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Abstract: Terrestrial remote sensing data products retrieved from radiometric measurements in the
optical and thermal infrared spectrum such as vegetation spectral indices can be heavily contami-
nated by atmospheric conditions, including cloud and aerosol layers. This contamination results
in gaps or noisy observations. The harmonic analysis of time series (HANTS) has been widely
used for time series reconstruction of remote sensing imagery in recent decades. To use HANTS
model, a series of parameters, such as number of frequencies (NF), fitting error tolerance (FET),
degree of over-determinedness (DoD), and regularization factor (Delta), need to be defined by users.
These parameters provide flexibilities, but also make it difficult for non-expert users to determine
appropriate settings for specific applications. This study systematically evaluated the reconstruction
performance of the model under different parameter setting scenarios by simulating pixel-wise
reference and noisy NDVI time series. The results of these numerical experiments were further
used to identify optimal settings and improve global NDVI reconstruction performance. The results
suggested optimal settings for different areas (local optimization). If a user opts to use unique
settings for global reconstruction, the setting NF = 4, FET = 0.05, DoD = 5, and Delta = 0.5 can
produce the best performance across all setting scenarios (global optimization). In addition, several
internal improvements, such as dynamic weighting scheme, polynomial and inter-annual harmonic
components, and ancillary attributes of input data can be used to further improve the performance of
reconstruction. With these results, future non-expert users can easily determine appropriate settings
of HANTS for specific applications in different regions.

Keywords: NDVI; HANTS; harmonic analysis; gap-filling; time series

1. Introduction

A wealth of terrestrial satellite data products has been accumulated since the Earth
Resources Technology Satellite (ERTS-1) was launched into space in 1972 [1,2]. Vegetation
spectral indices such as the Normalized Difference Vegetation Index (NDVI) are widely
applied to monitor and to evaluate regional and continental vegetation dynamics [3,4].
The medium to coarse spatial resolution sensors, such as Advanced Very High Resolution
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Satellite
Pour l’Observation de la Terre Vegetation (SPOT-VEGETATION), and Visible Infrared
Imaging Radiometer Suite (VIIRS), onboard sun-synchronous polar orbiting satellites
provide daily global coverage observations [5,6]. Moreover, satellites carrying sensors
with higher spatial resolution, such as Landsat Thematic Mapper (TM) series and Sentinal-
2A/B Multispectral Instrument (MSI), have a re-revisit time ranging from four to more
than 15 days [7,8]. The instruments onboard geo-synchronous orbit satellites (such as
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the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second
Generation (MSG) spacecraft and Advanced Geosynchronous Radiation Imager (AGRI)
onboard FengYun-4) can even capture regional vegetation variability at the sub-daily
scale [9]. In other words, the temporal coverage of NDVI observations is limited by
the combination of platforms and sensors [10]. Moreover, the measurements of spectral
radiance by a space-borne imaging radiometer are heavily affected by clouds, aerosols,
and atmospheric water vapor [11]. Clouds cover more than 50% of the earth surface at any
given time and this is the main constraint on retrieving reliable time series of at-surface
NDVI observations [12]. In general, cloud cover causes a large decrease in NDVI compared
with clear sky conditions and changes more quickly than vegetation phenology as captured
by NDVI [10,13].

To suppress the impact of less-than-ideal atmospheric conditions, especially the cloud
cover, daily NDVI observations by moderate spatial resolution sensors are temporally
composited to a 10- or 16-day time window using maximum value compositing (MVC)
to generate NDVI data products [11]. The maximum NDVI value in each pixel and
time window is retained and assumed to capture vegetation conditions in the entire
time window [14–16]. This procedure may not remove cloud-contaminated observations
completely and create gaps in the time series of NDVI, e.g., because there might be no
cloud-free observation in a number of pixels and time windows, particularly in some
super-humid regions [14–16]. Longer compositing window lengths (e.g., one month) can
reduce cloud-affected observations further but might also remove meaningful phenological
information in terrestrial vegetation [17]. Accordingly, time windows shorter than one
month are applied in temporal compositing of NDVI retrievals [18]. To further reduce
residual noise in the MVC-produced NDVI time series, other time series reconstruction
(TSR) methods have been proposed, such as asymmetric Gaussian (AG) [19], double
logistic (DL) [19], Savitzky–Golay (SG) [20], iterative interpolation for data reconstruction
(IDR) [21], and Whitaker [22,23]. Some of these methods use temporally close clear-sky
observations to estimate NDVI in a given pixel for time windows with no cloud-free
observations [20,21]. Comprehensive reviews on TSR methods can be found in [12,24–26].
Each TSR method is based on different theories and assumptions about the properties of
time series and applies different user-defined parameters, with the consequence that each
method performs differently in different regions when applied to global reconstruction of
observations [10,12]. For example, the AG and DL methods are more suitable to reconstruct
NDVI time series at high latitudes, especially in the boreal and tropical forest areas, where
the large faction of noisy observations over tropical humid areas may yield large errors
and/or unstable fittings [12]. For continental and global studies on terrestrial vegetation, a
TSR method providing stable and accurate reconstruction without excessive local tune-up
is necessary [27,28].

Fourier-based harmonic analysis techniques have been extensively applied in mod-
eling time series of remote sensing data especially vegetation index by mimicking sur-
face dynamic with several harmonic components at different frequencies [29–33]. As a
Fourier-based model, the harmonic analysis of time series (HANTS) is one of the most
popular algorithms for the reconstruction of extended time-series of satellite data and
originally conceived for NDVI observations [16,18,30,34]. The main advantages of HANTS
include [34] (1) inherent coherence of harmonic components with periodical phenology
rhythms; (2) low-pass filtering to preserve the slower phenological signals while excluding
the high frequency noise induced by adverse atmospheric conditions; (3) simple (via itera-
tively linear least square fitting) implementation of the method; (4) impressive compression
power for raw time series. Since it was coded by Verheof [35], the algorithm has been
implemented with different programming languages, including Fortran, IDL, C, Matlab, R,
and Python as well as the Google Earth Engine (GEE) platform [36] (Table 1) to meet the
requirements of different users.
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Table 1. A list of available implementations of HANTS algorithm.

