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Abstract: Hyperspectral images contain distinguishing spectral information and show great potential
in the anomaly detection (AD) task which aims to extract discrepant targets from the background.
However, most of the popular hyperspectral AD techniques are time consuming and suffer from poor
detection performance due to noise disturbance. To address these issues, we propose an efficient and
robust AD method for hyperspectral images. In our framework, principal component analysis (PCA)
is adopted for spectral dimensionality reduction and to enhance the anti-noise ability. An improved
guided filter with edge weight is constructed to purify the background and highlight the potential
anomalies. Moreover, a diagonal matrix operation is designed to quickly accumulate the energy
of each pixel and efficiently locate the abnormal targets. Extensive experiments conducted on the
real-world hyperspectral datasets qualitatively and quantitatively demonstrate that, compared with
the existing state-of-the-art approaches, the proposed method achieves higher detection accuracy
with faster detection speed which verifies the superiority and effectiveness of the proposed method.

Keywords: hyperspectral image; anomaly detection; principal component analysis; robustness

1. Introduction

Hyperspectral images (HSIs) contain detailed spectral information obtained from the
sampling from hundreds of contiguous narrow spectral bands [1], and are widely adopted
in different applications, such as change detection and classification [2,3]. Hyperspectral
anomaly detection (AD), which can effectively select abnormal areas without any prior
information about the targets and background [4], is a significant research direction in prac-
tical military and rescue applications [5]. The AD model is based on the assumption that
anomalies occur with a low probability in image space and show a large change in image
intensity in comparison with the background. However, the increased dimensionality of
spectra and the interference by noise pose considerable challenges to accurately detecting
anomalies [6–8]. Therefore, the focus of our study was constructing an efficient and robust
AD framework.

Generally, the existing AD methods can be divided into two types according to
the prior assumption of background: Probability-distribution-based models and low-
rank models.

The former classes of algorithms suppose that the background is well modeled with a
Gaussian multivariate distribution. One of the most well known methods is Reed–Xiaoli
(RX) [9], which is considered the benchmark method for hyperspectral AD [10]. Based
on the assumption of prior distribution, the background and targets can be characterized
by the mean vector and the covariance matrix of the pixels in the whole image. Then,
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the anomaly pixels are detected by calculating the Mahalanobis distance between the
test pixel and the background. Kernel RX [11], which is a nonlinear version of the RX
detector, adopts kernel methods to project the spectral information of the background into
a higher-dimensional feature space. Local RX [12] measures the local areas surrounding the
test pixel and can perform better at the expense of computation cost. Hierarchical RX [13]
has several different layers of RX detectors that are restrained by spectral and spatial
regularization to enhance the sub-pixel anomaly detection performance. Fractional Fourier
entropy RX (FrFE) [14] applies the fractional Fourier transform as a preprocessing step to
map the original spectra into an intermediate domain, and employs Shannon entropy to
represent the signals. Then, the RX method is implemented again in the entropy coefficients.
However, most real-world HSIs cannot be modeled by a Gaussian distribution, which often
cover different classes of materials and exhibits complex backgrounds.

The latter algorithms avoid the probability distribution and separate the HSI data into
two subspaces: A background subspace described by a low-rank matrix and an anomaly
subspace represented by a high-rank sparse matrix [15]. The low-rank and sparse matrix
decomposition-based Mahalanobis distance for anomaly detection (LSMAD) [16] intro-
duces the low-rank prior knowledge of the background and applies Mahalanobis distance
differences to detect abnormal targets. A similar model [17], named low-rank and sparse
representation (LRASR), constructs a dictionary to describe the background pixels and
calculates the residual matrix to locate the anomalies. A sparsity-inducing regularization is
calculated to describe the local structure of each pixel’s representation. The tensor-based
adaptive subspace detection (TBASD) algorithm [18] was developed to fully explore spatial-
spectral potential without breaking the spatial-spectral structure for hyperspectral AD.
The detection results are selected between the inner window and the local neighboring
window, and then in the whole hyperspectral imagery. An AD model named graph and
total variation regularized low-rank representation (GTVLRR) was proposed by [19], which
incorporates graph regularization and total variation regularization into the low-rank rep-
resentation model to preserve the local geometrical structure and spatial relationships in
hyperspectral images. Recently, feature extraction and background purification anomaly
detection (FEBPAD) [20] was presented to predict the abnormal targets. This model extracts
intrinsic features using fractional Fourier transform and purifies the background with a
low-rank and sparse matrix decomposition. However, the above-mentioned methods using
low-rank and sparse constraints are sensitive to noise, since some classes of noise are sparse
and are amplified in sparse matrices. More importantly, they have the disadvantage of
high computational complexity, limiting their applicability. All the methods mentioned
before are listed in Table 1.

Table 1. Hyperspectral anomaly detection methods in the literature.

