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Abstract: A phase gradient (PG)-based algorithm is proposed in this study to determine coastal
bathymetry from X-band radar images. Although local wavenumbers with the same spatial resolution
of the wave field can be obtained from the wave field using the PG method, only a single wavenumber
result can be extracted from each location theoretically. Due to the influence of unavoidable noise
on the wave field image, single wavenumber estimation often shows high uncertainty. This study
combines a bandpass filter and directional pass filter to produce different nearly monocomponent
wave fields from X-band radar images and then estimates more wavenumbers from these wave fields
using the PG method. However, the distributions of wavenumbers in higher-frequency bins still
show high variance because the strength of wave signals is weak. We confirmed that the uncertain
wavenumber–frequency pairs can be improved using the Kalman filter and are more consistent with
the dispersion relation curve. To decrease the influence of inaccurate wavenumbers, we also use
the strength of the wave signals as the weights for the least-squares fit. Although the depth errors
from shallow-water areas are still unavoidable, we can remove the inaccurate depth estimation from
shallow-water areas according to the coefficients of determination of the fitting. In summary, the
algorithm proposed in this study can obtain a bathymetry map with high spatial resolution. In
contrast to the depth result estimated using a single wavenumber of each frequency bin, we confirm
that more wavenumbers from each of the frequency bins are helpful in fitting the dispersion relation
curve and obtaining a more reliable depth result.

Keywords: wave dispersion relation; directional pass filter; nearly monocomponent wave fields

1. Introduction

Coastal bathymetry is key to supporting different maritime and coastal applications,
such as the safety of ship navigation and assessment of coastal risks. Underwater acoustic
techniques are undoubtedly the most popular way to obtain high-precision depth data [1–3].
However, the risk due to sea states and the time consumption often increase the difficulty
of in situ operation. Remote sensing provides potential ways to obtain coastal bathymetric
information more efficiently. Both optical video and radar images have been proven to
be feasible for determining coastal bathymetry [4–10]. Video image sequences, whose
temporal and spatial resolutions are better than those of radar image sequences, are helpful
in determining the water depth in shallower sea areas. However, the range of bathymetry
determination using X-band radar images can be much larger, up to several kilometers.
Nautical X-band radar is normally used to detect coastlines and obstacles on the sea surface
on board a ship. Studies have proven its feasibility for presenting the patterns of ocean
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waves since the late 1970s [11,12], and X-band radar is currently one of the most popular
tools for ocean remote sensing.

The wave dispersion relation of the linear theory for surface gravity waves, which
describes the wavenumber–frequency features of gravity waves at different water depth
conditions, is the most common way to estimate bathymetry from remotely sensed images.
Because the wavenumber–frequency structure can be obtained from the spatial–temporal
wave patterns in sea surface image sequences [4], different algorithms have been proposed
to extract wavenumber–frequency information accurately and efficiently.

Regardless of whether wave pattern image analysis is implemented in the spatial-
temporal domains or in the spectral domains [5,13,14], the window size of the image is
always the result of a tradeoff between the accuracy of the estimates and the homogeneity
constraints on the sea parameters [15]. Because the fast Fourier transform algorithm
reduces the number of computations, an increasing number of studies have focused on
depth determination from the spectral domain. The wavenumber obtained from the image
spectrum is a popular and reliable method. However, the precise wavenumber result
comes from the high-resolution image spectrum, which necessitates a spectral transform
from the large window size of the image. When large wave pattern images are analyzed,
the inhomogeneity within coastal images is often unfavorable for obtaining bathymetry
maps with high spatial resolution.