Implementation of
HANTS Version

Programing
Language Main Features Author (First

Release Year)

HANTS_Fortran_Verhoef [*1] Fortran With graphic user interface (GUI); Batch processing in
command line Verhoef (1996)

HANTS_IDL_Wit [*2] IDL/ENVI
(2004)

Implemented with IDL/ENVI APIs; Support parallel
processing (Make full usage of the multiple processors
of CPU)

Wit (2004)

TS_HANTS [*3] IDL Introduced as an official API in IDL 8.4 in 2014;
Only support single series processing N/A (2014)

HANTS_Matlab [*4] Matlab
Exactly translated from the Fortran version of Verhoef; No
tiling scheme, so the PC memory may pose a limitation on
the processing

Mohammad Abouali
(2011)

HANTS_C_Metz [*5] C An addon function of GRASS software; Only one function
for image set processing Markus Metz (2013)

HANTS_Python_Mattijn [*6] Python Demo python implementation of HANTS that can process
single series; First publicly available python version. van Hoek (2015)

HANTS_Python_ED [*7] Python Complete implementation of HANTS in python support
image set processing

Espinoza-Dávalos
et al., (2017)

HANTS_GEE_Zhou [*8] Javascript
/Python

Implemented on the Google earth engine (GEE) platform;
Quick processing because of large volume earth
observation dataset and powerful computation capacity
provided by GEE

Zhou (2019)

HANTS-GeoTS [*9] R
Full processing flow for remote sensing time series
gap-filling considering both pre-processing and
reconstruction.

Tecuapetla-Gómez
(2020)

[*1] Previously accessible at http://gdsc.nlr.nl/gdsc/en/tools/hants_, not available now (18 February 2021); [*2] https://github.com/
ajwdewit/idl_adewit (Last retrieved 18 February 2021); [*3] https://www.harrisgeospatial.com/docs/TS_HANTS.html(Last retrieved
18 February 2021); [*4] https://www.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-
of-time-series-hants (Last retrieved 18 February 2021). https://mabouali.wordpress.com/ projects/harmonic-analysis-of-time-series-
hants/_ (Last retrieved 18 February 2021); [*5] https://grass.osgeo.org/grass78manuals/addons/r.hants.html (Last retrieved 18 February
2021); [*6] https://codereview.stackexchange.com/questions/71489/harmonic-analysis-of-time-series-applied-to-arrays (Last retrieved
18 February 2021); [*7] https://github.com/gespinoza/hants (Last retrieved 18 February 2021); [*8] Currently available on personal request
by email to zhou.j@ccnu.edu.cn. The full version will be public released soon; [*9] https://cran.r-project.org/web/packages/geoTS/ (Last
retrieved 18 February 2021).

Notwithstanding its popularity in the field of time series analysis of satellite data,
the reconstruction performance is heterogeneous when applied for global reconstruc-
tion [18]. The global reconstruction performance of HANTS was systematically evaluated
by Zhou et al. [18], who presented a replicable measure of reconstruction accuracy for
different regions on Earth. The same HANTS parameter setting was applied globally,
however, while at the same time showing that performance varied with parameter setting,
as expected [18]. For instance, HANTS gave rather high reconstruction errors in the boreal
forest region as well as in part of cropland area, because of long gaps in time series or an
inadequate choice of the number of harmonic components to capture higher frequency
features in the NDVI signal [18]. Zhou et al. [12] carried out a comparative evaluation of
the global reconstruction performance of several popular time series reconstruction meth-
ods, including HANTS, asymmetric Gaussian (AG), double logistic (DL), Savitzky–Golay
(SG), and Whitaker smoother (WS). This evaluation suggested that HANTS performance
was comparable with and in some cases better than the other methods included in the
study. The results confirmed the potential relevance of a site (biome)-specific parameter
setting towards better performance. The HANTS implemented by Verheof [35] designs
several user-defined control parameters including the length of base period (BP), number
of frequencies (NF), fitting error tolerance (FET), degree of over-determinedness (DoD),
and regularization factor (i.e., Delta). These parameters all determine the reconstruction
performance to a large extent. These parameters offer users a useful flexibility in the analy-
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sis of complex time series. On the other hand, effective parameter setting is a challenge
for non-expert users and no other choice was available so far but to set these parameters
based on a combination of literature and trial-and-error [18]. For the global reconstruction
of complex signals affected by heterogeneous gaps, the reconstruction performance may
be more sensitive to parameter setting than in regional applications [27,28]. For example,
Zhou et al. [27] investigated the sensitivity of the reconstruction error to the selection of
harmonic components, fitting error tolerance, as well as weighting schemes in HANTS
and concluded that the overall performance can be improved with optimized parameter
settings instead of applying a widely accepted setting scheme. Following the initial work
in Zhou et al. [27], the optimal setting of other user-defined parameters still needs to be
further explored and identified.

Besides the above-mentioned parameters to prescribe the operation of the HANTS
algorithm, the impact of several characteristics of the input datasets on the performance of
global reconstruction need to be taken into account. These characteristics include but are
not limited to:

(1) Time window applied in compositing the input data. Most freely available NDVI
data apply a 10- or 16- or 30-day time window in compositing daily observations by
applying maximum value composition (MVC) [37–39]. This procedure was believed
to be sufficient to eliminate most cloudy observations [11,15]. Most applications were
based on such composite data products [16,18,34], although, to our knowledge, no
study evaluated the performance of HANTS in processing raw daily NDVI data or
products with different composition time windows.