Method Full Name Reference

RX Reed–Xiaoli [9]
RX-Kernel Reed–Xiaoli Kernel [11]
Local RX Local Reed–Xialli [12]

Hierarchical RX Hierarchical Reed–Xiaoli [13]
RX-DWT Reed–Xiaoli Discrete Wavelet Transform [14]

FrFE Fractional Fourier Entropy [14]
RPCA Robust Principal Component Analysis [15]

LSMAD Low-rank and Sparse matrix decomposition-based
Mahalanobis distance for Anomaly Detection [16]

LRASR Low-Rank And Sparse Representation [17]
TBASD Tensor-Based Adaptive Subspace Detection [18]

GTVLRR Graph and Total Variation regularized Low-Rank Representation [19]
FEBPAD Feature Extraction and Background Purification Anomaly Detection [20]
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To address the aforementioned drawbacks, we propose an efficient and robust AD
framework. The main novelties of our work are:

(1) We design an efficient and robust AD framework that adopts a PCA model to
reduce the spectral dimensions and random noise, and improve the guided filter to purify
and remove the background.

(2) We improve the guided filter by designing an edge weight so that the edge areas
can be better extracted from original images. Then, the corresponding edge areas that
disturb the detection of anomalies in difference images are decreased, making it suitable
for complex backgrounds.

(3) We devise a diagonal matrix operation to quickly accumulate the energy of each
pixels from different images and locate the anomalies.

2. Materials and Motivation

In this section, we first introduce the experimental datasets and then elaborate the
inspiration for our AD framework for HSIs.

2.1. The Datasets

The experimental datasets included four well known HSI datasets and one simulated
dataset, and detailed information are presented below.

AVIRIS-I [21]: The HSI data were collected by the airborne visible/infrared imaging
spectrometer (AVIRIS) over the airport area in San Diego with a spatial resolution of 3.5 m.
It contains 100× 100 pixels ranging from 400 to 1800 nm and has 189 bands after removing
water absorption and low signal-to-noise ratio (SNR) bands. The scene is mainly composed
of three airplanes (64 pixels in total), an apron, a runway, buildings, and vegetation.

AVIRIS-II [22]: This dataset was also acquired by the AVIRIS sensor over the airport
area in San Diego with a spatial resolution of 3.5 m. The size of HSI cube is 100× 100× 189
and three planes are regarded as anomaly targets (77 pixels in total). The differences
between the two datasets are the background, and the direction and size of the targets.

HYDICE [21]: The dataset was obtained by the hyperspectral digital imagery collec-
tion experiment (HYDICE) with a spatial resolution of 1 m. It covers an urban region,
and consists of 80× 100 pixels and 210 bands ranging from 400 to 2500 nm. After removing
48 water absorption and low-SNR bands, 162 bands were preserved for validating the per-
formance of the proposed model. In this image, 8 vehicles (18 pixels in total) are regarded
as targets.

Pavia Centre [23]: The dataset was obtained by the reflective optic system imaging
spectrometer (ROSIS) airborne sensor during a flight campaign over Pavia, Northern Italy.
The size of HSI cube is 150× 150× 102 with a geometric resolution of 1.3 m. The main
backgrounds in the image are water and a bridge, and 7 vehicles (68 pixels in total) are
regarded as targets.

Simulated [13]: The simulated dataset was built using the HSIs from the AVIRIS sen-
sor. This hyperspectral dataset contains 100× 200 pixels and 224 bands ranging from 400 to
2500 nm. The backgrounds are the sea and ragged cloud, and targets are 20 different pixels
that are synthesized by a linear mixture of boat and sea spectral curves. The proportion of
boats in sub-pixel targets is ranges from 5% to 100%.

2.2. Motivation

Generally, anomalies are very small areas that exist with low probability in the spatial
domain and are often differ from their neighboring background in image intensity [24].
Anomaly detection, which is an unsupervised target detection model, remains a chal-
lenging problem using hyperspectral data. The increasing number of spectral channels
can considerably affect the detection rates, and most of the above-mentioned approaches
perform poorly on noisy HSIs. Moreover, surface areas can be extremely diverse, and com-
plex backgrounds decrease the AD performance. In the following, we discuss the main
difficulties encountered and the general philosophy of our solution.
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2.2.1. Redundant Spectral Channels

HSI is a 3-dimension (3D) cube that contains a large number of spectral channels.
However, some of these channels are unsuitable for detecting anomalies due to their low
contrast against the background. As shown in Figure 1, Figure 1a,b are acquired from
the AVIRIS dataset. The airplanes in Figure 1a (the 20th band) present lower contrast
than in Figure 1b (the 150th band). These redundant channels are counterproductive to
target detection, and dimensionality reduction is needed to remove the redundant spectral
images. Principal component analysis (PCA) is an unsupervised linear approach where
cumulative-variance accumulation is adopted for selecting best characteristics from HSI
data [25,26]. To efficiently remove redundant spectral bands, we employ the PCA model in
our framework. As shown in Figure 1c, the first principal component map presents a clear
contrast of airplanes in comparison with Figure 1a. The PCA model can effectively reduce
the next operation processing burden, making it suitable for practical applications. More
importantly, the PCA model has strong anti-noise ability (especially the random noise),
since most of the random noise centers on the high-rank maps of HSIs [27] and these parts
are abandoned in our algorithm. Figure 1d–f depicts the noise HSIs (adding Gaussian
noise with σ = 0.1), corresponding to Figure 1a–c, respectively. Figure 1f demonstrates an
excellent noise suppression result.