In addition to image analysis with a specific window size, another category of
bathymetry retrieval methods estimates the wavenumber from the local phase gradi-
ent (PG) within a monofrequency image and then calculates the wavenumber–frequency
pair [16,17]. The PG over the Fourier transform technique allows higher spatial reso-
lution and computational efficiency [18]. A depth result can be determined from one
wavenumber–frequency pair using the dispersion relation. However, errors of local phase
estimation under the joint influences of the imaging mechanism, observation noise, and
multiple wave frequencies are unavoidable [19]. As a result, error in depth determination
using a single wavenumber–frequency pair that is estimated from sea surface images is
inevitable. Although the water depth value can be determined by fitting the dispersion re-
lationship curve using all frequency-dependent wavenumbers, the derived wavenumbers
for each frequency bin using the PG method are still uncertain. If a sequence of records is
processed, we can average the bathymetry maps to reduce noise or implement a Kalman
filter to objectively update the bathymetry estimates [18,20]. However, both the average
and Kalman filter methods rely on sufficient records with clear wave pattern images. In
the case of limited image records, we need to implement another way to improve the
accuracy of depth determination. Under the PG method, this study aims to estimate the
plural local wavenumbers at each of the frequency bins to determine the bathymetry using
marine radar images. To obtain abundant local wavenumbers at each location, spectral
bandpass filtering and directional filtering are carried out on individual pixels in isolation.
In subsequent sections, we will demonstrate the entire image processing procedure and
confirm its practicability using coastal radar images.

2. Methods and Data
2.1. Theoretical Preliminaries

Similar to most studies on bathymetry determination using remotely sensed images,
our study applies the theory of the wave dispersion relationship for depth estimation. The
dispersion relation under different depth conditions is

ω =
√

gktanh(kd) +
⇀
k ·

⇀
U, (1)

where ω is the angular frequency, d is the water depth, and g is acceleration due to

gravity.
⇀
k= (kx, ky) and

⇀
U are the wavenumber and current vectors, respectively. k is the

wavenumber modulus. To simplify the depth estimation, we ignore the effects of wave–
current interactions. Note that Equation (1) is based on the linear wave theory. Although
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different nonlinear wave theories have been proposed, the practicality of employing the
nonlinear wave dispersion relation in depth determination is still under discussion. In our
study, we focus only on depth estimation using the linear wave dispersion relation.

Natural ocean waves can be seen as the sum of some statistically independent, har-
monic waves propagating in different directions across the sea surface. From the point of
view of the spectral domain, the directional spectrum represents the distribution of wave
energy not only in the frequency domain but also in a direction [21]. As a result, remotely
sensed images of the sea surface always present multiple components of wave patterns.
To obtain reliable wavenumbers from the wave image signals using the PG method, we
first have to estimate the local phases from nearly monocomponent images. Later, we will
explain why we use nearly monocomponent images instead of pure monocomponent wave
field images.

2.2. Methods

Figure 1 shows the procedure for obtaining nearly monocomponent images of the
wave pattern. In our study, the original wave image signals were decomposed into different
nearly monocomponent signals by bandpass and directional filtering. The image sequences
I(

⇀
x , t) that present the image intensity at different spatial locations

⇀
x = (x, y) and times

(t) are transformed into the spectral domains S(
⇀
k , ω) using the three-dimensional, fast

Fourier transform (FFT). Note that computing the temporal and spatial gradients of the
phase can yield both the wavenumber and the frequency of the moving periodic structure
directly [22]. However, both the wavenumber and the frequency are sensitive to noise
from image sequences. The short-term characteristics of wave records can be reasonably
treated as nearly stationary [23]. Subsequently, we will point out that the duration of our
radar image sequences is 183 s, and ocean waves can be deemed stationary within this
duration. As a result, the frequency information is extracted from the spectrum instead of
the estimation of the temporal gradient of the phase.