(2) Quality control (QC) information. Pixel-based QC information, which indicates the
retrieving reliability (e.g., good, marginal, snow/ice or cloudy), is an indispensable
attribute of quantitative remote sensing data products [40]. Previous studies sug-
gested this information could help to exclude low quality observations and improve
reconstruction performance [20,37]. The accuracy of QC information, however, may
also degrade its reliability [10,12], and the degree to which the QC information may
impact the global reconstruction performance of HANTS needs to be investigated.

(3) Actual acquisition date of each observation. For each pixel and time window the
MVC procedure selects the maximum NDVI value but does not retain the actual
date of acquisition [15,41]. This implies that, e.g., in a 7-day composite, there might
be a difference in acquisition time of up to 14 days between the NDVI observations
retained in adjacent pixels. This inconsistency can be mitigated by assigning an
approximate time stamp, e.g., start, middle or end of the time window, to each
selected maximum NDVI observation. However, this solution may still yield large
differences between this approximate time stamp and the actual date of acquisition
for the retained maximum NDVI value. When applying longer time windows, e.g.,
30 days, or when observing critical or shorter phenological stages, the vegetation
signal can change significantly during the time window [41,42]. It still needs to
be evaluated, therefore, whether the global reconstruction performance might be
improved by applying the actual date acquisition of each retained NDVI observation
in the reconstruction of the time series.

As a summary, the successful worldwide applications of HANTS during the past three
decades [24,34] has suggested that the model can be a robust and promising algorithm for
global NDVI reconstruction, although the performance requires improvements in some
regions [12,18].

The objective of this study is to describe and evaluate an improved HANTS method
by systematically optimizing parameter settings and taking into account key-characteristics
of input time series data. If successful, the study is likely to trigger further and wider use
of HANTS for global and regional reconstruction of NDVI time-series.
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2. Materials and Methods
2.1. Materials

Daily NDVI data were generated by using daily land surface reflectance retrieved
from Terra/MODIS measurements, i.e., the data product MOD09GA-MODIS/Terra Sur-
face Reflectance Daily L2G Global 1 km and 500 m, for the period 2001–2020 [37]. The
Terra/MODIS measurements alone provide more than 6900 independent NDVI estima-
tions for each pixel, which is enough for the statistical analysis of this study (see methods
section). Thus, Aqua/MODIS measurements, which provide similar NDVI estimation
as Terra/MODIS, were ignored [12]. The “QC_500 m” layer of the MOD09GA product
provides an indication of the accuracy of each observation [40]. In order to speed up
the evaluation procedure, only the NDVI observations of 445 BELMANIP2 (Benchmark
Land Multisite Analysis and Inter-comparison of Products) sites [43] were downloaded
from Google Earth Engine (GEE) and used in the evaluation. The BELMANIP2 sites were
carefully selected by Baret et al. [43] to represent the global terrestrial vegetation types and
their phenology (Figure 1), where the percentage of sites for each biome closely match the
global fractional abundance of each biome. The number of sites sampling each biome is
given in Figure 1, in which vegetation sites are dominated by grasses/cereal crops (GCC)
(97 sites), savanna (SAV) (62 sites), evergreen broadleaf forest (EBF) (61 sites), and shrubs
(SHR) (60 sites).
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Figure 1. Spatial distribution and biomes sampled by the BELMANIP2 sites. The number of sites sampling each biome is
given in brackets. The land cover information was extracted from the MODIS 500 m global land cover product (MCD12Q1)
for 2010. The global land surface except for water and urban area is classified into 9 classes according to the LAI/FPAR
classification scheme. The nine classes are: grasses/cereal crops (GCC), shrubs (SHR), broadleaf crops (BCR), savanna
(SAV), evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), deciduous
needle-leaf forest (DNF), and non-vegetated (NVG).

2.2. Methods
2.2.1. Overview of the Evaluation and Optimization Procedures

The procedure to optimize the HANTS configuration for global NDVI time series
reconstruction includes an evaluation and an optimization step (Figure 2). For each site, an
annual reference NDVI time series and a set of annual noisy series based on raw MODIS
daily NDVI time series and QC information was generated using a time series simulator.
The simulated noisy series are further processed by applying HANTS for different con-
figurations considering internal parameter settings, improvement schemes, and several
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external influence factors. The HANTS algorithm coded by Verhoef [35] with predefined
parameters was referred as “classical HANTS” to differentiate it from later HANTS ver-
sions with several improvements; see Section 2.2.3 for details. The difference between the
reconstructed noisy series and reference series was used to quantify the reconstruction
performance in terms of overall reconstruction error (ORE) [12] (Section 2.2.4 for details).
By comparing the ORE obtained for a set of sites and for different configurations, the
configurations providing better reconstruction global performance, i.e., lower ORE, can
be identified.
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445 BELMANIP2 sites.