Figure 1. Visual comparison of different spectral channels in experimental dataset: (a) The 20th
channel of AVIRIS-I; (b) the 150th channel of AVIRIS-I; (c) the first principal component map of
AVIRIS-I; (d) the corresponding Gaussian noise image of (a); (e) the corresponding Gaussian noise
image of (b); (f) the corresponding Gaussian noise image of (c).

2.2.2. Complicated Backgrounds

As mentioned before, ground features are complex and can cause confusion between
a target and similar edge areas, such as buildings, which may be abnormal against the
background. To better detect the anomalies, we adopt a fast guided filter [28] for purifying
and removing the background, so targets will be distinguishable in the difference maps.
As shown in Figure 2a, the three airplanes are distinguishable in the map of the AD result.
However, the edges of the background highlighted by red and yellow rectangles in Figure 2
create strong interference in target detection. In this paper, we design an edge-weight
operation for a guided filter to extract the edge regions from HSI data, while reducing the
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edge region in difference maps. As shown in Figure 2c,d, the anomaly values in red and
yellow rectangles decrease considerably, demonstrating the effectiveness of this operation.
More importantly, the areas highlighted by green rectangles are three airplane objects.
The abnormality degrees of airplane are almost the same with and without weighted
operation proving that weighted operation has little effect on small areas.

Figure 2. Visual comparison for proposed AD algorithm under complicated background: (a) The AD
result map of our model with guided filter; (b) 3D map corresponding to (a); (c) the AD result map of
our model with weighted guided filter; (d) 3D map corresponding to (c).

3. Method

Figure 3 presents the workflow of the proposed AD framework in which we incor-
porate the PCA model to compress HSI data and a weighted guided filter to remove the
background. The HSI cube is first decomposed by the PCA model to collect remarkable in-
formation. This strategy plays a great role in reducing redundant information and random
noise for AD application. Then, the improved guided filter is adopted to purify the back-
ground, and corresponding difference maps are calculated to detect the anomaly targets.
Finally, an efficient diagonal matrix operation is designed to locate the abnormal targets.

3.1. PCA Model

HSIs contain abundant spectral information, but only a few dimensions are actually
important for the analysis. The PCA model adopts orthogonal statistical transformation
to identify the correlations amongst HSI bands for mining essential features [26]. It can
represent hyperspectral data in a more compact cube without losing too much informa-
tion. While numerous improved PCA models are available, such as Kernel-PCA [29] and
Morphological-PCA [30], we chose linear PCA due to the peculiarities of low complexity
which already is an embedded fuction of matlab software.
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Figure 3. The workflow of the proposed anomaly detection framework.

Suppose that X ∈ R(L×M×N) refers to HSI data, where M, N, and L are the width,
height, and spectral channel, respectively. Then, the HSI data X are reshaped into matrix
I ∈ RL×(M·N) and the mean value of ith band is as follows:

Imean(i) =
1

M · N
M·N
∑
j=1

I(i, j). (1)

Then, the mean matrix can be expanded to I∈RL×(M·N) where Imean(i, j) = Imean(i),
∀j = 1, . . . , (M · N) , and the covariance matrix C of I is calculated as follows:

C =
1

M · N − 1
(I − Imean)(I − Imean)

T . (2)

The eigenvalues E = [e1, . . . , eL] and eigenvectors V = [v1, . . . , vL] of covariance
matrix C are obtained as follows:

C = VEVT , (3)

where T represents the transpose operation. Then, the eigenvectors are sorted by decreasing
eigenvalues and we select the first b eigenvectors corresponding to the first b eigen to build
a new matrix Vb = [v1, . . . , vb]. Finally, the original HSI can be projected into a new feature
space as:

Ipca = VT
b (I − Imean), (4)

where matrix Ipca ∈ Rk×(M·N) is the result of dimensionality reduction.

3.2. Weighted Guided Filter

The fast guided filter was proposed by He and Sun [31] based on the guided filter [28]
and a first-order constraint. Compared with other edge-preserving algorithms, the fast
guided filter contains a simple linear transform, making it suitable for practical applicationa.
Suppose the guide image, filtering input image, and filtering output image are Ig, Ipca,
and Inew, respectively. The guided filter is driven by a local linear model as follows:

Inew(i) = ak Ig(i) + bk, ∀i ∈ wk, (5)

where i is the index of image pixels, ak and bk are the projection parameters, and k is the
index of local window w, which has a radius r. By minimizing the reconstruction error
between Ipca and Inew, we can acquire ak and bk as follows:

ak =

1
|w| ∑i∈wk

Ig(i)Ipca(i)− µk Īpca(k)

σ2
k + ε

(6)
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bk = Īpca(k)− akµk, (7)

where µk and σk are the mean and variance of Ig in window k, respectively; and ε is a
regularization parameter controlling the degree of smoothness. The parameters r controls
the filter window size, bigger window size means more background region will be fil-
tered by the weighted guided filter. The parameters ε determines the smoothness degree,
the bigger ε, the deeper the degree of smoothness. The setting of parameters r and ε were
discussed in the Evaluation indexes and Parameter Setting subsection. The filtering output
is computed by:

Inew(i) = āi Ig(i) + b̄i, (8)

where āi = 1
|wi | ∑k∈wi

ak and b̄i = 1
|wi | ∑k∈wi

bk are the average of a and b, respectively,
on window wi centered at i. To extract the structure of input image, we design an edge-
weight G for input image Ipca as follows:

G(k′) =
1
|w|

 ∑
i∈wk′

I2
pca(i)−

 ∑
i∈wk′

Ipca(i)

2
, (9)

where G(k′) is computed in window 3× 3. We apply a Gaussian function Ga to smooth
weight G maps so that local valuess of weight G maps are stable. Gaussian function matrix
was created by Gaussian function with a standard variation of 2 using MATLAB. This
matrix was inspired by SSIM method [32] to smooth weight G maps. The Gaussian function
matrix Ga we used here is as follows:

0.0232 0.0338 0.0383 0.0338 0.0232
0.0338 0.0492 0.0558 0.0492 0.0338
0.0383 0.0558 0.0632 0.0558 0.0383
0.0338 0.0492 0.0558 0.0492 0.0338
0.0232 0.0338 0.0383 0.0338 0.0232

 (10)

The parameter ε is divided by weight G maps so that ak increases with weight G. This
operation will preserve the main structure of background. The corresponding parameter
ak is updated as follows:

ak =

1
|w| ∑i∈wk

Ig(i)Ipca(i)− µk Īpca(k)

σ2
k + ε/G

. (11)

Diverse guide images exists, such as original spectral channels or the results of PCA.
We adopt the results of PCA as the guide image, i.e., Ig = Ipca, and ak and bk are calculated
as follows:

ak =
σ2

k
σ2

k + ε/G
(12)

bk = (1− ak) p̄k. (13)

It is obvious that the improved filter is an effective edge-preserving filter. Parameter
ak increases in the edge areas to extract the main structure. We adopt the improved
guided filter to purify the background, and the difference images Idi f f are calculated as:
Idi f f = Ipca − Inew. Then, the difference images are employed to detect abnormal targets,
since the background is different from the anomalies that are locally continuous in the
spatial domain [33].

3.3. Diagonal Matrix Operation

The difference images contain anomaly targets and many methods can be applied to
locate these objects. The Mahalanobis distance of RX is one of the common methods used
for detecting anomalies. However, the inversion of the covariance matrix for the whole
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image is complex and computationally intensive. We removed the background, and so did
not need a normalization operation or linear projection. Given the convenience of the matrix
calculation in MATLAB, we designed a diagonal matrix operation to efficiently collect
the energy of each pixel between the channels of the difference images Idi f f ∈ R((M·N)×b).
The operation is as follows:

Y = diag
(

Idi f f ∗ IT
di f f

)
, (14)

where diag is the operation that extracts the diagonal element of matrix Idi f f ∗ IT
di f f .

Formula (14) sums the square values of each pixel in the difference images Idi f f to de-
termine the energy accumulation for anomalies. Then, the AD result can be acquired,
as shown in Figure 2d. To reduce the computation complexity and memory requirement,
we employ “for cycle” for all the M · N pixels to accumulate the energy of each channel.

3.4. Evaluation indexes and Parameter Setting

We used the ROC curve and AUC to evaluate the detection accuracy of the considered
methods. The ROC values represent the changes in detection performance PD (probability
of detection) with false alarm PFA. When a specific threshold η is adopted to measure the
anomalies, PD and PFA are as follows:

PD =
NTT
NT

, PFA =
NBT
NB

, (15)

where NTT represents the number of true targets labeled as targets, NT denotes the total
number of targets (anomalies), NBT is the number of background pixels labeled as targets,
and NB counts the total number of background pixels. AUC calculates the area under the
ROC curve. There are two groups of parameters that need to be adjusted: (1) The number
of dimensionality-reduction maps and (2) filter parameters r and ε. These parameters play
important roles in AD detection.

3.4.1. The Number of Dimensionality-Reduction Maps

PCA is an unsupervised dimensionality reduction method requiring a preset channel
number. To select a suitable number of PCA maps, we tested our model on the first AVIRIS
dataset. As shown in Figure 4a, the AUC values increase with the number of dimensionality-
reduction maps (with a channel number under five). This demonstrates that increasing the
number of maps improves AD performance. The energy of targets concentrates in the front
part of principal components. Therefore, the increasing of channel numbers will enhance
target energy which can improve the effect of anomaly detection. The target detection is
not affected when exceeding five PCA maps. However, the computational complexity of
the guilder filter is increased with the number of PCA maps. To reduce the computational
time, we chose five PCA maps for our model. Based on lots of experiments, we select first
five principal components to detect the abnormal areas and this condition is applied to all
HSI images.

