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Abstract: Ecosystem services (ESs) are highly vulnerable to human activities. Understanding the rela-
tionships among multiple ESs and driving mechanisms are crucial for multi-objective management in
complex social-ecological systems. The goals of this study are to quantitatively evaluate and identify
ESs hotspots, explore the relationships among ESs and elucidate the driving mechanisms. Taking
central urban area Chongqing municipality as the study area, biodiversity (BI), carbon fixation (CF),
soil conservation (SC) and water conservation (WC) were evaluated based on the InVEST model and
ESs hotspots were identified. The complex interactions among multiple ESs were determined by
utilizing multiple methods: spearman correlation analysis, bivariate local spatial autocorrelation and
K-means clustering. The linear or nonlinear relationships between ESs and drivers were discussed
by generalized additive models (GAMs). The results showed that during 2000–2018, except for
CF that exhibited no obvious change, all other ESs showed a decrease tendency. High ESs were
clustered in mountains, while ESs in urban areas were lowest. At administrative districts scale, ESs
were relatively higher in Beibei, Banan and Yubei, and drastically decreased in Jiangbei. Multiple
ES hotspots demonstrated clear spatial heterogeneity, which were mainly composed of forestland
and distributed in mountainous areas with high altitude and steep slope. The relationships between
ES pairs were synergistic at the entire scale. However, at grid scale, the synergies were mainly
concentrated in the high-high and low-low clusters, i.e., mountainous areas and urban central areas.
Five ESs bundles presented the interactions among multiple ESs, which showed well correspondence
with social-ecological conditions. GAMs indicated that forestland and grassland had positive impact
on BI and CF. Additionally, SC was mainly determined by geomorphological factors, while WC
were mainly influenced by precipitation. Furthermore, policy factors were confirmed to have a
certain positive effect on ESs. This study provides credible references for ecosystem management
and urban planning.

Keywords: ecosystem services; multiple ecosystem service hotspots; trade-offs/synergies; ecosystem
services bundles; driving factors; central urban area Chongqing municipality

1. Introduction

In the Anthropocene era, human activities have a dominant influence on the global
environmental change [1]. The accelerated processes of global industrialization and urban-
ization make a significant contribution to socioeconomic development [2], while inevitably

Remote Sens. 2021, 13, 4248. https://doi.org/10.3390/rs13214248 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7238-4934
https://orcid.org/0000-0002-4259-2580
https://doi.org/10.3390/rs13214248
https://doi.org/10.3390/rs13214248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214248
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214248?type=check_update&version=1


Remote Sens. 2021, 13, 4248 2 of 29

disturbing ecosystem structures, functions and processes, resulting in degradation of
ecosystem services (ESs) [3]. The Millennium Ecosystem Assessment (MA) [4] showed that
15 of the 24 ESs have been degraded during the past 50 years. How to optimize and improve
ESs in the processes of social and economic development is an urgent issue to be addressed
for urban sustainable development [5]. In recent years, many platforms and initiatives have
been launched to promote the research and applications of ESs. The International Ecosys-
tem Service Partnership was established in 2008, which provided an exchange platform for
global research and practice of ESs [6]. The Aichi biodiversity targets, proposed by the 10th
Conference of Parties (COP 10) to the Convention on Biological Diversity [7], emphasized
enhancing the benefits to all from biodiversity and ESs. In 2012, the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services was established, and its
core function is to conduct multi-scale comprehensive assessment of biodiversity and ESs
in response to requests from decision makers [8]. The 2030 Sustainable Development Goals
have recognized that multiple ESs management play an indispensable role in sustainable
consumption and production, ecosystems protection and restoration, biodiversity conser-
vation, etc. [9]. The systematic researches of ESs have recently attracted wide attention in
the fields of land spatial planning and ecological protection [10,11]. Many countries had
integrated the ESs concept and approach into planning and policy-making [12,13]. China
is one of the first countries to implement national policies on ESs, such as the ecological
redline policy, which was incorporated into China’s Environmental Protection Law [14].
However, there is no comprehensive consideration of multiple ESs in most ecosystem
management strategies, which are mainly focused on achieving a single objective [15].
Therefore, it is urgent to explore the complex relationships among multiple ESs and detect
the driving mechanisms in a more comprehensive way, so as to provide guidance for more
rational and effective management plans.

ESs are defined as the benefits that human beings derive from the ecosystem [4].
Daily [16] proposed one of the first lists of ESs, which provided a basis for later classifi-
cations. Costanza et al. [17] grouped ESs into 17 major categories. MA [4] methodically
classified ESs into provisioning, regulating, cultural and supporting services, which was
the most commonly used classification. Remote sensing with spatial explicit features
provides basic data support for directly or indirectly quantifying and mapping ESs through
a combination of existing ecological models and data [18]. A variety of spatial data based
on remote sensing are necessary inputs to Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) [19] and Artificial Intelligence for Ecosystem Services (ARIES) [20]
models, which can generate maps of provisioning and regulating services displaying re-
sults in biophysical units, as well as outputs of cultural and supporting services showing
results in relative rankings [21]. Combining the spatial and non-spatial responses to public
attitude and preference surveys, Social Values for Ecosystem Services (SolVES) model can
evaluate the perceived social values for ESs [22]. Based on this, many studies have been
made towards understanding the interactions of ESs [23,24]. The relationships vary among
different types of ESs, in general, a trade-off relationship is dominant between provisioning
services (e.g., crop production) and regulating services (e.g., carbon fixation, soil and water
conservation) [25], whereas the relationships between regulating, cultural and support-
ing services are synergistically dominated [26,27]. However, there are differences in the
relationships between the same ES pairs at different scales in different regions. Extending
the previous results to other study areas might lead to erroneous conclusions [2]. Since
previous studies have primarily focused on detecting the relationships between ES pairs at
regional scale [24], it is necessary to pay more attention to exploring the spatial difference
of interactions at local scale and the cluster of multiple ESs across space or time, which
can quantify the complex interactions among multiple ESs and provide scientific basis for
establishing reasonable territorial spatial planning.

The complex relationships among ESs are deeply affected by various natural envi-
ronment and social economic driving factors [27]. Determining the driving mechanisms
is crucial for understanding the formation of trade-offs and synergies, and thus provides
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a reference for maximizing synergies and minimizing trade-offs [24,25]. Yang et al. [28]
found that ESs were tightly correlated with social-ecological conditions and regulating
ESs were usually aggregated with high forestland cover. Lawler et al. [29] proposed that
urban expansion policies may lead to a reduction in some ESs, such as carbon fixation and
crop production. At present, there is increasing effort to clarify the linear relationships
between ESs and driving factors [28,30], while lacking the exploration of the nonlinear
relationships. The policy effects on ESs have also not yet been sufficiently investigated [2].
Therefore, we explored the linear or nonlinear relationships between ESs and driving
factors, which had rarely been discussed. Generalized additive models (GAM) provide
a flexible statistical approach to identify and characterize linear or nonlinear regression
effects by non-parametric smoothing functions [31].

As one of the important regions of high-quality development in western China, the
central urban area Chongqing municipality (CUACM) has experienced rapid urbanization
and intense human disturbances, which have induced intractable environmental challenges
with grave implications for ESs supply [2]. Thus, there is a desperate need for the optimized
multiple ESs management to achieve a balance between ESs supply and urban development.
Biodiversity maintenance, as a supporting service, is the basis for all other ESs, and
regulating services were assumed to be critical to ESs supply [4]. The CUACM is a typical
mountain city, and the green spaces in mountain regions provide suitable habitats for
wildlife [32]. The luxuriant forests in the mountains have great potential for carbon
sequestration [33]. Biodiversity maintenance and carbon fixation have become the two
mainstreams in ecological civilization construction. In 2021, the CBD COP 15 will be
held in China, with the theme of “Ecological civilization: building a shared future for all
life on earth” [34]. Besides, China has also set a clear climate target of achieving carbon
neutrality by 2060 [35]. The undulating mountains, combined with steep slopes, leads to a
widespread and serious problem of soil erosion. Although the soil erosion prevention and
control in CUACM has made some achievements, there are still severe challenges. Hence,
taking the CUACM as a case study, four key ESs including one supporting service and
three regulating services, namely biodiversity (BI), carbon fixation (CF), soil conservation
(SC) and water conservation (WC), were selected for the following analysis.