2.2.2. Simulation of Reference and Noisy NDVI Time Series

To measure the reconstruction performance of HANTS quantitatively, the immediate
method is to evaluate how close a reconstructed noisy series get to clear-sky NDVI series
(or “ground truth”). One cannot expect to find ideal clear-sky NDVI series, however,
as few vegetated pixels on Earth can be completely free from cloud cover during the
vegetation growth season. We assumed that vegetation phenology and seasonal cloud
cover at a specific location (pixel) remain roughly similar across the years. Likewise, in
earlier studies [10,12,18], long-term historical NDVI observations were applied to simulate
reference annual NDVI series, representing cloud-free vegetation phenology, and noisy
NDVI series including cloud contaminated observations. Zhou et al. [12] proposed a robust
scheme to synthesize pixel-based annual reference series and simulate noisy conditions
(e.g., caused by cloud cover) using long-term historical NDVI observations. The annual
reference time series were constructed by targeting the 445 BELMANIP2 (Benchmark Land
Multisite Analysis and Intercomparison of Products) sites [43]. The method used daily
NDVI retrievals for 14 years and the Quality Assessment (QA) flags indirectly, i.e., to
separate the daily observations into high and low quality (HQ, LQ). Temporal composites
of the daily HQ observations were generated and further treated as being clear-sky to
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construct the reference time series for each site, while noise is added to mimic the effect
of clouds and snow, generating the noisy time series. The noise is generated by taking
into account the probability of LQ observations estimated from the daily time series of
each site. In this study, the method of Zhou [12] was applied to construct an annual time
series of reference and noisy NDVI observations. A detailed description of the method can
be found in [16]. Specifically, for each site, the procedure uses daily MODIS reflectance
time series (from MOD09GA) and QC information (“QC_500 m” layer) as input and
generates one annual daily reference NDVI series (365 samples) and 100 annual daily noisy
NDVI series. The daily NDVI observations were labeled as “high” and “low” quality
respectively using the QC flags, with “high” quality NDVI assumed to be less affected by
cloud conditions, observation geometry and instrumental errors. In particular, a NDVI
observation is assessed “high quality” when the QC flags are “0000” in both bits 2–5 (band
1 quality) and bits 6–9 (band 2 quality) and “00” in bits 0–1 (cloud state). All other NDVI
observations are assessed as “low quality”. The “high quality” and “low quality” NDVI
observations were used to simulate reference and noisy NDVI time series. In this way,
the QC flags are not applied to select specific outliers in the gap-filling stage, but are
only applied to extract a large sample of HQ observations. Moreover, we used 20 years
(2001~2020) of daily high-quality observations, which we deemed sufficient to construct a
robust annual reference series to capture pixel seasonal NDVI dynamic.

2.2.3. Configurations for Evaluation and Optimization

In this study, three kinds of Configurations were developed to evaluate the reconstruc-
tion performance (Table 2). Firstly, the classical settings of the NF, FET, DOD, and Delta
parameters were evaluated for all possible values. Next step, the candidate improvements
were evaluated separately and finally a new functionality was added to the current algo-
rithm to optimize parameter settings. Finally, configurations on external data attributes,
e.g., temporal windows applied in compositing, QC flag for initial weights setting, and
the actual acquisition date of the retained observations in each pixel, were evaluated to
identify procedures for the further improvement of reconstruction performance.

Table 2. Configurations for performance evaluation & improvement.

Parameter Name Configuration Setting The Number of Configurations

Classical model
parameter
settings

Length of Base Period (BP) 365 days * 1
Number of Frequencies (NF) 2 to 6 in steps of 1 6
Fitting error tolerance (FET) 0.01 to 0.12 in steps of 0.01 12

Degree of Overdeterminess (DoD) 0 to 12 in steps of 1 13
Delta 0 to 1 in steps of 0.1 11
HiLo flag Low * 1
Valid Range (VR) [0, 1] * 1

Proposed
Improvements

Dynamic weights (DW) Non-DW; DW 2

Polynomial components (PC) Non-PC; PC 2
Interannual Harmonics (Inter-Ha) Non-Inter-Ha, Inter-Ha 2

Data attributes
Compositing lengths (CL) Daily, 5-day, 8-day, 16-day 4
Quality Control information (QC) With-QC, QC-only, Without-QC 3
Actual acquisition date (AAD) With-AAD, Without-AAD 2

* Fixed parameter setting for NDVI time series.

(1) Configurations of classical HANTS parameters
The performance of HANTS is mainly controlled by multiple critical internal param-
eters. Except the length of the base period (BP), HiLO flag, and valid range (VR)
that can be easily determined based on the physical meaning of the input signal,
the other four parameters, i.e., NF, FET, DoD, and Delta, must be selected within a
range of possible values by users and the selection procedure needs to be evaluated
systematically. A set of configurations needs to be evaluated in order to understand
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better the impact of each parameter on the model in global NDVI reconstruction and
can be briefly described as follows:

(a) Length of base period (BP): This parameter corresponds to the period of the
dominant component of the signal to be reconstructed, while the periods of
all other harmonics are derived from the base period (see the description
of NF below). Remote sensing-based NDVI data are provided at a daily to
monthly sampling interval, with the signal dominated by the seasonal and
yearly variations in vegetation greenness. Thus, the BP is normally set to
12-month (i.e., one year or 365 days).

(b) Number of frequencies (NF): This parameter determines the total number of
harmonics (excluding the zero-frequency component) to be used in the time
series modeling and reconstruction. The period of the i-th harmonic is given
by P(i) = BP/i (i = 1, 2, . . . , NF). In turn, the frequency is the reciprocal of P(i).
Since atmospheric contamination mainly introduces high frequency noise, a
few low frequency components (i.e., NF < 4) were used in previous studies
(e.g., [18,30,35]). In this study, NF in the range from 2 (12-month and 6-month
components) to 6 was applied, i.e., 2 months was the shortest period/highest
frequency component, in the global evaluation of time series reconstruction
by HANTS.

(c) Fitting error tolerance (FET): The acceptable maximum deviation between
raw observations and the result of the reconstruction. In the case of NDVI(t),
at each iteration, a negative deviation from the modeled time series larger
than FET will be excluded from further iterative processing. The iteration
is terminated when all deviations between the remaining valid observations
and the fitted model are smaller than the pre-defined FET value. A small
FET may erroneously remove some valid observations as outliers while some
real outliers cannot be correctly identified with a too large FET. FET is fre-
quently set between 0.05 and 0.1 in the reconstruction of NDVI time series
by HANTS [16,18,44,45]. In this study, a FET range from 0.01 to 0.12 with a
0.01 step was applied.