Due to different radar imaging mechanisms [24], not only ocean wave signals but also
nonwave components are included within the wave pattern image. To obtain the spectra

with only ocean wave components SF(
⇀
k , ω), the wave dispersion shell is implemented here

to filter out nonwave signals from S(
⇀
k , ω) [25]. SF(

⇀
k , ω) still includes wave components

with multiple frequencies, which are unfavorable for determining the local wavenumber
using the PG method. We isolate different wave components using both a bandpass filter
FB(ω) and a directional filter FD(θ) [16]. To obtain the signals with a monofrequency
component, we preserve the power density at only one specific angular frequency bin ωi
for the bandpass filter FB(ω):

FB(ω) =

{
1 ω = ωi

0 ω 6= ωi
, (2)

where the angular frequency bins ωi are determined from the temporal length and interval
of image sequences on the basis of the FFT algorithm. Although the period of gravity
ocean waves can be up to 20 s, depth determination using wave components that are too
long results in the issue of nonlinear waves, which is out of the scope of our study. On
the other hand, the wave dispersion relation shows that depth determination using wave
components that are too short is quite sensitive to the influence of ocean currents. To avoid
wavenumber estimations from inappropriate frequency bins, we limited the range of ωi
for practical filtering. In our study, we limited ωi to within the range of 2π/12 (rad/s) to
2π/5 (rad/s).
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Figure 1. Flowchart for the image process in our study. Three different types of filters are applied here to obtain a nearly
monocomponent wave field.

For directional filtering FD(θ), we designed the filter based on the dominant wave
direction θp, which is defined as the direction of the most energetic wave in the spectrum
according to the World Meteorological Organization:

FD(θ) =

{
1 θ = θp + θj ± (∆θ/2)
0 otherwise

, (3)

θj = −N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N, (4)

In which θj is the key to obtaining more than one local wavenumber at a single pixel of
the wave image. ∆θ is the width of the directional pass filter. Although a small value
of ∆θ can produce a pure monocomponent wave field image, the pure monocomponent
image presents only homogeneous wave features, which is unfavorable for determining
inhomogeneous wavenumbers from the spatial domain. In the case of wave refraction in
shallow water, a directional filter with a directional width that is too narrow also interferes
with wavenumber estimation from refracted waves. To determine the wavenumber from a
coastal image, we establish a larger value of ∆θ. In our study, N = 15 and ∆θ = 30

◦
.
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To apply directional filtering, SF(
⇀
k , ω) is transformed into the polar coordinates

SF(k, θ, ω) [26]:

SF(k, θ, ω) = kSF(
⇀
k , ω). (5)

After implementing bandpass and directional filtering, we can obtain a nearly mono-

component wave field W(
⇀
x , t) from the filtered spectrum SN(

⇀
k , ω):

SN(k, θ, ω) = SF(k, θ, ω)FB(ω)FD(θ), (6)

SN(
⇀
k , ω) = (1/k)SN(k, θ, ω), (7)

W(
⇀
x , t) = IFFT[SN

(
⇀
k , ω)], (8)

where W(
⇀
x , t) is the result of complex numbers. The local phase φ(

⇀
x ) can be extracted

from W(
⇀
x , t) at different locations

⇀
x :

φ(
⇀
x ) = tan−1(=(W(

⇀
x ))/<(W

(
⇀
x
)
)), (9)

where =(W(
⇀
x )) is the imaginary part of W(

⇀
x ) and <(W(

⇀
x )) is the real part of W(

⇀
x ).

For a radar image sequence with T images, we can obtain T phase results from the same
location of W(

⇀
x , t) in theory. However, the estimated phase φ(

⇀
x n, t) is always a fixed value

at the fixed location
⇀
x n and different t due to the implementation of the bandpass filter.

We estimate the components of the local wavenumber kx(
⇀
x n) and ky(

⇀
x n) by the

gradient of the local phase along the horizontal direction and vertical direction, respectively.
After implementing different directional filters, we obtain more wavenumbers at each of
the given frequency bins. Note that the phase estimation is still sensitive to the noise within
W(

⇀
x , t). Although different filters are applied to filter out nonwave components from

remotely sensed images, we still observe some weak signals from the land areas within
W(

⇀
x ), where the phase estimation is meaningless for the depth determination. To avoid

phase estimations from locations with very weak wave signals or land areas, we remove
the results of W(