In this study, we focused particularly on proposing an integrated measurement frame-
work for the quantitative assessment and hotspots identification of ESs, exploration of
complex relationships among ESs and clarification of driving mechanisms. The following
research objectives were proposed: (1) to quantitatively investigate the spatial-temporal
pattern of BI, CF, SC and WC during 2000–2018; (2) to identify ESs hotspots and reveal
their spatial–temporal heterogeneity in different land use types and terrain gradients;
(3) to determine the trade-offs and synergies between ES pairs and detect the complex
interactions among multiple ESs; and (4) to elucidate the linear or nonlinear relationships
between ESs and driving factors.

2. Materials and Methods
2.1. Study Area

The CUACM (29◦8′2′′N–30◦7′37′′N, 106◦14′49′′E–106◦58′26′′E), located in southwest-
ern China and the center of the main urban metropolitan area of Chongqing, covers approx-
imately 6.6% of the Chongqing municipality and contains 9 districts (Figure 1). The study
area is characterized by a crisscrossing distribution of mountains and rivers, and mainly
composed of mountains and hills in the eastern Sichuan parallel ridge-and-valley area.
Four parallel mountain ranges, namely, the Jinyun, Zhongliang, Tongluo and Mingyue
Mountains, extend from northeast to southwest. The Yangtze River and Jialing River run
through the CUACM from west to east. The area has a subtropical humid monsoon climate
characterized by hot summers and warm and foggy winters, and the annual average
temperature and precipitation total are 18.3 ◦C and 1199 mm, respectively. According
to Chongqing urban master planning in 2007–2020, the CUACM is under a multi-center
groups development mode. The urban population more than doubled between 2000 and
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2018, surging from 2.97 to 7.92 million, representing 25.53% of the total population of
Chongqing in 2018. With the construction of the Chengdu-Chongqing economic circle, the
urbanization level increased substantially from 55.27% to 90.51%, and the gross regional
domestic product (GDP) increased more than 13-fold [36]. The CUACM plays an important
role in the upper Yangtze River economic belt and regional ecological protection.
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Figure 1. Location, land use types in 2018 and digital elevation model of the central urban area Chongqing municipality.

2.2. Data Sources and Processing

The following datasets were used in this study, including land use types, geomorpho-
logical, meteorological, soil, vegetation, distance factors and socioeconomic dataset. The
detailed descriptions of the data sources and processing were presented in Table 1.

Table 1. Data sources and processing.

Datasets Data Sources Resolution Data Processing

Land use types Geospatial Data Cloud
Platform [37] 30 m

Based on Landsat 7/ETM (2000), Landsat 5/TM (2010) and Landsat
8/OLI (2018) images from May to September during the vigorous
growing season of vegetation with low cloud cover, the land use
data were interpreted by the object-oriented classification method.
The overall accuracy (OA) obtained from the confusion matrix
based on the sample points from Google Earth was used in the
accuracy assessment, with OA were 90.40%, 90.46% and
93.77%, respectively.
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Table 1. Cont.

Datasets Data Sources Resolution Data Processing

Geomorphological
dataset

Geospatial Data Cloud
Platform [37] 30 m

The ASTER GDEM V2 digital elevation model (DEM) data were
obtained for slope, aspect, relief, terrain ruggedness index (TRI),
topographic position index (TPI), terrain niche index (TNI) and
sub-watershed extractions by SimDTA and ArcGIS.

Meteorological
dataset

National Meteorological Information
Center [38] 30 m

Temperature, precipitation and sunshine duration data were
interpolated by ANUSPLIN 4.3 with data from 28 meteorological
stations in the study area and its surrounding zones.

Soil dataset Harmonized World Soil
Database v1.2 [39] 1 km

The reference soil depth, salinity, sand, silt, clay, gravel and organic
carbon content were resampled to 30 m resolution by cubic
convolution interpolation. The soil saturated hydraulic
conductivity was calculated based on the Soil Water Characteristics
module in Soil Plant Atmosphere Water (SPAW).

Vegetation
dataset MODIS13 and MODIS17 [40] 250 m

The normalized difference vegetation index (NDVI) and net
primary productivity (NPP) were resampled to 30 m resolution by
cubic convolution interpolation.

Distance factors Land use data 30 m The distance to cultivated land, forestland, grassland, waters and
construction land were calculated using Euclidean distance.

Socioeconomic
dataset

Resource and Environmental Science
Data Center of the Chinese Academy

of Sciences [41]
1 km The gross regional domestic product (GDP) was resampled to 30 m

resolution by cubic convolution interpolation.

WorldPop Dataset [42] 500 m The population (POP) was resampled to 30 m resolution by cubic
convolution interpolation.

NPP-VIIRS-like NTL Data [43] 500 m The nighttime light data (NTL) was resampled to 30 m resolution
by cubic convolution interpolation.

Chongqing statistical yearbook

2.3. Methods

The framework of the methodology established in this study can be divided into five
sections (Figure 2). First, the quantitative evaluation of ESs based on the InVEST model.
Second, spatial–temporal change trend analysis of ESs by the least-squares regression
model. Third, ESs hotspots identification and spatial–temporal heterogeneity analysis.
Fourth, the determination of the complex relationships among ESs using spearman coef-
ficients, bivariate Local Indicators of Spatial Association (LISA) and ecosystem services
bundles (ESBs). Finally, driving mechanism analysis by GAM.
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2.3.1. ESs Evaluation and Validation

Habitat quality as a proxy for the potential of regions in supporting BI was modelled,
and it refers to the ability of the ecosystem to provide conditions appropriate for individual
survival, reproduction and population persistence [44]. Areas with high habitat quality will
better support all levels of biodiversity and have relatively intact structure and function [45].
Habitat quality is a function of each threat’s relative impact and weight, habitat suitability
of different land use types and sensitivity to threat factors [46]. The CF of different land
use types was estimated by aggregating the amount of carbon stored in aboveground
biomass, belowground biomass, soil and dead organic matter [19]. SC can be described as
the difference between the potential and actual soil erosion, which is mainly determined by
precipitation, soil properties, topography, vegetation coverage and anthropogenic factors,
such as agricultural activities [47]. WC was evaluated by the water yield module, which
is based on the Budyko curve and annual average precipitation [48]. It was modified by
taking the velocity coefficient, terrain index and soil saturated hydraulic conductivity into
account [49]. The detailed methodologies for ESs evaluation were described in Table 2.

The vegetation coverage has a significant positive effect in conservation practice to
enhance species richness, which is commonly assessed to derive conclusions on a region’s
biodiversity [50]. Net primary production (NPP) is defined as the remaining part of the
organic substance amount produced by vegetation during photosynthesis and respiration,
which is a direct reflection of the CF capability [51]. Therefore, BI and vegetation coverage,
CF and NPP were fitted with linear regression to verify the accuracy of the models. The
squares of the correlation coefficients (R2) were 0.85 and 0.82, respectively, suggested better
goodness of fitting and higher accuracy. The reliability of the SC simulation results was
verified by referencing related research of Liu et al. [52]. The simulation results coincided
well with the reference estimates, with the correlation coefficient was up to 0.91, which
indicated the credibility of the simulation results. The WC was calibrated with observed
data in Chongqing water resources bulletin [53]. There was a strong correlation between
observed and simulated values, with the average relative error less than 10% and R2 value
greater than 0.95. The model validation results showed that the simulated values were
reasonable and reliable.

Table 2. Ecosystem service evaluation methodologies.

Ecosystem Services Calculation Formulas Parameters

Biodiversity
Qxj = Hj ×

[
1−

(
Dz

xj
Dz

xj+kz

)]
Dxj =

R
∑

r=1

Yr

∑
y=1

(
wr

∑R
r=1 wr

)
ryirxyβxSjr

Qxj is the habitat quality of grid cell x in land
use type j; Hj is the habitat suitability of land use
type j; Dxj is the threat level of grid cell x in land
use type j. The k is the half-saturation constant,
which is often set as half of the maximum value
of Dxj; z is the scaling parameter.
R is the total number of threats; Yr indicates
grid cells on threat r’s raster map; wr is threat
r’s weight; ry is the relative impact of threat r in
grid cell y; irxy is the impact of threat r from
grid cell y on habitat in grid cell x; βx is the
level of accessibility in grid cell x; and Sjr is the
sensitivity of land use type j to threat r.