3.4.2. Filter Parameters r and ε

Parameter r and ε control the size of the window and the degree of smoothness. To find
the optimal r and ε, we tested the AUC values with filter parameters ranging from 1 to 17.
Figure 4b presents the visualized result on the first AVIRIS dataset. We found the detection
performance is sensitive to the window size r and a better performance can be obtained
when r and ε are 11 and 5, respectively. For the AVIRIS-II data set, it contains similar
landcover features and targets to the AVIRIS-I data. Then, we use the same parameters for
those two datasets.
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Figure 4. Examples of AUC values under different parameters of our framework: (a) AUC values on
the first datasets corresponding to different numbers of dimensionality-reduction maps; (b) AUC
values under different filter parameter r and ε.

For the HYDICE dataset, it contains smaller targets comparing with AVIRIS-I and
AVIRIS-II dataset, and we achieved a better detection performance when the r = 9 and
ε = 0.2. As window size r determined how many background regions will be processed by
the filter, larger targets seems need larger filter window size to wrap it. Then, for the Pavia
Centre dataset, which contains targets with the size larger than the HYDICE dataset but
smaller than the AVIRIS-I dataset, we set r = 10 and ε = 5 to test the detection performance.
For the simulated dataset, it contains pixel and sub-pixel targets with a smaller size than
other dataset, then we set a much smaller filter windows size for it with r = 2 and ε = 3 to
test the detection performance.

4. Experimental Results and Discussion

In this section, we compare our model with state-of-the-art AD methods on four public
datasets and one simulated dataset. We compare the performance of the proposed approach
with other AD algorithms including RX [9] (hyperspectral toolbox in github) [34], RX on
discrete wavelet transform (RX-DWT) [14] (FrFE toolbox in github) [35], RX-Kernel [11]
(hyperspectral toolbox in github) [34], robust PCA [15] (FEBPAD toolbox in github) [36],
LSMAD [16] (FEBPAD toolbox in github) [36], LRASR [17] (LRASR toolbox in github) [36],
FrFE [14] (FrFE toolbox in github) [35], GTVLRR [19] (FEBPAD toolbox in github) [37],
and FEBPAD [20] (FEBPAD toolbox in github) [37]. We report the area under the curve
(AUC) [38] and receiver operating characteristic (ROC) curve [39] on the different datasets,
and present the corresponding detection maps. Moreover, we compare our model with
others on Gaussian and impulse noise data to prove the robustness of our model. Finally,
we present the testing time of our model.

4.1. Detection Performance Analysis
4.1.1. The AVIRIS-I Dataset

We compared our model with the state-of-the-art models on four public datasets.
For the AVIRIS-I dataset, Figure 5 presents the detection maps acquired by the various
methods. Figure 5a,l are the pseudo-color image and ground truth map, respectively and
Figure 5b–k depicts the corresponding detection maps of RX, RK-DWT, RX-Kernel, RPCA,
LSMAD, SRALR, FrFE, GTVLRR, FEBPAD, and the proposed method, respectively. It can
be seen that the RX-based, RPCA, and FEBPAD methods can correctly detect the anomalies,
but their responses values are not strong. The LSMAD, SRALR, and FrFE algorithms
achieve a better visual performance than the RX-based ones due to the sparsity constraint
for low-probability targets. The GTVLRR model obtains detailed texture background
information because of the total variation for high-frequency information. In contrast,
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our model acquires the best result for the three targets due to purifying and removing
the background.

To quantitatively compare our framework with the other state-of-the-art models,
the ROC curves with pointwise confidence intervals are exhibited in Figure 6, and the AUC
values with upper and lower bounds are reported in Table 2. Figure 6 shows that low-rank
AD methods can obtain stable results for three airplanes, whereas RX performs poorly for
the first datasets due to the complex spectral channels. Our model performs the best on the
AVIRIS-I dataset.

Figure 5. Detection results on the AVIRIS-I dataset: (a) Pseudo-color image; (b) RX; (c) RX-DWT;
(d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR; (j) FEBPAD; (k) ours;
(l) ground truth.

Figure 6. ROC curves of anomaly detectors on the AVIRIS-I dataset.
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Table 2. AUC values of the proposed method and state-of-the-art methods on three HSI datasets.

Dataset RX RX-DWT RX-Kernel RPCA LSMAD

1 0.8865 0.9607 0.9768 0.9782 0.9773
2 0.9578 0.9737 0.9941 0.9739 0.9781
3 0.9700 0.9743 0.9419 0.9852 0.9813
4 0.9538 0.9659 0.9515 0.9570 0.9704
5 0.8107 0.8828 0.8493 0.8105 0.9435

Dataset LRASR FrFE GTVLRR FEBPAD Ours

1 0.9704 0.9708 0.9697 0.9886 0.9971
2 0.9550 0.9853 0.9532 0.9899 0.9937
3 0.9665 0.9837 0.9990 0.9917 0.9975
4 0.9592 0.8119 0.9817 0.9354 0.9752
5 0.7697 0.3622 0.9950 0.9725 0.9999

4.1.2. The AVIRIS-II Dataset

Figure 7 shows the visual detection maps of the models compared on the second
AVIRIS dataset. Figure 7a,l is the pseudo-color image and ground truth map, respectively;
Figure 7b–k is the detection maps of RX, RK-DWT, RX-Kernel, RPCA, LSMAD, SRALR,
FrFE, GTVLRR, FEBPAD, and the proposed method, respectively. The RX-Kernel, SRALR,
and FrFE models produce better visual effects than the RX and RPCA models. GTVLRR
retains abundant texture of background, which will limit the detection performance. Our
model acquires the best visual result for the three targets, being the closest to the ground
truth amongst the all the compared state-of-the-art methods.