(d) Degree of over-determinedness (DoD): A Fourier series including the har-
monic components determined by BP and NF is used to model the time series
of observations. The coefficients of the modeled series are obtained by solving
a linear system of equations, which requires at least 2NF + 1 independent
observation, since amplitude and phase value need to be determined for each
harmonic component of the series. The observations are inherently accom-
panied with errors, solutions of the system of equations by using > 2NF + 1
observations may improve the accuracy of estimated amplitude and phase.
Such an overdetermined system of equations is best solved using least square
method, where more observations give a smaller error of estimate. HANTS
is designed to identify and remove outliers iteratively. The DoD is defined as
the minimum number of required additional observations, i.e., the minimum
difference between the remaining valid observation size and 2NF + 1 [35]. In
other words, if the total input observation size is N0, then the removed outliers
should not exceed (N0 − (DoD + 2NF + 1)). Therefore, the DoD can be set
between 0 and (N0 − (2NF + 1)) and it is a second termination criterion of
iterations beside FET. A too large DoD tends, however, to prevent the iteration
procedure from detecting possible outliers [16]. The minimum number of
valid observations needed to solve a system of equations is 13 when NF = 6.
So, the maximum possible DoD for 16-day composited yearly NDVI (N0 = 23)
is 10. In this study, we varied DoD between 0 and 12 in steps of 1 to analyze
the impact of DoD on model performance.

(e) Delta (regularization factor): Although the solution is obtained by solving an
overdetermined linear system of equations in HANTS, the solutions may be
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non-unique because of possible singular matrixes, i.e., ill-conditioned systems.
These non-unique solutions may yield large fluctuations in the fitted results,
especially in subsequent iterations. The ridge regression method was applied
to solve the linear system in the classical HANTS and a regularization factor
(i.e., Delta) was used to damp the randomness of the solutions [20]. The Delta
is generally set as a small positive value (e.g., 0.1). The impact on model
performance was evaluated by varying Delta between 0 and 1 in step of 0.1.

(f) HiLo flag: This parameter indicates whether outliers are expected either above
or below the fitted model, which depends on the nature of observations [16].
For instance, cloud covered or contaminated targets yield lower NDVI values
compared to clear-sky conditions, thus outliers are below the fitted model
and are rejected (i.e., HiLo = “Low”). Given the type of observations, HiLo
parameter is unambiguously defined and there is no need to evaluate the
impact on HANTS performance.

(g) Valid range (VR): The valid range of input signals is determined by the nature
of the observations and is defined for each data product [16]. For instance,
the land surface NDVI generally ranges between 0 (or −0.2 if including
water or snow) and 1.0. Observations outside this range can be rejected as
outliers directly.

In summary, the NF, FET, DoD, and Delta are the four most critical parameters
of classical HANTS controlling the reconstruction performance. The NF, FET, and
DoD jointly determine profile fitting and outlier detection of the model, and thus
their settings are evaluated jointly. Here the “joint” evaluation means calculating
performance metrics over all sites under each possible combination of NF, FET, and
DoD settings. For each site, there will be 5 (NF settings) × 12 (FET settings) × 13
(DoD settings) = 780 combinations. Based on the joint evaluation result, the Delta
scenarios are further evaluated, after which the optimized parameter settings for
global reconstruction using classical HANTS can be derived.

(2) Model improvements
In addition to the procedure to optimize parameter settings of the classical HANTS,
several ways to improve global reconstruction performance by adapting the design of
HANTS were proposed. Specifically, the proposed improvements and the procedures
to evaluate them are described below:

(a) Dynamic update of weights. Initially, all input observations are assigned a
weight = 1 by HANTS. The algorithm was originally designed to apply varying
weights, but it was first implemented with binary weights, i.e., = 1 for valid
observations and = 0 for outliers. As explained above, at each iteration, any
observation negatively deviating from the current Fourier series by more than
the FET are assigned a weight = 0 and excluded in further iterations. The FET
setting is set on the basis of user experience and erroneous detection of outlier
is unavoidable. The dynamic update of weights was proposed to improve the
performance. In practice, the weight wi

k of the i-th observation is updated at
each k-th iteration taking into account the deviation from the current Fourier
series as:

wi
k = wi

k−1 +
yri

k − yri

(max(yrk)− min(yrk))
(1)

where yrk is the vector of estimates by the Fourier series at the k-th iteration. In
this case, if the k-th estimates are larger than estimates in the previous iteration,
weights are increased. This leads to the estimates in later iterations to approach
the upper envelope of NDVI time-series.

(b) Polynomial or inter-annual harmonic components: If HANTS is applied to
annual NDVI time series, the estimated Fourier components can only explain
variations over periods shorter than a year while real signals may contain
trends or inter-annual variations [12]. Earlier studies on Fourier analysis
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of NDVI time series were focused on investigate inter-annual variation of
vegetation regulated by climate using multi-annual data records [30,46–48].
Multi-annual components in the Fourier series or alternatively 3-order polyno-
mial components can be used to capture inter-annual variability.

(3) Impact of input data attributes
The impact on reconstruction performance of key—characteristics of input data was
evaluated, specifically the time window applied in the compositing, QC informa-
tion, and the actual date of acquisition of the observation retained in the temporal
composite for each time window and each pixel:

(a) Composite time window. MVC-s were generated applying a time window of
1, 5, 8, and 16 days and used to simulate daily noisy series for each site. The
overall reconstruction error (ORE) was calculated to evaluate the impact of the
MVC time window on reconstruction performance.

(b) QC-based weighting. The QC flag of each observation was used in the recon-
struction. The weights are set initially as 0 or 1 for low quality observations
(QC = 0) or high-quality observations (QC = 1) respectively.