Carbon fixation C = Cabove + Cbelow + Csoil + Cdead C is total carbon fixation; Cabove is carbon
fixation in aboveground; Cbelow is carbon
fixation in belowground; Csoil is carbon fixation
in soil; and Cdead is carbon fixation of dead
organic matter.
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Table 2. Cont.

Ecosystem Services Calculation Formulas Parameters

Soil conservation SEDRET = RKLS−USLE + SEDR
RKLS = R× K× LS USLE = R× K× LS× C× P

R =
12
∑

i=1

(
1.735× 10(1.5lg(P2

i /P)−0.8188)
)
× 17.02

KEPIC = {0.2 + 0.3 exp[−0.0256SAN(1− SIL/100)]}
×[SIL/(CLA + SIL)]0.3

×{1− 0.25C/[C + exp(3.72− 2.95C)]}
×{1− 0.7SN1/[SN1 + exp(22.9SN1 − 5.51)]}
SN1 = 1− SAN/100
K = (−0.01383 + 0.51575KEPIC)× 0.1317

LS = S
[((

Ai−in + D2)m+1 − Am+1
i−in

)
/Dm+2xm

i 22.13m
]

S =

{
10.8 sin θ + 0.03 θ < 9%
16.8 sin θ − 0.50 θ ≥ 9%

m =


0.2 θ ≤ 1%
0.3 1% < θ ≤ 3.5%
0.4 3.5% < θ ≤ 5%
0.5 5% < θ ≤ 9%
β/(β + 1) θ ≥ 9%

β = sin θ/0.0986/
(
3 sin θ0.8 + 0.56

)
C =


1 fc = 0

0.6508− 0.3436lg fc 0 < fc ≤ 78.3%
0 fc > 78.3%

P = 0.2 + 0.03× θ

SEDRET is the amount of soil conservation;
RKLS is the potential soil loss; USLE is the actual
soil loss; and SEDR is sediment retention.
R is rainfall erosivity index; Pi is monthly
precipitation; and P is annual precipitation.
K is soil erodibility; KEPIC is in US customary
units; SAN, SIL, CLA and C are the sand, silt, clay
and organic carbon contents of soil, respectively.
LS is slope length and steepness factor; Ai-in is
the flow accumulation; D is the grid cell size; xi
is the mean of aspect weighted by proportional
outflow from grid cell i; θ is percentage slope;
and m is length-slope exponent.
C is the cover-management factor; fc is
vegetation coverage.
P is the support practice factor; and θ is
percentage slope.

Water conservation WC = min
(

1, 249
V

)
×min

(
1, Ksat

300

)
×min

(
1, 0.9TI

3

)
×Y

TI = log(DA/(Ds × θ))

Yx = (1− AETx/Px)× Px

AETx/Px = 1 + PETx/Px −
[
1 + (PETx/Px)

ωx
]1/ωx

PETx = Kc`x × ET0x

ωx = Z× AWCx/Px + 1.25
AWCx = Min(Rest.depthx, root.depthx)× PAWCx

ET0 =
12
∑

i=1
ETi

ETi = 13.97diDi
2Wti/100

Wti =

{
4.95e0.062T

100 Ti ≥ 0
0 Ti < 0

PAWC = 54.509− 0.132SAN − 0.003SAN2

−0.055SIL− 0.006SIL2 − 0.738CLA
+0.007CLA2 − 2.688C + 0.501C2

Z = (ω−1.25)×P
AWC

WC is the amount of water conservation; V is
velocity coefficient; and Ksat is soil saturated
hydraulic conductivity.
TI is terrain index; DA is the number of grids in
catchment area; Ds is the depth of soil; and θ is
percentage slope.
Yx is the water yield for grid cell x; AETx is the
annual actual evapotranspiration; Px is the
annual precipitation; PETx is the potential
evapotranspiration; ωx is a nonphysical
parameter of natural climate-soil properties;
Kc`x is plant evapotranspiration coefficient for
each land use type; Z is the seasonal parameter;
AWCx is the volumetric plant available
water content; Rest.depthx is the root restricting
layer depth; root.depthx is the vegetation
rooting depth; and PAWCx is plant available
water content.
ET0 is average annual reference
evapotranspiration; ETi, di, Di, Wti and Ti
reference evapotranspiration, the number of
days, sunshine duration, saturated water vapor
density and temperature of month i, respectively.

2.3.2. Spatial-Temporal Change Trend Analysis

At grid scale, the least-squares regression model was used to detect the regional
differences in ESs change trends [54]. Based on the precision of data, the grid size was
selected as 30 m × 30 m. Furthermore, we made the statistics of ESs and their changes
at administrative district scale. The least-squares regression model can be expressed
as follows:
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Slope =
n

n
∑

i=1
xiai −

n
∑

i=1
xi

n
∑

i=1
ai

n
n
∑

i=1
xi

2 −
(

n
∑

i=1
xi

)2 (1)

where slope is the change rate of ES; n is the number of years; xi represents the year i; and ai
is the ES in year xi. When slope > 0, ES displays an increasing trend and vice versa. The
statistical significance was tested by F-test [24].

2.3.3. ESs Hotspots Identification

ESs hotspots represent statistically significant high-value spatial aggregations [55],
and they were identified by the Z-scores and P value test of the Getis–Ord value Gi* based
on a distance weight matrix in spatial correlation analysis. Gi* is defined as:

G∗i =

n
∑

j=1
Wijxj

n
∑

j=1
xj

(2)

where xj is the property value of factor j; Wij is the spatial weight between factors i and j;
and n is the number of factors.

For statistically significant positive Z-scores, the larger the Z-score is, the higher the
degree of high-value spatial aggregation. The areas with a confidence level greater than
90% were considered as ESs hotspots [56]. The same ecosystem has the potential to provide
multiple ESs. The distribution of multiple ES hotspots could be determined by overlaying
the four ESs hotspots [49,57]. The region with four ESs hotspots was defined as a class 4 of
ESs hotspots, similarly, class 3, class 2, and class 1 ESs hotspots were identified.

To comprehensively reflect the detailed characteristics of topographic spatial hetero-
geneity of multiple ES hotspots, terrain niche index (TNI) was calculated by combining
slope and elevation [58], and it was classified into ten gradients using the natural breaks
classification method. Furthermore, the distribution index was used to reveal the spatial
distribution of multiple ES hotspots on TNI gradients. The formulas are as follows:

T = lg
[(

E
E
+ 1
)
×
(

S
S
+ 1
)]

(3)

where T is the terrain niche index; E and S are the elevation and slope of the grid cell,
respectively; and E and S are the average elevation and slope of the study area, respectively.

P =

(
Sie
Si

)
/
(

Se

S

)
(4)

where P is the distribution index; Sie is the area of ESs hotspots on the TNI gradient e; Si
is the area of ESs hotspots; Se is the area of TNI gradient e; and S is the total area of the
entire study area. Generally, greater P values indicate a high distribution frequency of ESs
hotspots on a certain TNI gradient. When P > 1, the TNI gradient represents the dominant
distribution of ESs hotspots.

2.3.4. Investigating the Complex Relationships among ESs

In order to eliminate the influences of different units and scales, ESs were standardized
using a minimum–maximum normalization to obtain comparable and dimensionless data
ranging from 0 to 1 [59]. Considering the sensitivity of this standardization to extreme
values, the ESs were first transformed by winsorization where ESs with values less than
the 5% quantile and greater than the 95% quantile were assigned values of the 5% and
95% quantile, respectively [60,61].

Spearman rank correlation coefficients were used to illustrate the trade-offs and
synergies between ES pairs at a regional scale since the ESs data did not conform to normal
distribution [62]. The formula is as follows:
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r = 1−
6

n
∑

i=1
d2

i

n(n2 − 1)
(5)

where r is the correlation coefficient; n is the number of ES pairs; di is the rank difference.
When r > 0, there is a positive correlation, which indicates that the paired ESs were
synergistic; when r < 0, there is a negative correlation suggesting trade-offs between ES
pairs. In accordance with Raudsepp-Hearne et al. [63], the strength of the correlations was
described by using the following classification: strong correlation (|r| ≥ 0.5), moderate
correlation (0.5 > |r|≥ 0.3), weak correlation (0.3 > |r|≥ 0.1) and no correlation (|r| < 0.1).
T-test was performed to test for statistical significance [64]. * p < 0.05 was considered
statistically significant.