To clearly explain the detection result, we exhibit the ROC curves in Figure 8 and
report the AUC values in Table 2. In Figure 8, we can observe that RX, the SRALR,
and GTVLRR models obtain the worst results. Our model obtains comparable, but slightly
worse, performance on the second AVIRIS dataset to the best-performing RX-Kernel.

Figure 7. Detection results on the AVIRIS-II dataset: (a) Pseudo-color image; (b) RX; (c) RX-DWT;
(d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR; (j) FEBPAD; (k) ours;
(l) ground truth.
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Figure 8. ROC curves of anomaly detectors on the AVIRIS-II dataset.

4.1.3. The HYDICE Dataset

For illustrative purposes, Figure 9 presents the obtained detection maps of the com-
pared algorithms on the HYDICE dataset. Figure 9a,l is the pseudo-color image and ground
truth map, respectively; Figure 9b–k is the detection maps of RX, RK-DWT, RX-Kernel,
RPCA, LSMAD, SRALR, FrFE, GTVLRR, FEBPAD, and the proposed method, respectively.
From the illustrative presentation of the detection maps, we find that RPCA and our model
provide excellent background suppression performance. The result of our model is the
closest to the ground truth amongst all the considered state-of-the-art methods.

We exhibit the ROC curve in Figure 10 and list the AUC values in Table 2. As shown
in Figure 10, the proposed algorithm achieves outstanding performance compared with
the other methods in terms of ROC and AUC values, which demonstrates the effectiveness
of the proposed AD model.

Figure 9. Detection results on the HYDICE dataset: (a) Pseudo-color image; (b) RX; (c) RX-DWT;
(d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR; (j) FEBPAD; (k) proposed
method; (l) ground truth.
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Figure 10. ROC curves of anomaly detectors on the HYDICE dataset.

4.1.4. The Pavia Centre Dataset

To prove the detection effect of the proposed method, we compared it with other AD
algorithms on the Pavia Centre dataset, which has a larger spatial domain. Figure 11a,l
present the pseudo-color image and ground truth map, respectively; Figure 11b–k shows
the detection results of these models. From the detection maps, the FrFE, GTVLRR, and FEB-
PAD models have poor background suppression capability. Our model can effectively
remove the background and the detection map is similar to the ground truth.

For quantitative comparisons, we present the ROC curve in Figure 12 and report the
AUC values in Table 2. In Figure 12, the red curve associated with our method is close to the
upper right corner, which demonstrates the effectiveness of the proposed model. The AUC
value of our method is 0.9752, only slightly less than that of GTVLRR, at 0.9817. However,
our model has lower computational complexity and is robust against noise interference.

Figure 11. Detection results on the Pavia Centre dataset: (a) Pseudo-color image; (b) RX; (c) RX-DWT;
(d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR; (j) FEBPAD; (k) proposed
method; (l) ground truth.
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Figure 12. ROC curves of anomaly detectors on the Pavia Centre dataset.

4.1.5. The Simulated Dataset

To demonstrate the point target or sub-pixel target detection effect of our method, we
tested the AD algorithms on the simulated dataset, which contains different proportions
of mixed pixels. Figure 13a,l exhibits the pseudo-color image and ground truth map,
respectively; Figure 13b–k presents the corresponding detection results of these algorithms.
As can be seen from visual result, RPCA, LSMAD, and GTVLRR models can effectively
suppress the background. Nevertheless, their detection effect is poor on sub-pixel targets
with a low proportion in the left of the simulated image. Our method is the closest to the
ground truth of these state-of-the-art algorithms, proving the effectiveness of our model.

For quantitative comparisons, we present the ROC curve in Figure 14 and report the
AUC values in Table 2. In Figure 14, the red curve associated with our method is closest to the
upper right corner. Remarkably, our model achieves the best AUC value. All these results
indicate that the proposed model can effectively distinguish anomalies from the background.

Figure 13. Detection results on the simulated dataset: (a) Pseudo-color image; (b) RX; (c) RX-DWT;
(d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR; (j) FEBPAD; (k) proposed
method; (l) ground truth.
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Figure 14. ROC curves of anomaly detectors on the simulated dataset.

4.2. Noise Interference

Gaussian noise: Hyperspectral data have been widely applied for target detection.
However, one obstacle [40] to HSI applications is that HSIs are often corrupted by Gaussian
noise. Gaussian noise limits the application of HSI data and degrades AD performance.
AD algorithms need to have an inherent capability to counteract the effects of Gaussian
noise interference. To prove the ability of our method to resist the effects of Gaussian noise,
we compared our model with the state-of-the-art algorithms under different degrees of
Gaussian noise [41]. Table 3 and Figure 15 present the AUC values on the AVIRIS-I dataset
under different degrees of Gaussian noise. We can see that the rate at which the detection
performance of proposed model decreases is the slowest with increasing Gaussian noise
due to the introduction of PCA model. The detection performance of proposed model is
much higher than second best model (RX-Kernel) which adopts higher-dimensional space
to detect anomalies.