(c) Actual date of acquisition. The actual date of acquisition of the observation
retained in the temporal composite for each time window and each pixel was
used in the reconstruction instead of the average or central date within each
time window.

2.2.4. Performance Metrics

The ORE was defined as the RMSE between the reconstructed noisy series and refer-
ence series [12] and was used as the main matric in this study to quantify the performance
of HANTS under different scenarios:

OREi,j =

√√√√∑k=N
k=1

(
yri, j

noise,k − yri
re f ,k

)2

N
(2)

where:

i = 1, 2, . . . , 445 sites;
j = 1, 2, . . . , 100 noisy series;

yri, j
noise,k is the k-th estimate of j-th reconstructed noisy NDVI series for the i-th site;

yri
re f ,k is the k-th estimate of simulated reference NDVI series for i-th site;

N (=365) is the number of samples in each reconstructed time series.

For each site, there were 100 simulated noisy NDVI series, resulting in 100 noisy-
reference series pairs.

Zhou et al. [12] applied the mean ORE over 100 replications as a measure of recon-
struction performance at each site under specific scenarios. The standard deviation of
ORE over the 100 replications, i.e., Std-OREi, reflects the stability of model performance
under different noise conditions [12]. Smaller mean OREi and Std-OREi indicate better
performance. The two metrics can be used to rank model configurations independently or
can be combined. The configuration yielding the smallest OREi, however, may not yield
the smallest Std-OREi, i.e., the optimal configuration was identified via a trade-off between
OREi and Std-OREi [12].

The configurations defined by the settings of NF, FET and DoD were ranked separately
in the order of increasing OREi and Std-OREi, giving two rankings for each configuration.
Then the configuration with the lowest sum of the two rankings was selected as the best
setting of NF, FET and DoD for each site. The best setting of NF, FET, and DoD may vary
with sites, which leads to “local optimization” [27]. Contrariwise, the global reconstruction
of a NDVI dataset would require a unique setting of NF, FET, and DoD. The configuration
ranked first at most sites was taken as the “global optimization” [10,27]. For example, if
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the combination of (NF = 3, FET = 0.05, DoD = 5) gave the smallest OREi for 200 sites and
none other configuration gave this performance for more than 200 sites, the configuration
(NF = 3, FET = 0.05, DoD = 5) was applied as global optimization to all sites. The global
optimal configuration was the same as the local optimal configuration for some sites, while
it was different for other sites, i.e., the overall performance achieved by applying the local
optimal configuration settings was higher than that with the global optimal configuration.

Different settings of Delta scenarios were evaluated for cases obtained with the best
local and global settings of NF, FET and DoD. Zero or small Delta may result in non-unique
solutions of the linear system of equations, giving an extremely large ORE for some sites.
The normalized ORE, i.e., rORE, was applied to evaluate the impact of Delta settings on
reconstruction performance:

rORE =
OREdelta − OREmin

OREmean
(3)

where OREmin and OREmean are the minimum and mean ORE values of all Delta settings
for a site. OREdelta is the ORE value for a specific Delta setting.

3. Results
3.1. Optimization of Parameter Setting

Optimal settings for NF, FET, and DOD: There are 780 combinations of settings for
NF, FET and DoD for each site, from which the optimal setting was identified by applying
ORE and Std-ORE criteria (see Section 2.2.4). The local optimization, i.e., in principle with
a different best setting for each site, achieved a better reconstruction performance than
the global optimal setting in terms of both ORE and Std-ORE (Figure 3). The best setting
based on ORE (L1, G1) gave the smallest ORE but a sub-optimal Std-ORE, and the other
way around when applying the best ranking based on Std-ORE. The setting based on the
trade-off of ORE and Std-ORE, i.e., L3 (G3), gave a performance in between L1 and L2 (G1
and G2).
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The local optimal settings (L3) for global sites were shown in Figure 4. To achieve
the best reconstruction performance requires 4–5 or even six harmonic components at
high latitudes (e.g., >50 ◦N) (Figure 4A). In the humid areas at low latitudes, such as the
rainforest area, it is better to use two harmonic components (Figure 4A). Cloud contamina-
tion of the NDVI observations is more frequent in humid areas due to higher cloud cover,
which may result in multiple and adjacent “bad” observations. High frequency harmonic
components can capture rapid variations in time series, as the ones due to clouds, and
may prevent HANTS from identifying these occurrences as outliers [18]. This results in
larger reconstruction errors compared with settings involving only low frequency harmonic
components. As regards the FET, the results suggested that a higher value, say 0.05 to 0.09,
should be set at higher latitudes in the Northern hemisphere (Figure 4B). Contrariwise, at
lower latitudes, it is better to use a lower FET, i.e., 0.01–0.03. The best DoD setting is rather
variable across sites, except in the tropical rainforest areas where DoD should be less than
3 (Figure 4C).

Interested readers should in a first instance query the optimal parameter settings for
the sites sampling a specific area of interest. To present of an overview of the site-specific
results, the optimal parameter settings have been stratified by biome (Figure 4) using the
land cover classes applied in the MODIS data product described earlier. The aggregated
results suggested that four harmonics can result in better reconstruction performance in
the DNF, ENF, DBF, SHR, and GCC classes, while two and three harmonics would be
sufficient in EBF, SAV, and BCR respectively (Figure 4A). The optimal FET for DNF, ENF,
DBF, and SAV was 0.05 on average, while smaller values were suggested for other biomes
(Figure 4B). The mean DoD across different biomes was ranging from 2 to 7, i.e., with a
limited dependence on the biome (Figure 4C).

The global best setting G3 corresponds to NF = 4, FET = 0.05, and DoD = 5, which
gave a much higher ORE and Std-ORE than the L3 setting (Figure 5). Particularly, the ORE
and Std-ORE given by L3 and G3 in the boreal forest area and in the equatorial rainforest
area at low latitudes can reach 0.06 and 0.018 respectively, which are much higher than in
other areas (Figure 5).