Bivariate local Moran’s I was used to explore the trade-offs (spatial dispersion) and
synergies (spatial aggregation) between ES pairs on spatial scale [65]. The formula is
as follows:

Iij =
xa

i − xa

σa

n

∑
j=1

(
Wij

xb
j − xb

σb

)
(6)

where Iij is bivariate local spatial autocorrelation coefficient; n is the number of grid cells;
Wij is spatial weight matrix; xi

a and xj
b are the value of ES a and ES b in grid cell i and j,

respectively; and xa, xb, σa and σb are the average and variance of ES a and ES b, respectively.
The statistical significance of bivariate local Moran’s I was examined by permutation tests;
and 999 permutations were used in this study [66]. The significance value for spatial
correlation between ES pairs were classified as significant (* p < 0.05), very significant
(** p < 0.01), and extremely significant (*** p < 0.001).

Positive spatial autocorrelation was when similar values clustered together on a
map, and negative spatial autocorrelation was when dissimilar values clustered together.
Therefore, the four cluster types of local spatial autocorrelation generated by bivariate LISA
were reclassified as trade-offs and synergies. The high-high and low-low clusters were
reclassified as synergies, the high-low and low-high clusters were reclassified as trade-offs.

ESBs can reflect the aggregation and combination of multiple ESs on spatial and
temporal scales, which can quantify the complex interactions among multiple ESs. ESBs
were identified by K-means clustering algorithm [33]. To minimize the total error sum of
squares, the number of initialized repeating runs and iterations were set to 150 and 1000,
respectively [11,63]. The optimal number of clusters was determined by the ratio of the
between-cluster sum of squares and the total sum of squares. The higher the ratio, the
greater the difference between clusters and the smaller the difference within clusters. After
series of trials and analysis, when the number of clusters was set to five, the ratios were the
highest, which were 80.16%, 81.12% and 80.07% in 2000, 2010 and 2018, respectively. The
five ESB types were visualized using petal plots, and the length of each petal represents
the average of ESs [23].

2.3.5. ESs Driving Mechanisms

GAM was employed to examine the linear or nonlinear relationships between driving
factors and ESs in 5468 grid cells of 1 km × 1 km located across study area using the mgcv
package of R [61]. GAM had advantage in developing realistic response curves because it
fit non-parametric smoothers to the data without requiring priori specifications to describe
nonlinearity [67]. All driving factors entered the GAM as smooth terms. The general
expression of the model is as follows:

g(µ) = β0 + xiβ +
n

∑
j=1

f j(xij) + ε (7)

where g is the link function; µ is the expectation of dependent variable Y; β0 is the intercept
term; xi and β are the independent variables and parameters of fixed effects; fj(xij) is
non-parametric smoothing functions; and ε is the error term.
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Based on the principles of scientificity, representativeness and accessibility, 32 nat-
ural environment and socioeconomic factors were selected to build the driving factors
database, including: (1) seven geomorphological factors, (2) land use types, (3) NDVI and
NPP, (4) four meteorological factors, namely, temperature, precipitation, rainfall erosivity
index and reference evapotranspiration, (5) four soil factors, namely, soil types, erodibility,
saturated hydraulic conductivity and organic carbon content, (6) five distance factors,
namely, the distance to cultivated land, forestland, grassland, waters and construction land,
(7) three socioeconomic factors, namely, POP, GDP and NTL, and (8) six policies, namely,
CUACM overall urban planning in 2004–2020 (CMOUP), multi-center groups development
strategies in Chongqing urban master planning in 2007–2020 (MGDS), regulations on
developments and controls of the four parallel mountains (RDCFM), Chongqing ecolog-
ical function regionalization (CEFR), Chongqing ecological redline (CER), and beautiful
landscape city planning in CUACM (BLCP).

The collinearity was detected by the variance inflation factor (VIF) and driving factors
with a VIF greater than 5 were sequentially removed [68]. Akaike’s information criterion
(AIC) and adjusted determination coefficient (R2

adj) were applied to check the goodness-of-
fit of the model [69]. The AIC and R2

adj of four GAMs between ESs and driving factors were
−25,399.34, −21,417.56, −11,355.13, −25,203.94 and 0.869, 0.859, 0.603, 0.666, respectively,
suggested good model performance and explanatory power. T-test and F-test were used
for categorical and numerical variables, respectively. The statistical significances were
classified as significant (* p < 0.05), very significant (** p < 0.01), and extremely significant
(*** p < 0.001).

3. Results
3.1. Spatial Patterns of ESs

All the four ESs demonstrated clear spatial clustering on the study area and exhibited
different change trends. High BI areas with high habitat quality were concentrated in
Jinyun, Zhongliang, Tongluo, Mingyue, Huaying and southeastern mountainous areas
(Figure 3(a1–a3)). The Yangtze River, Jialing River and other water bodies also had higher
BI. The BI displayed a decreasing trend, with the habitat quality index declining from 0.5
to 0.45 during 2000–2018. Areas with decrease trends were mainly distributed in peri-
urban expanded regions, and most of which (99.51%) was nonsignificant decrease areas
(Figure 3(a4)). Similar to BI, CF also showed a high spatial pattern in mountainous areas
(Figure 3(b1–b3)). The change of CF was not obvious overall, with a trend of decrease first
and then increase. In most of the study area (89.42%), CF remained unchanged. Addi-
tionally, a similar nonsignificant decreasing trend was observed in peri-urban expanded
regions (Figure 3(b4)). The high values of SC were not evenly distributed in mountainous
areas (Figure 3(c1–c3)), showing obvious topographic heterogeneity. There was a trend of
decrease in SC from 1289.56 t/hm2 to 921.90 t/hm2. Approximately 81.36% of the study
area showed a decreasing trend in SC, of which 97.82% decreased was nonsignificant
(Figure 3(c4)). The high values of WC were mainly located in mountainous areas, which
was profoundly influenced by precipitation (Figure 3(d1–d3)). The average WC depth
decreased from 192.43 mm in 2000 to 141.79 mm in 2018. The areas with decreasing WC
accounted for 65.20%, and were mainly found in mountainous areas and the northern half
of the study area, whereas the increases occurred in the southern portion (Figure 3(d4)).
Additionally, most of the changes were nonsignificant. The change trend of WC from 2000
to 2018 had good consistency with precipitation change. Due to the frequent interference
of human activities, all ESs in urban areas were extremely low.
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At the administrative districts scale, Beibei had the highest level of BI, followed by
Banan and Yubei (Figure 4a). The highest average values of CF were also detected in Beibei,
followed by Shapingba, Jiulongpo and Yubei (Figure 4b). The highest average SC and WC
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occurred in Banan, followed by Beibei and Yubei (Figure 4c,d). All ESs in Yuzhong were
the lowest and far lower than those in other districts. It is worth mentioning that there
were some increases in CF in Nanan, Yubei and Yuzhong. In addition to this, the general
trends of ESs for all districts were descending. The maximum reductions of BI and CF were
observed in Jiangbei. The dramatic decreases in SC and WC were observed in Beibei, Yubei
and Jiangbei.
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3.2. Spatial Heterogeneity of ES Hotspots

The results of hotspots analysis suggested clear characteristics in temporal and spatial
distribution for multiple ES hotspots (Figure 5). During 2000–2018, the total area of multiple
ES hotspots exhibited a slightly increasing tendency, with the area proportion increased
from 31.55% (1726.45 km2) to 33.19% (1816.22 km2). Specifically, increases in class 1 ES
hotspots were strongest. Class 2 ES hotspots also behaved a general increasing trend of
increased first and then decreased. In 2018, the proportion of both to all ES hotspots reached
as high as 53.46% and 32.16%, respectively. Class 3 and class 4 ES hotspots had a tendency
to decrease, accounting for only 12.80% and 1.58% of all ES hotspots in 2018, respectively.