For illustrative purposes, Figure 16 presents the obtained detection maps of the
considered algorithms on the AVIRIS-I dataset with Gaussian noise σ = 0.1. Figure 16a,l is
the pseudo-color image and ground truth map, respectively; Figure 16b–k is the detection
maps of RX, RK-DWT, RX-Kernel, RPCA, LSMAD, SRALR, FrFE, GTVLRR, FEBPAD,
and the proposed method, respectively. The original image and most detection maps
are severely contaminated by Gaussian noise. RX-Kernel and our model achieve better
detection results than the other state-of-the-art methods and our model is the closest to the
ground truth.

Figure 15. The AUC results on the AVIRIS-I dataset with the interference of different degrees of
Gaussian noise.



Remote Sens. 2021, 13, 4247 16 of 21

Figure 16. Detection results for the AVIRIS-I dataset with Gaussian noise (σ = 0.1): (a) Pseudo-color
image; (b) RX; (c) RX-DWT; (d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR;
(j) FEBPAD; (k) proposed method; (l) ground truth.

Table 3. AUC values of the proposed method and methods used for comparison on the AVIRIS-I dataset under different
degrees of Gaussian noise.

Noise σ RX RX-DWT RX-Kernel RPCA LSMAD LRASR FrFE GTVLRR FEBPAD Proposed

0.00 0.8865 0.9607 0.9768 0.9782 0.9773 0.9704 0.9708 0.9697 0.9886 0.9971
0.10 0.7541 0.8233 0.9767 0.8090 0.8954 0.9311 0.7890 0.9187 0.9424 0.9922
0.22 0.6307 0.6959 0.9156 0.6501 0.8053 0.7056 0.6389 0.5192 0.6522 0.9835
0.31 0.5722 0.6303 0.8043 0.5902 0.7215 0.5946 0.5587 0.5021 0.5019 0.9728
0.40 0.5988 0.6115 0.7936 0.6062 0.6761 0.5522 0.5321 0.5040 0.4920 0.9307
0.52 0.5522 0.5980 0.6836 0.5255 0.5283 0.5547 0.5008 0.4834 0.4325 0.8972
0.61 0.5016 0.5680 0.5680 0.5680 0.5723 0.5039 0.4430 0.4993 0.3385 0.8359
0.84 0.4783 0.5246 0.4811 0.4560 0.4909 0.4633 0.4807 0.5162 0.3909 0.7214
0.94 0.4773 0.4613 0.5121 0.4592 0.5046 0.4335 0.4891 0.5002 0.3822 0.6799
1.10 0.5197 0.5769 0.4681 0.4882 0.4700 0.5024 0.4603 0.5385 0.4249 0.6337
1.35 0.4772 0.5092 0.5334 0.4561 0.4472 0.4822 0.4633 0.5007 0.4519 0.6297
1.50 0.4776 0.4770 0.4779 0.4690 0.4721 0.4619 0.5311 0.5120 0.4715 0.5603

Impulse noise: To prove the superior ability of our method to resist impulse noise, we
compared our model with the state-of-the-art algorithms under different degrees of impulse
noise. Figure 17 exhibits the AUC values on the AVIRIS-I dataset under different degrees of
impulse noise. We can see that the rate at which the detection performance of the proposed
model decreases is the slowest with increasing impulse noise. The detection performance of
the proposed model is much higher than that of the next-best model (RX-Kernel). Figure 18
shows the detection maps on the AVIRIS-I dataset with 0.2% impulse noise. Figure 18a,l is
the pseudo-color image and ground truth map, respectively; Figure 18b–k is the detection
maps of RX, RK-DWT, RX-Kernel, RPCA, LSMAD, SRALR, FrFE, GTVLRR, FEBPAD,
and the proposed method, respectively. The original image and most detection maps are
severely contaminated by impulse noise. The impulse noise is similar to anomalies and
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will seriously interfere with AD performance, especially for the low-rank models using
a sparsity constraint. RX-Kernel and our model achieve better detection results than the
other state-of-the-art methods and our model is the closest to the ground truth.

Figure 17. The AUC results on the AVIRIS-I dataset with different degrees of interference of im-
pulse noise.

Figure 18. Detection results on the AVIRIS-I dataset with impulse noise (proportion): (a) Pseudo-color
image; (b) RX; (c) RX-DWT; (d) RX-Kernel; (e) RPCA; (f) LSMAD; (g) LRASR; (h) FrFE; (i) GTVLRR;
(j) FEBPAD; (k) proposed method; (l) ground truth.

Real noise: To demonstrate the anti-noise property, we conducted an additional
experiment on the AVIRIS-I dataset without removing the noise bands. The number of
spectral band is 224 and partial bands are contaminated by real noise. The ROC curve and
AUC values are presented in Figure 19 and Table 4. It is obvious that the proposed method
always offers the best detection performance even when the probability of false alarm is
extremely low. Our model achieves the best performance in terms of AUC values with a
2-point lead over the second place. The AUC value of our model declines by only 0.07%
under the interference of noised bands which demonstrates the robustness of our model.
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Figure 19. ROC curves of anomaly detectors on the first AVIRIS dataset without removing the
noise bands.