Optimal settings for Delta: The boxplots of ORE with different Delta settings were
similar (not shown). The mean rORE was smaller with zero or small Delta value (<0.4),
compared to larger Delta values (Figure 6). The former settings, however, produced a
severely skewed distribution of rORE across global sites, i.e., with more outliers and
averages much higher than the upper quantiles (Figure 6), which suggested an unstable
reconstruction. In contrast, less skewed distribution of rORE can be expected with higher
Delta values, although a too large Delta may degrade reconstruction performance, i.e.,
increasing mean ORE globally (Figure 6). As a trade-off, setting Delta between 0.4 and
0.6 seems the best option that can avoid both outliers at some sites caused by small Delta
and lower performance caused by a large Delta. As regards the best settings for different
regions, a Delta >0.8 is needed for humid areas such as tropical rainforest regions, since the
small seasonality of NDVI can aggravate collinearity of the observations and the solutions
of the system of equations. For most of the other sites, a Delta < 0.5 is preferred, which
presents a slight biome-dependent pattern (Figure 7).

3.2. Impact of Proposed Improvements

The three proposed improvements, i.e., dynamic weighting, three-order polynomial
component, and inter-annual harmonic components, gave ORE values comparable to
classical HANTS with global optimized settings (G3) for most sites. Moreover, smaller
ORE, i.e., significantly better reconstruction performance was obtained for part of the sites
as shown in Figure 8. Overall, dynamic weighting had a limited effect at sites where the
reconstruction error was low to medium with the global optimal settings of NF, FET, and
DoD, while more sites saw a significant improvement with dynamic weighting observed
when local optimal settings of NF, FET, and DoD were applied (Figure 8A).
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3.3. Impact of Input Data Attributes

The global performance of reconstruction by HANTS with global optimized settings
(G3) but different composite lengths of five, eight, and 16 days produced similar ORE
statistics (Figure 9). This suggested that composite length does not have a significant effect
on reconstruction performance. Contrariwise, the direct use of daily NDVI series without
MVC composition gave a higher reconstruction error. Including QC information in the
initial weighting (QC + HANTS) in the reconstruction can improve global performance,
especially when using daily NDVI time series. Some studies filtered out low quality
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NDVI observations using QC information [13,49], while our result suggested that the
“QC only” reconstruction gave a much larger ORE than all other configurations when
detecting and removing outliers. Applying the actual acquisition date (AAD) resulted in
a slight improvement in reconstruction performance only for longer composite windows
(i.e., 16-day composition). The limited improvement in reconstruction performance by the
AAD treatment over short composite windows may be explained by the insufficiently low
frequency harmonics used in HANTS to capture the detail of variation in NDVI caused by
different time stamps within composite windows.
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4. Discussion
4.1. The Improved Harmonic ANalysis of Time Series (iHANTS)

The improved harmonic analysis of time series (iHANTS) proposed in this study can
reconstruct global NDVI datasets with improved performance on the basis of the system-
atic evaluation of the impacts of a broad set of parameters. Specifically, the systematic
evaluation of configurations led to the following suggestions:

(1) The critical internal parameters, i.e., NF, FET, DoD and Delta can be set on the
basis of either a “local” or “global” ranking for global reconstruction. For regional
applications, users can refer to Figures 3 and 6 for best local settings. The best global
settings, based on the trade-off between ORE and Std-ORE, are: NF = 4, FET = 0.05,
DOD = 5, and Delta = 0.5, which is the default setting scheme used by [18] to evaluate
the performance of global NDVI reconstruction.

(2) Reconstruction performance can be significantly improved in specific regions of the
Earth by using dynamic weighting instead of the classical rigid weighting scheme
and by adding 3-order polynomial or inter-annual harmonic components to account
for inter-annual variability. Dynamic weighting and 3-order polynomial components
require a revised implementation of HANTS.

(3) Global reconstruction performance can be improved by using QC information of the
dataset to set initial weight and applying the actual date of acquisition for each input
observation. Most freely accessible implementations of HANTS do not support cus-
tom setting of initial weights and input timestamps. Thus, a revised implementation
of the model is needed again.

Several freely available NDVI products are generated using the radiometric data
acquired by different sensors, such as AVHRR, MODIS, and SPOT-VEGETATION, and
may be provided with different composition lengths [38]. The results of this study suggest
that the composition length has a limited impact on global reconstruction performance.
This may be due to two opposite impacts. On the one hand, a shorter composition length
captures rapid variations in NDVI, and on the other hand, it also collects more low-quality
observations, which impacts reconstruction performance in opposite directions [14,15]. In
other words, no improvement can be achieved by using a different composition length. Of
course, if observations are acquired at higher frequency, e.g., by combining radiometric
data acquired by both Terra/MODIS and Aqua/MODIS, performance can be improved,
since a higher frequency in data acquisition can increase the probability of high-quality
observations [17].

Although the gap-filling performance of HANTS is improved by the optimized param-
eter settings, there remain limitations that should be highlighted. Firstly, parameter settings
were optimized using the annual reference NDVI series constructed by Zhou et al. [12].
This implies that the study assumed that the intra-annual variability captured by the an-
nual reference series dominate pixel NDVI dynamics. For pixels with large inter-annual
variability or land-cover change developing over even longer periods of time, the real
NDVI dynamics may be poorly represented by the annual reference series. In these cases,
the optimized parameter settings should be interpreted with caution [12]. Secondly, the
optimization procedure applied to synthetic noisy time series constructed using the daily
observations acquired by both Terra and Aqua MODIS sensors. This characterization of
noisy conditions is not directly applicable to data acquired by satellites with a lower revisit
frequency, such as Landsat-8 and Sentinel-2A/B. Lastly, we used the absolute deviation
between reference and reconstructed series (i.e., ORE) as a performance metric, which may
not be the most appropriate to characterize the accuracy if capturing phenological features.
The latter should be addressed in a follow-up study.