There was considerable variability in ESs delivered by different land use types, which
led to the spatial heterogeneity of multiple ES hotspots (Figure 5). Class 1 ES hotspots
occurred mainly in cultivated land, forestland and waters, with the average proportion
of 55.41%, 21.78% and 15.23%, respectively. Class 2 ES hotspots were mainly composed
of forestland and cultivated land, covering 83.68% and 11.76%, respectively. The average
contribution of forestland to class 3 ES hotspots reached 91.12%. Although the area of
forestland showed a decreasing trend, the area proportion showed an increasing trend,
which was caused by the decrease of class 3 ES hotspots. The most predominant land
use type that composed class 4 ES hotspots was forestland, accounting for 94.10% in 2000,
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91.90% in 2010 and 94.07% in 2018. The non-hotspots were primarily covered by cultivated
land and construction land. Generally, forestland was a major contributor to ESs and also
had a significantly higher area proportion of multiple ES hotspots compared to other land
use types. Among them, the average area proportion of class 1, 2, 3 and 4 ESs hotspots
were 17.09%, 45.42%, 27.48% and 4.69%, respectively. The area of grassland was small,
but it had an important role in ESs supply, second only to forestland. During 2000–2018,
multiple ES hotspots accounted for an average of 84.02% of grassland. The average area
proportion of multiple ES hotspots of waters ranged from 80.24% to 58.70% in a decreased
trend. Additionally, average 70.27% of waters was class 1 ES hotspots. Most of unused land,
cultivated land and construction land were non-hotspots, which accounted for averages of
70.25%, 84.70% and 92.86% of such kinds of land use, respectively.
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The same is true below.

The distributions of multiple ES hotspots had distinct spatial heterogeneity in different
TNI gradients (Figure 6). In the 1st TNI gradient and high TNI gradients (6th–10th), the
average distribution index of class 1 ES hotspots were greater than 1, indicating that it was
primarily located in two parts of the study area: water areas with low altitude and slope,
such as the Yangtze River and Jialing River, and the transition zone between mountainous
areas and flat areas with medium-high altitude and slope. The distribution index of class
1 ES hotspots tended to decrease in the 1st TNI gradient over time, while it increased in the
6th to 10th TNI gradients. Class 2 and class 3 ES hotspots were mainly distributed in high
TNI gradients (6th–10th), with average distribution index of 2.18 and 2.52, respectively.
In the 10th TNI gradient, an upward trend in distribution index was observed of class
2 ES hotspots, while the trend of class 3 ES hotspots was downward during 2000–2018.
The distribution index of class 4 ES hotspots presented a tendency to increase with an
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increase in TNI gradients, especially after the 7th TNI gradient. Although the distribution
index showed a decreasing trend in the 10th TNI gradient during 2000–2018, it was still
much larger than that in other gradients, which indicated that the mountainous areas with
high altitude and steep slope were always the predominant distribution areas of four ES
hotspots.
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3.3. Spatial-Temporal Trade-Offs and Synergies between ES Pairs

During 2000–2018, the significant positive correlations (Spearman coefficient: r > 0;
p < 0.001) were found between all ES pairs in the entire study area (Figure 7). It demon-
strated that all six pairs of ESs exhibited synergistic relationships. In 2000, there was a
strongest positive correlation between BI and WC. The relationship between SC and WC
was also strong synergistic. In 2010, the highest positive correlation was observed between
BI and CF. Additionally, WC also had strong positive correlation with BI and SC. In 2018,
the synergistic relationship between BI and CF remained strongest. Strong positive correla-
tions were also found between SC with BI and CF. In addition, the correlation coefficients
among BI, CF and SC showed a tendency to increase during 2000–2018, which indicated
that the degree of synergies were gradually enhanced. With the relationship between BI
and WC changed from strong correlation to weak correlation, the synergy was diminished.
The relationships between WC with CF and SC showed a general weakening trend of
slightly enhanced first and then weakened.
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There were obvious differences in spatial distributions of trade-offs and synergies
between ES pairs (Figure 8). For BI and CF, synergies were always the dominant relationship
in the study area, with the area proportion ranging from 68.53% to 68.18%. Among them,
significant synergy accounted for average 59.20%, which was mainly distributed in the flat
areas between mountains. The extremely significant synergy showed a gradually increasing
trend, with an average area proportion of 33.04%, which were mainly concentrated in the
high-high and low-low clusters, i.e., mountainous areas and urban central areas. The
extremely significant trade-offs accounted for 4.13% of the study area and were spatially
aggregated in waters, especially in Yangtze River and Jialing River. For BI and SC, synergies
and trade-offs accounted for average 35.13% and 8.94%, respectively. The synergies were
found mainly in the intermountain flat areas and scattered in Jinyun, Zhongliang, Tongluo
and Mingyue Mountain. The trade-offs were mainly distributed in Yangtze River and
Jialing River, and also observed in Qiaoping mountain and southeastern mountainous
areas. For BI and WC, the area of synergies was comparable to trade-offs, accounting for
27.33% and 20%, respectively. The extremely significant synergies were distributed in two
dominant parts: one located in mountainous areas and the other in urban areas. During
2000–2018, the former exhibited a downward trend, while the latter showed the opposite
trend. The trade-offs tended to increase, and the most dramatic increase was observed in
significant trade-offs, which located in some mountainous areas and southeastern areas.
The extremely significant trade-offs still mostly occurred in Yangtze River and Jialing
River. Apart from Yangtze River and Jialing River changing from trade-offs to synergies,
the trade-offs and synergies between CF with SC and WC followed a spatial pattern
similar to the relationships between BI with SC and WC. In addition, similarity was also
observed in general change trends. For SC and WC, the synergies were dominated by
the extremely significant synergies, which mainly occurred in urban areas, mountainous
areas with an elevation of 200~700 m and a slope of 5~15◦, as well as waters such as
Yangtze River and Jialing River. Both the area of synergies and trade-offs showed the
same increasing trend, but the magnitude of changes was most pronounced in significant
trade-offs. The significant trade-offs increased by 441.40 km2, which were mainly located
in some mountainous areas and southeastern intermountain hilly and flat areas.
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3.4. ES Bundles among Multiple ESs

Five ESBs were determined by K-means cluster analysis (Figure 9). In 2000, ESB1 was
spatially clustered in Jinyun, Zhongliang, Tongluo, Mingyue, Huaying and southeastern
mountainous areas with an average elevation of 535.83 m and slope of 9.57◦. It was
predominantly covered by the highest proportion of forestland (92.93%), occupying 6.30%
of the study area. ESB1 was especially characterized by the highest BI, CF, SC and the
second-highest WC, which was only 0.07 lower than that of ESB2. ESB2 were interlaced
with ESB1, mainly distributed in mountainous areas with an average elevation of 515.78 m
and slope of 6.45◦, and mostly covered by forestland (87.84%). It showed the highest
WC, the second-highest BI and CF, and moderate SC. ESB3 was observed in the piedmont
transition zone between mountainous and flat areas with an average elevation of 436.57 m
and slope of 7.29◦, contained 94.51% of cultivated land. SC was dominant in ESB3 and
second only to that of ESB1. The mean values of BI and CF were below the regional
averaged values, whereas the mean value of WC was slightly above the regional average
value. Covering 63.45% of the study area, ESB4 were widely spread in the intermountain
flat areas, the trough and valley at the top of anticline mountains, as well as water areas.
The land use pattern of this bundle was characterized by larger cultivated land ratios
(92.24%), followed by waters (4.43%). ESB5 was characterized by dense urbanization and
concentrated in urban areas, with the proportion of construction land of 90.58%. All ESs in
this bundle were at the lowest level.

In 2010, ESB1 was increased and clustered in mountainous areas with an average
elevation of 520.04 m and slope of 7.46◦. It supplied the highest BI, CF, WC and the
second-highest SC. Different from ESB2 in 2000, ESB2 were mainly distributed in waters,
such as the Yangtze River and Jialing River, with an average elevation of 281.64 m and
slope of 3.26◦. The proportion of waters in this bundle was up to 66.66%, followed by
forestland (4.43%). ESB2 provided a relatively higher BI and lower CF, SC and WC. The
characteristics and distributions of ESB3, ESB4 and ESB5 were similar to those in 2000. The
slight difference was that ESB3 showed the highest SC compared to other ESBs.
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In 2018, ESB1 contributed strongly to WC, provided a relatively higher BI and CF, and
moderate SC. It was located in mountainous areas with an average elevation of 489.40 m
and slope of 6.59◦, mainly consisting of forestland (79.34%) and grassland (10.77%). ESB2
was spatially clustered in mountainous areas with an average elevation of 538.99 m and
slope of 7.97◦, covered mainly by forestland (92.36%). It was characterized by the highest
BI and CF, the second-highest SC, which was second only to that of ESB3. However,
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the mean value of WC was below the regional averaged value. ESB3, ESB4 and ESB5
had quite similar distributions and combinations of ESs with those in 2000 and 2010.
Notably, as urban sprawl, the area of ESB5 presented a dramatic increasing tendency from
444.08 km2 to 947.33 km2. This increase mainly occurred in new cities groups and the
periphery of the original cities.