⇀
x ) when the normalized magnitude W̃(

⇀
x ) =

∣∣∣W(
⇀
x )
∣∣∣/WM is less than

0.2, where WM is the maximal value of
∣∣∣W(

⇀
x )
∣∣∣. For each frequency bin, we can obtain

2N + 1 nearly monocomponent wave fields and then estimate 2N + 1 local wavenumbers
after repeatedly implementing the directional filter FD(θ) using different θj. However, the
distribution of wavenumbers in each frequency bin can be disordered due to the influence
of unavoidable noise. To improve the quality of the estimated wavenumbers, Kalman
filtering is applied here. The Kalman filter is an estimator that is statistically optimal with
respect to any quadratic function of estimation error [27]. Kalman filtering was carried out
successfully in the time domain for depth determination over longer periods of time [18].
In our study, we focus on depth determination from single radar measurements using
128 image sequences.

After implementing each directional filtering step, we can obtain wavenumber–
frequency pairs (km, ωm) from different, nearly monocomponent wave fields. Because the
frequencies that are obtained from the results of FFT are regular, we focus on the wavenum-
bers of Kalman filtering. On the basis of the Kalman filter algorithm, wavenumber k̂−m can
be predicted using wavenumber k̂−m−1:

k̂−m = Am−1k̂−m−1 + um−1, (10)

P−m = Pm−1 + Q, (11)
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in which Am−1 is the transition matrix of the dynamic model. um−1 is the process noise at
frequency step m− 1. The subscripts m and m− 1 represent an adjacent pair of frequency
bins. P−m is the a priori estimate error covariance of the estimated k̂−m . Q is the process noise
of the discrete model. Equations (10) and (11) describe the prediction steps of Kalman
filtering. The update steps or corrected steps of Kalman filtering are:

k̂m = k̂−m + Gm(km − k̂−m), (12)

Pm = P−m (1− Gm), (13)

Gm =
P−m

P−m + E
. (14)

The Kalman gain Gm shows the extent to which the predictions should be corrected in
step m. E is the measurement error covariance. The detailed procedure of the Kalman filter
algorithm and the solution for Am−1 and Q are given by Hartikainen et al. (2011) [28].

The final depth estimate is the value that yields the best weighted least-squares
fit of the dispersion relation curve using wavenumber estimations. The weights in our
study are W̃(

⇀
x ), which represents the normalized magnitude of wave signals at different

spatial locations.

2.3. Study Area and the Data and Their Sources

Figure 2 shows the layout of our study site, which is located in the coastal area of
Tainan, Taiwan. Within the monitoring area, we collected survey bathymetry data that
were measured by a single-beam echo sounder (Teledyne Odom Hydrographic Hydrotrac
200 kHz) from a boat. The resolution of the survey measurement is 0.01 m. The accuracy of
survey data is 0.01 m + 0.1% of depth value. The maximum depth range can reach 100 m,
which is suitable for the depth measurement in our study area. The colors in Figure 2a
represent the survey bathymetry. The deepest survey water depth was 14 m, and the
survey area is a part of the whole radar monitoring area. The influences of tides on depth
determination in coastal areas were considered in our study. The mean tidal range in the
study site is 1.24 m. To compare the estimated depth from radar with the survey depth from
the echo sounder, both the radar-estimated depths and the survey depth were corrected
using simultaneous in situ tide data. Figure 2b presents the bathymetry profile at a fixed
latitude. The nearshore slope is approximately 0.01.