4.2. Applying Optimaized HANTS to Other Terrestrial Remote Sensing Variables

Our evaluation of HANTS configurations has been based on NDVI time series, but
some findings are applicable to time series of other observables, such as leaf area index
(LAI) [50] and land surface temperature (LST) [24,51]. The LAI signal is similar to NDVI in
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terms of phenology curve, as well as the direction of outliers by clouds effect. It is thus
reasonable to assume that the best settings of NF, DoD, and Delta would also improve
the performance in the reconstruction of LAI time-series. With regard to the FET, the best
global setting is 0.05 for NDVI, i.e., 5% of the valid dynamic range of NDVI (0–1). Taking
into account that the valid dynamic range of LAI is from 0 to 10, the FET can be set at
about 0.5 (10 × 5%) for the reconstruction of LAI time-series. For LST products, most
previous studies [24,45,51] applied small NF (NF = 2 or 3) in HANTS processing, while the
Xu et al. [52] reported the optimal NF should be set from 7 to 9 to reconstruct LST over
Yangtze River Delta. The appropriate NF settings for global reconstruction still need to be
carefully evaluated in future. The FET should also be adapted on the basis of the dynamic
range of LST.

Fourier-based gap-filling methods fit time series of available observations with prede-
fined harmonic components but differ in the way potentially contaminated observations
are identified and replaced to generate time series of cloud-free images. Besides HANTS,
another example is the method proposed by Zhu et al. [29]. Both methods require a thresh-
old to detect outliers. Zhu et al. [29] also use QC flags on clouds, cloud cover, and snow,
while other settings were described less precisely and may need to be adjusted depending
on the area (biome) observed. We may safely assume, therefore, that optimization towards
biome-specific parameter settings is likely to benefit the performance of Fourier-based
gap-filling methods.

4.3. Other Application Topics for the HANTS

HANTS has been widely applied to analyze long time series of terrestrial remote sens-
ing observables for almost 30 years, either for gap-filling or extracting accurate harmonic
components for further analysis [34,44,46,47]. The algorithm has been implemented using
different programming languages and platforms, such as Fortran, ENVI/IDL, Matlab,
Python, R, etc. (see Table 1). In 2014, the new release of IDL (8.4 version) included HANTS
as an official function (Table 1). Most of these implementations only implement the core
of HANTS for single series processing and are commonly used for small scale processing
by researchers [18,51]. When applying the method to long time series of images for a
large region or at high temporal and spatial resolution, the computational constraints of
personal computers (PC) may limit its usage. One needs to consider parallelizing computer
processing to make full use of computational resources, such as a multiple-core CPU of
the PC or even implementing the method on super computers or clusters [12]. Moreover,
cloud-based geo-computation platforms such as the Google Earth Engine (GEE) platform
provide a data warehouse of popularly and freely available remote sensing datasets and
rich cloud computing resources for earth observation users [2]. Users can design and
implement applications without spending a lot of time to download and process large
volumes of data on local PCs [5]. We have implemented HANTS on the GEE platform,
which can process various remote sensing datasets on request and very efficiently. For
instance, to reconstruct one year global 16-day NDVI product with 0.05-degree spatial
resolution (MOD13C1), HANTS on the GEE platform only takes 10 min on average, while
it may take more than two hours on a local PC without parallelization, not to speak of
the time spent on downloading data. The Javascript code for the HANTS implementation
on GEE is available by personal request to the senior author of this paper. The full GEE
version of HANTS will be published soon.

The amplitudes and phases of the periodic components of NDVI signals are quantita-
tive phenological metrics of vegetation vigor across timescales and have been frequently
applied in land cover change detection or vegetation-climate interaction analysis [34,46–48].
The main purpose of HANTS is the quantitative analysis of observable signals in the fre-
quency domain. To this end, efficient and accurate reconstruction and gap-filling are
necessary and that is the service that globally improved HANTS can provide. The perfor-
mance of any time series reconstruction method is fundamentally dependent on the quality
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of raw observations, which means that one cannot expect to perfectly recover clear-sky
NDVI signals for pixels where most observations are contaminated by clouds.

5. Conclusions

HANTS has been one of the most widely used time series reconstruction methods in
the remote sensing community. Sant attention, however, has been paid to investigating
the optimal parameter settings under different conditions and non-expert users have to
identify suitable settings by a lengthy, subjective trial and error process, which impedes
the method from being applied in a larger community. This study systematically evalu-
ated and quantified the impacts of HANTS configurations on global NDVI reconstruction
performance and proposed best settings for each configuration. The evaluation was per-
formed by generating pixel-wise reference and noisy NDVI time series using long-term
historical observations from MODIS. The results suggested both local and global optimal
settings of critical parameters of the model, i.e., NF, FET, DoD, and Delta. To facilitate
the non-expert users of the model, the local optimal settings for global sites have been
listed in Supplementary Materials, Table S1. The dynamic weighting scheme, inter-annual
harmonic and 3-order polynomial components can be used to improve global reconstruc-
tion performance by updating the implementation of classical HANTS. In addition, by
including attributes of input NDVI data, such as data quality flag (QC) and the actual
acquisition date of each observation retained in the temporal composites, the performance
of global reconstruction can be further improved. Future users can refer to the settings
described in this study towards the better performance of HANTS for the regional or global
reconstruction of time-series of bio-geophysical remote sensing observables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13214251/s1, Table S1: A CSV file listing the local optimal settings for all BELMANIP2
sites was provided as a supplementary document.
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