4. Discussion
4.1. Exploring the Driving Mechanisms of ESs

ESs were deeply influenced by natural environment, socioeconomic and policies
factors [33]. Different from previous studies [70,71], we quantitatively investigated linear
or nonlinear relationships between ESs and driving factors based on GAM. Although
relevant studies had elaborated that land use was the primary driver of ES changes, most
of the results were only presented in the form of qualitative description [32,71]. There was
particularly a lack of focus on political drivers of ESs [30]. We included land use types and
policies as fixed effects in GAM, and the parameter estimates illustrated the influence of
different independent variables on ESs (Table 3). Regarding the land use types, BI had
extremely significant strong positive correlations with forestland, grassland and waters, the
parameter estimates were up to 0.939, 0.896 and 0.878. CF were most enriched in forestland,
followed by grassland. Strong and moderate positive correlation was found between
WC with grassland and forestland, respectively. These parallels the majority of previous
findings that, forestland and grassland can not only support high biodiversity by providing
resources and habitats for species, but also provide high carbon sequestration and had low
runoff potentials that contributed greatly to water conservation [61,72]. However, SC was
shown to be weakly correlated with land use types. This may be because SC was more
strongly affected by geomorphological factors, which was confirmed by Baró et al. [33].

Table 3. Results of GAM characterizing the relationships between ESs and fixed effects.

Fixed Effects
Biodiversity Carbon Fixation Soil Conservation Water Conservation

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Cultivated land 0.424 <0.001 *** 0.091 0.01 ** −0.218 <0.001 *** 0.335 <0.001 ***
Forestland 0.939 <0.001 *** 0.741 <0.001 *** 0.172 <0.001 *** 0.496 <0.001 ***
Grassland 0.896 <0.001 *** 0.264 <0.001 *** −0.175 <0.001 *** 0.638 <0.001 ***

Waters 0.878 <0.001 *** — — −0.269 <0.001 *** — —
Construction land 0.056 <0.001 *** — — −0.221 <0.001 *** — —

MGDS — — — — — — — —
RDCFM — — 0.011 0.01 ** 0.017 0.004 ** — —

CEFR — — — — — — — —
CER — — 0.021 <0.001 *** — — −0.024 <0.001 ***

BLCP 0.013 <0.001 *** 0.011 0.003 ** — — −0.023 <0.001 ***
Intercept 0.970 <0.001 *** 1.028 <0.001 *** 1.349 <0.001 *** 1.001 <0.001 ***

The statistical significance levels were very significant (** p < 0.01) and extremely significant (*** p < 0.001). —: There were not statistically
significant. MGDS: multi-center groups development strategies; RDCFM: regulations on developments and controls of the four parallel
mountains; CEFR: Chongqing ecological function regionalization; CER: Chongqing ecological redline; BLCP: beautiful landscape city
planning in CUACM.

The effects of policies on ESs, although significant, appear to be modest. The RDCFM,
CER and BLCP had weak positive effects on BI, CF and SC, while they had weak negative
effects on WC (Table 3). Two possible reasons may be able to account for these. First,
lack of scientific and sufficient information on ESs to serve as comprehensive evaluation
criteria for delineation of protected areas resulted in the co-existence of over-protected
and conservation gaps in policies [73]. Second, the policies were formulated based on the
conditions at a certain time, while ecosystems were dynamic, and follow changes in the
natural and socioeconomic environment [74]. Despite effectiveness limitations and time
lag of policies, our results indicated that policies had positive effects on the BI, CF and SC.
However, WC was mainly determined by climate factors and fluctuated with precipitation
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variation. The study of Cui et al. [70] had demonstrated that the spatial change of WC was
consistent with that of precipitation.

The results of GAM for ESs revealed the relative effect and importance of various
driving factors, and the smooth functions showed the linear or nonlinear relationships
between ESs and driving factors. The distance to forestland was the main influencing
factor for BI with the highest F-value of 17.05, followed by the distance to cultivated land
(F = 12.51) and elevation (F = 9.174) (Table S1, Figure 10). There was a decreasing trend
generally in BI with the increasing distance to forestland. The observed appearance of the
crest was closely related to waters with a higher BI, which were crisscrossed and interlaced
with mountains. The CUACM was characterized by northeast–southwest trending par-
allel mountain ranges and west–east trending rivers, interspersing with flat valleys and
urban groups. The complex spatial mosaic of landscapes resulted in a strongly nonlinear
relationship between BI and the distance to cultivated land, waters and construction land.
BI showed a general increasing trend of decrease first and then increased with increasing
elevation and TNI. This was because waters were primarily located in the low TNI with
low altitude and slope. Relevant studies had shown that waters created diverse and stable
habitats for waterfowl and fish to forage, refuge and breed [75]. In addition, the same
relationships were also observed between BI with NPP and soil organic content. NDVI had
a very significant positive effect on BI, and an estimated degree of freedom equal to one
confirmed the linear relation. There was a general negative relationship between BI and
precipitation. One likely explanation for this may be that a large amount of precipitation
had the potential to induce geological disasters in mountainous areas, which had a certain
negative impact on BI. A similar negative correlation had been discovered in a study of
the Yangtze River Economic Belt [76]. BI decreased nonlinearly with increasing population
density. The ever-increasing population led to an expanding demand for natural resources
and produces [77], which caused dramatic interference with BI [78].

The strongest effects on CF were soil organic content (F = 113.68), distance to forest-
land and grassland (Table S1, Figure S1). CF showed an extremely significant positive
correlation with soil organic content, which had been suggested to be one of the main
determinants of plant species distributions and ecosystem functioning [79]. As the distance
to forestland increased, CF was overall decreased. As it can be observed, crest clearly
appeared because grassland and cultivated land had a certain potential for carbon seques-
tration [80]. Consistent with previous studies [81], forestland was the major component
of carbon pool in the study area, with a contribution of 76.92%. Thus, CF showed a trend
of decreased first and then increased with increasing distance to grassland. The higher
elevation, TRI and TNI, the higher forestland coverage and the higher CF. Affected by the
trend of the mountains from northeast to southwest, the area proportion of forestland was
relatively higher on east and west slope. The CF was fluctuated with aspect variation and
peaked approximately at 100◦ and 275◦. The smooth fitting curve between CF and TPI
appeared a V-shape. The areas, with the TPI equal to zero, were mostly flat areas, such as
rivers and lakes, which had the lowest CF. The higher or lower the TPI, the closer it was
to the ridge or valley and the higher the CF. The CF had a very significant linear increase
trend with increasing NDVI, and it also had a general tendency to increase with NPP. The
result was in line with recent findings in which vegetation coverage had a notable positive
impact on NPP, and higher NDVI significantly improved CF [24,57]. Similar to that of
BI, CF was negatively correlated with precipitation. Due to the complex spatial pattern
of landscapes, CF had nonlinear relationships with the distance factors. CF exhibited a
diminishing trend with the increased in population and GDP. Generally, in areas with a
higher population and GDP, urbanization was usually higher. The demand for urban land
had gradually increased, and a large amount of ecological land was occupied, which may
be the major causes for CF loss [2].
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Geomorphological factors were the dominant factors for SC, such as TPI (F = 1313.929),
TNI and slope (Table S1, Figure S2). There was a negative and saturating relationship
between SC and TPI. Specifically, SC decreased rapidly with increasing TPI when TPI was
less than zero, whereas there was little change in SC when TPI was greater than zero. It
means that the closer the valley, the higher the SC. According to Tsaaer et al. [82], the
valleys were considered to be favorable sites for soil deposition, with large forest area
and relatively lower soil loss. The areas with higher TNI and steep slope usually had
higher vegetation coverage, the actual soil loss was considerably lower than potential soil
loss, resulting in a higher SC [83]. SC displayed a tendency of increased first and then
decreased with elevation. When the elevation was greater than 700 m, the higher the
elevation, the higher the vegetation coverage, which can effectively intercept precipitation
and reduce soil erosion, resulting in a decrease in sediment deposition from upstream, and
a downward trend in SC [52]. Influenced by the mountain range trend, SC exhibited a
double hump-shaped relation with aspect, peaking at about 90◦ and 270◦. The CF had a
positive linear correlation to NDVI and precipitation, and tended to nonlinearly increase
with increasing NPP and soil organic content. The higher the vegetation coverage, the
higher the NDVI and NPP, the thicker the litter layer, the more developed root systems,
the higher the soil organic content, which can prevent soil erosion from rain splash [24],
resulting in a decrease in actual soil loss and an upward trend in SC. The precipitation had
the most direct positive effect on the potential soil loss, resulting in a higher SC. In general,
the closer to the forestland and the further away from the construction land, the higher
the SC.

