in deep learning for remote sensing.
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