Table 4. AUC values of the proposed method and methods used for comparison on the first AVIRIS
dataset without removing the noise bands.

Dataset RX RX-DWT RX-Kernel RPCA LSMAD

224 bands 0.8454 0.8579 0.9798 0.9711 0.9795

Dataset LRASR FrFE GTVLRR FEBPAD Ours

224 bands 0.9764 0.9566 0.9675 0.9782 0.9964

4.3. Time Cost

All the experiments in this study were implement in MATLAB on a Windows 10
operation system and conducted on an Intel Core I7-8700 CPU 3.20GHz desktop with 16
GB memory. From Table 5, we can see that our model is faster than the other state-of-the-art
methods except for the RX model, which adopts linear projection to extract the anomalies.
This proves the practical value of our model for HSI application. The main reasons for
the efficient detection ability of our model are twofold: (1) A PCA model is adopted to
reduce the spectral channels of the subsequent computations; (2) an efficient diagonal
matrix operation is used to quickly locate the anomalies.

Table 5. The computation costs of different AD methods on the three datasets (in seconds).

Dataset RX RX-DWT RX-Kernel RPCA LSMAD

1 0.0988 4.5790 61.3003 9.0523 8.3447
2 0.0932 4.6329 77.7485 14.2317 8.4044
3 0.0746 3.3241 37.5660 6.8391 5.1366
4 0.1204 6.1317 3104.4629 81.842 14.6488
5 0.1822 7.3317 440.6284 19.8474 18.7047

Dataset LRASR FrFE GTVLRR FEBPAD Ours

1 10.9892 15.8958 89.7813 2.3781 0.3772
2 10.8809 16.7092 94.6053 2.3582 0.3711
3 8.3371 10.9782 74.3376 1.6061 0.2957
4 19.9892 13.4504 159.1784 6.3693 1.2113
5 21.686 22.3962 144.936 5.9663 0.9265
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4.4. Detection Performance Discussion

Based on the previous experimental results, our algorithm has shown great potential
in hyperspectral anomaly detection. Experiments result on AVIRIS-I and AVIRIS-II datasets
illustrates that, our method achieved the highest AUC values comparing with other meth-
ods under the same parameters (r = 11, ε = 5) as those two datasets contain similar land
features and targets. Experiments result on simulated data set demonstrate that our method
is suitable and effective for sub-pixel targets and shown better performance under smaller
filter window size (r = 2, ε = 3). Those three datasets are collected by AVIRIS sensors
with different land covers and the test results seems stable with the smoothness degree but
sensitive to filter window size. For the dataset collected by other sensors (HYDICE and
ROSIS), our method achieves satisfactory results by adjusting the parameters.

The main differences between the datasets we used (collected by AVIRIS, HYDICE
and ROSIS sensors with different spatial resolution) are the size of anomaly targets and
landcover features they contained, bigger targets and complex landcovers need larger filter
window size and smoothness degree to purify the background. Even though there are
no prior spectral information of the targets but what we want to detect can be used as a
guide for parameter settings. Then, we use a smaller smoothness degree and window size
for small targets under HYDICE and Pavia data set to test the detection performance and
achieve satisfactory results. In other words, the parameters are sensitives to the HSI data
source and targets size, they are better to be changed with the variation of the data source
and observation scene. Based on our tests, smoothness degree parameter ε can be selected
from 3–5 for AVIRIS and ROSIS sensors. For the data collected from HYDICE sensors with
pixel or sub-pixel targets, ε can be selected from 0.1–0.3. The window size parameter r can
be set as twice bigger than the targets you suspected contains in the hyperspectral images.

5. Conclusions

In this work, we constructed an efficient and robust anomaly detection framework.
Extensive experiments were conducted on four public datasets and one simulated dataset,
demonstrating that our proposed scheme outperforms the state-of-the-art methods in terms
of detection time and accuracy. Furthermore, the proposed approach has shown better
robustness under severe Gaussian noise pollution.

As for the possible shortcomings of the proposed work, the parameters in weighted
guided filter processing should be more adaptive to the HSI source and targets. How to
select parameters automatically for different data sources to detect targets with different
sizes will be a focus in our future work. A multi-scale filter structure which contains
filters with different filter window sizes seems to be a suitable way to avoid the parameter
setting process and we will try to use this technique to improve our model in the future.
In addition, due to the availability of HSI public data sets, there are three kinds of sensor
data conducted, and other sensor images could be further tested or verified in future work
to discover the relationship between parameters and sensors and establish a model to
realize the adaptive parameter adjustment.

Moreover, we employ PCA to reduce the spectral channel, and we are aware that
in some advanced works, feature selection has been realized in optics target detection
tasks and time series processing tasks. We consider that a similar approach should also be
feasible for AD of HSIs. In our future work, we will continue to improve our approach by
adopting efficient characteristic spectral band selection models.
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