Our findings suggest that WC was mainly controlled by precipitation (F = 472.458),
which was in accordance with previous studies [70] (Table S1, Figure S3). Generally, in



Remote Sens. 2021, 13, 4248 21 of 29

areas with a higher precipitation, water yield was usually higher, which led to higher
WC. WC was also influenced by other factors, once the resistance of the controlling ability
of precipitation for WC was broken, WC decreased significantly. Singh et al. [84] also
corroborated a high rainfall did not guarantee a high WC in a region as it depends on
variety of factors. WC increased linearly with elevation and nonlinearly with TNI. When
the slope was less than 30◦, WC increased rapidly with increasing slope, whereas there
was a slightly decreased in WC when slope was greater than 30◦. The higher the TNI
with higher altitude and slope, the higher the vegetation coverage. The dense canopy
had the ability to trap precipitation [24], the thick litter layer and developed root systems
made more water infiltrated into the soil [26], and thus there will be an increase in WC.
However, as soon as the slope exceeds 30◦, water holding capacity strongly decreased,
resulting in reduction of WC. Thus, there was lower WC on the ridges with steep slopes,
while valleys had the highest WC. NDVI, NPP and soil organic content had extremely
significant positive effects on WC, although slightly decreased or saturated at the highest
values. Plants can not only absorb and store some precipitation, but also increase regional
precipitation through plant transpiration [49]. The higher the soil organic content, the
higher the water holding capacity. WC showed a fluctuating downward trend with the
increasing distance to forestland while increased with the distance to waters, which was
affected by the complex spatial pattern of mountains and rivers. Meanwhile, WC showed
a general decreasing trend of decreased first and then increased or unchanged with the
distance to grassland and cultivated land. WC had a linear positive correlation with the
distance to construction land, whereas had an opposite correlation with population and
GDP. With the increase of human activity intensity, a large amount of natural vegetation
was converted into impervious surface [57], which directly led to the decrease of WC.

4.2. Scale Effect of ESs and Their Complex Interactions

Our study examined spatial-temporal heterogeneity and complex interactions of
four key ESs, i.e., BI, CF, SC and WC. These ESs not only can reflect the key ecological
problems facing the CUACM [85], but also have great contributions to regional welfare
and sustainable development [24]. At grid scale, there was obvious spatial agglomeration
of ESs in mountainous areas. Numerous studies have proved that multi-dimensional
topographic factors in mountainous areas not only controlled the spatial distribution
pattern of solar radiation and precipitation, but also affected the spatial heterogeneity of
soil properties [86,87]. Characterized by diverse vegetation types and complex vegetation
structures, mountainous areas not only provided high CF, but also provided various
suitable habitats for species [88]. The mountainous areas, with high elevation, steep slope
and high vegetation coverage, had a high potential soil erosion, low actual soil erosion and
a low runoff that contributed greatly to SC and WC [61]. At the administrative districts
scale, ESs were relatively higher in Beibei, Banan and Yubei, and drastically decreased
in Jiangbei, which were closely related to regional vegetation coverage and urbanization
development. Banan, Beibei and Yubei had relatively high average vegetation coverage,
which were 0.86, 0.79 and 0.78, respectively. In 2008, according to CEFR, Banan, Beibei and
Yubei had been designated as important ecological barriers of the study area. Affected by
the development of Liangjiang New Area and the rapid expansion of urbanization, the
ecological land in Jiangbei district was occupied by construction land, which directly led
to the reduction of ESs. This was consistent with the research of Wang et al. [2], showing
dramatically decreased in ESs with urban land expansion. It is worth noting that the spatial
congruence of WC was relatively low from 2000 to 2018, which was mainly affected by
the interannual variation of precipitation and potential evapotranspiration. Although the
precipitation decreased first and then increased (992.89 mm, 980.42 mm and 1126.55 mm),
the magnitude of its change did not exceed the increases in evapotranspiration (778.08 mm,
769.09 mm and 1364.77 mm). Growing studies has been discussing that the change of
WC is not completely determined by land use change, but dominated by regional climate
change and human activities [70,89]. At present, most studies have primarily focused
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on the spatiotemporal pattern analysis of ESs [90], but the scale-dependent effects have
usually been ignored, such as land use and topographic heterogeneity. The spatiotemporal
heterogeneity of ESs at different scales can be more clearly characterized by hotspots
identification [2]. In our study, it can be clearly seen that multiple ES hotspots were mainly
composed of forestland and distributed in high TNI with high altitude and steep slope,
which proved the spatial-temporal patterns of ESs mentioned above.

ESs were dependent on dynamic processes that act and interact at different scales.
Therefore, the interactions between ES pairs had obvious scale effects. Yang et al. [28]
found that the degree of trade-offs between ESs tended to weaken gradually as the scale
increased, and there were even signs that it would turn into synergies. Again, remarkably
similar results were obtained in our study. In the entire CUACM, there was a positive
relationship within ESs, indicating synergy or at least no conflicts. A possible explanation
was that they shared common driving factors, such as land use, TNI and NDVI. Specifically,
the forestland located in high TNI with high elevation, slope and NDVI not only provided
suitable habitats for species, but also had the highest potential for CF [81]. The dense
canopy, thick litter and developed root systems had an effective capability of rainfall
interception, slope stability, and soil and water conservation [24]. However, there was
distinct spatial heterogeneity in trade-offs and synergies between ES pairs at grid scale.
This can be explained in two ways; on one hand, the natural and social driving factors
had distinct geographical differences, on the other hand, each ES had different dominant
driving factor. For example, SC exhibited a strong dependence on geomorphological
factors, while WC was extremely sensitive to meteorological factors [70]. Bivariate LISA
and ESBs had the potential to objectively divide study areas into different groups and make
spatial explicit mapping, which can provide novel insights into the understanding and
managing of multiple ESs.

4.3. Implications for ESs Management and Urban Planning

Detecting the complex relationships among multiple ESs was crucial for ecosystem
management and urban planning. The spatial concordance and segregation among dif-
ferent ESs hotspots coincided with the formation of different types of ESBs, which can
provide guidance for ecological function regionalization. Take 2018 as an example, ESB1
delivered 89.09% of class 4 ES hotspots and 50.95% of class 3 ES hotspots (Figure S4a). The
multiple ES hotspots occupied 95.19% of the total area of ESB1 (Figure S4b). ESB2 covered
61.57%, 41.59% and 4.72% of class 2, class 3 and class 4 ES hotspots, respectively, with the
proportion of multiple ES hotspots was up to 97.09%. This meant that both ESB1 and ESB2
could support multiple ESs simultaneously, which should be determined as the priority
areas for ecological protection to ensure regional sustainable development [2]. ESB3 were
mainly consisted of non-hotspots and class 1 ES hotspots, covering 60.72% and 29.77%,
respectively. Considering that ESB3 was mainly located in the piedmont transition zone,
with high proportion of cultivated land and high SC, land consolidation, reforestation and
afforestation were urgently needed to enhance the water and soil conservation efficien-
cies [3]. ESB4 and ESB5 were primarily covered by non-hotspots, accounting for 82.37%
and 92.97%. ESB4 was fringe areas of urban sprawl and provide an important buffering
function in ecological environmental protection. Ecological protection and restoration
projects using nature-based solutions should be implemented to address regional environ-
mental challenges [91]. In terms of the lowest ESs in urban ecosystems that were in ESB5,
the creation and protection of green spaces should be encouraged to relieve ecological
pressures, whereas the disordered expansion of cities and the occupation of ecological land
for construction should be restricted [33]. For example, as the Yangtze River and Jialing
River crossed the urban center, establishing protected greenbelts along the rivers should be
considered to reduce human disturbances. The ESBs were consistent with the classification
of the major function-oriented zone planning [92], which can provide a theoretical reference
for decision-making related to ecological protection and urban development. ESB1 and
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ESB2 may be considered as prohibited development areas, ESB3 as restricted development
areas, ESB4 as prioritized development areas, and ESB5 as optimized development areas.

In general, the ESs synergies areas reflected the realizability of ESs multifunctional
management and could be used as the pilot areas to solve trade-offs and encourage the
formation of ESBs with more ESs hotspots. In synergy areas with the most ESs hotspots, the
original ecosystem and vegetation should be strictly protected. The ESs trade-off areas illus-
trated the severity of trade-offs and should be the priority areas for ecological restoration.
In ESs trade-off areas, different ecological restoration measures should be taken according
to the different characteristics of trade-offs. For example, the intensity of development
and utilization should be properly controlled to prevent construction land from occupying
ecological land with high ESs. Implementing the project of returning farmland to forestland
and grassland to increase vegetation coverage and maintain biodiversity are also effective
means of regional ESs management.

4.4. Applications of Remote Sensing for ESs Evaluation

Remote sensing has the potential of performing synoptic, spatially continuous, and
frequent observations at a wide range of locations [93], which can provide quantitative
and spatially explicit thematic data regarding various biophysical characteristics that are
often spatialized for ESs evaluation [94,95]. In this study, land use based on Landsat
interpretation was used as a necessary input to the InVEST model to evaluate ESs. Land
use has been widely used as a dominant proxy for ESs [96], such as forest types and
cover are useful to estimate raw materials provisioning [97]. Galbraith et al. [98] stated
that forest and other natural areas were positively related to the provision of pollination
services. De Araujo Barbosa et al. [99] systematically reviewed the literatures on the
evaluation of different ESs using remote sensing and pointed out that land cover was the
most important proxy variable in all ESs assessments, followed by NDVI. NDVI was taken
as an important parameter of cover-management factor in SC evaluation in this study.
Extensive studies have demonstrated that vegetation indices derived from remote sensing
inversion are an increasingly major data source for ESs evaluation [99]. For example, net
primary production can be directly assessed by remote sensors such as MODIS [95]. It is
proved that the vegetation indices based on remotely sensed spectral characteristics can
also respond to different biodiversity conditions and serve as the basis for cultural services
evaluation [18,100]. The geomorphological data obtained from ASTER GDEM V2 digital
elevation model was also the key remote sensing information for BI, SC and WC evaluations
in this study, as mapping topographic heterogeneity was helpful to reveal the possibility of
providing biological refugia and the potential of soil and water loss [101]. Various remotely
sensed information can also be used in combination as proxies for kinds of variables
which in turn can be used as proxies for ESs [99,102]. Integrating land use, vegetation
indices, meteorological, geomorphological, soil characteristics and other reference factors,
we assessed BI, CF, SC and WC by InVEST model.

Generally speaking, remote sensing can be used to evaluate ESs in three different
ways: direct and indirect measures and in combination with ecosystem models. Most
provisioning services are tangible goods that can be quantified by the direct use of remotely
sensed radiation information [103]. For example, the production capacity of agricultural
and forestry ecosystems can be quantified based on satellite-derived chlorophyll measure-
ments [96]. Since the regulating services are derived from complex ecological functions or
processes, they are primarily assessed based on proxy variables reflecting various ecosys-
tem conditions [104]. Taking climate regulation services as an example, it can be estimated
by the net ecosystem exchange of CO2 flux, which can be quantified using biomass as
proxies [99,105], just as we evaluated CF. Cultural services arise from people’s perception of
the natural phenomenon and environment, which are often evaluated by comprehensively
considering biophysical characteristics of ecosystems and beneficiaries’ perception [106].
The combination of remotely sensed inversion data in a multi-agent modelling environment
has the potential to provide necessary indicators for cultural services evaluation [99,107].
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Supporting services are necessary for the maintenance of ecosystems and the production
of all other ESs, which are usually estimated by related proxy variables [108]. Maintaining
animal and plant diversity is one of the most important supporting services, which can be
indirectly evaluated by remote sensing-based habitat mapping, individual spatial distribu-
tion mapping, spectral diversity, etc. [109]. In this study, habitat quality was assessed by the
InVEST model, and the dimensionless relative value of 0–1 could be used as a surrogate to
quantify biodiversity [61]. Although various methods and indicators have been developed
to quantify and map ESs, there are still some limitations in the assessment of some ESs,
such as cost-intensive and time-consuming [82]. Therefore, considering the main ecological
problems faced by the study area and the relative importance of ESs to human well-being,
four key ESs were evaluated in this study. Limited by the accessibility and availability of
data, there was some inconsistency in the precision and resolution of the dataset, which
had become a common problem in ESs evaluation [49].

5. Conclusions

This study demonstrated the effectiveness of the integrated method of InVEST model,
the least-squares regression model and hotspots analysis for ESs assessment, spatial–
temporal variation and hotspots identification. Based on spearman correlation coefficients,
bivariate LISA and K-means clustering, the complex interactions among multiple ESs were
detected. GAM was used to discuss the linear or nonlinear relationships between ESs and
driving factors. The results showed that: (1) BI, SC and WC displayed decreased trends,
while CF tended to remain basically unchanged. High values of ESs were concentrated
in mountainous areas, especially in Jinyun, Zhongliang, Tongluo, Mingyue, Huaying
mountains. In addition, the Yangtze River, Jialing River and other water bodies also had
higher BI. At administrative districts scale, there were relatively higher ESs in Beibei,
Banan and Yubei, and the dramatic decreases were observed in Jiangbei, which were
closely related to regional vegetation coverage and urbanization development. (2) ES
hotspots had distinct spatial heterogeneity in different land use types and TNI gradients.
From the land use types perspective, forestland and grassland were major contributors to
ESs, with the average area proportion of multiple ES hotspots accounting for 94.68% and
84.02%, respectively. Generally, the distribution index of multiple ES hotspots presented a
tendency to increase with an increase in TNI gradients, which indicated that ESs hotspots
were predominantly distributed in mountainous areas with high altitude and steep slope.
(3) In the entire study area, all six pairs of ESs exhibited synergistic relationships. The
correlation coefficients among BI, CF and SC showed a tendency to increase while the
synergies between WC and other ESs were diminished. At grid scale, the synergies
were mainly concentrated in the high-high and low-low clusters, i.e., mountainous areas
and urban central areas. Five ESBs were determined according to the aggregation of
multiple ESs on spatial and temporal scales, which can provide theory supports for land
management decision-making and urban planning. (4) ESs were primarily driven by
natural environment and socioeconomic factors. Land use types had profound impacts on
BI and CF; in particular, forestland and grassland showed a clear positive affect. SC was
mainly determined by geomorphological factors, while WC was more likely to be explained
by precipitation. The unique and crisscrossing landscapes of mountains and rivers resulted
in a strongly nonlinear relationship between ESs and the distance factors. Furthermore,
policy factors were confirmed to have a certain positive effect on ESs. This study not
only provides a scientific basis for the maximization of ESs benefits and multi-objective
collaborative management, but is also beneficial to realize the coordinated and sustainable
development of regional urban expansion and ecological environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13214248/s1, Table S1: Hypothesis test results of generalized additive model fitting, Figure
S1: Smoothing functions of the covariate terms for carbon fixation GAM showing the effect of driving
factors, Figure S2: Smoothing functions of the covariate terms for soil conservation GAM showing the
effect of driving factors, Figure S3: Smoothing functions of the covariate terms for water conservation
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GAM showing the effect of driving factors, Figure S4: Area proportion of ecosystem services bundles
(ESBs) in different ESs hotspots (a) and area proportion of multiple ES hotspots in different ESBs (b)
in 2018.
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