Figure 2c shows the radar-observed images during our field experiment and presents
the wave patterns in the northwest part of the image. There was a data buoy moored
offshore approximately 8.5 km from the radar antenna. The significant wave height, peak
wave period, dominant wave direction, near sea surface current, and direction measured
from the data buoy were 1.69 m, 7.8 s, 348◦, 0.34 m/s, and 40◦, respectively, during our
field experiment. The radar had a peak power output of 25 kW, operated at 9.4 GHz
(X-band) with HH polarization, and was equipped with an antenna 2 m in length that had
a horizontal beam width of 1.2◦. The rotation rate of the radar antenna was 42 rpm, which
yielded an image sequence sampling rate of 0.7 Hz. The radar measurement collected
128 continuous images, which took 183 s. We collected radar images over a spatial range
of 3750 m with a grid size of 7.5 m. The system stored the logarithmically amplified
radar backscatter information at a 12-bit image depth. Note that the radar and in situ
measurements were not performed simultaneously. The survey depth measurements were
performed 8 days after the radar observations.
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Figure 2. (a). Layout of our study site. The area of radar measurement is delineated by a red dashed line. The land area
is marked in gray. The radar antenna is marked using a diamond near the mouth of the lagoon. (b). Bathymetry profile
at a latitude of 23.115◦. (c). Radar image of our experiment. The checkerboard-like patterns in the southeast area on the
radar image are induced by radar echoes from fish farms. The area for depth determination is mostly in the northwest part,
which presents clear patterns of ocean waves. The estimated local wavenumbers at the location marked by the triangle are
presented in Figure 4.

3. Results and Discussion

Figure 3 shows the nearly monocomponent images of ocean waves after bandpass
and directional filtering. For the image process of our study, there are 23 angular frequency
bins (ωi) within the range of 2π/12 (rad/s) to 2π/5 (rad/s). Figure 3 shows the results
of bandpass filtering using ωi = 2π/7.9, which is near the in situ peak wave angular
frequency. The dominant wave direction θp, which is estimated from radar images, is 313◦.
Figure 3a,b shows the results using the directional bands of θ = θp + 15± (∆θ/2) and
θ = θp − 15± (∆θ/2), respectively. The wave patterns show different directions between
these two figures.

Because we remove the results of W(
⇀
x ) when the normalized magnitude W̃(

⇀
x ) is

less than 0.2, some parts of the wave field are excluded due to weak wave signals. Even
though we implemented 31 directional filters to produce 31 nearly monocomponent wave
fields, we could not obtain all 31 wavenumbers at a specified angular frequency at locations
where the wave signal was weak. Because sufficient wavenumbers are necessary to fit
the dispersion relation curve with local depth, we skip the fitting process when the total
number of wavenumber–frequency pairs is less than 300.

Figure 4 shows the abundant wavenumber–frequency pairs estimated at the fixed
location of a triangle marker in the radar image of Figure 2c. Figure 4a shows the raw
wavenumbers estimated directly from different nearly monocomponent wave fields. The
dispersion relation curve using the survey depth of this specified location is also presented
in the figure. Although parts of the raw wavenumber–frequency pairs are consistent
with the dispersion relation curve, the raw wavenumbers show high variance in higher-
frequency bins. This poor reliability from raw wavenumber–frequency pairs is obvious
and therefore needs to be improved. Figure 4b shows the wavenumber–frequency pairs
that are corrected using Kalman filtering. The Kalman-filtered wavenumber–frequency
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pairs show much smaller variance and are more consistent with the dispersion relation
curve. Figure 4 also shows that the deviated wavenumbers from high-frequency bins are
mostly estimated from weak W̃(

⇀
x ). Note that our study applies the magnitudes of wave

signals W(
⇀
x ) as the weights for the least-squares fit of the dispersion relation curve.
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Figure 4 shows only one case at a specified location. We further discuss the features
of the wavenumbers extracted from all locations within the wave field. As shown in
Figure 5, the different upper whiskers show unclear connections with the frequencies. The
normalized frequency ω̃ in Figure 5 is defined as:

ω̃ = ωi/ωp, (15)

where ωp is the peak angular frequency of the ocean waves, which can be obtained from
the filtered image spectrum. Figure 5 shows that all of the upper whiskers are smaller than
0.08 (rad/m). However, we observe that the distributions of the upper outliers are related to
the wave frequency. From the cases of higher frequency bins, more inaccurate wavenumber
estimations are revealed. This should be a reason that higher wave frequency bins are

sensitive to the sea surface current
⇀
U. We will discuss this issue in a subsequent section.
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As we mentioned above, the inaccurate wavenumbers are also due to the local phase
gradient from the wave field with weak wave signals. Figure 6 shows the relationship
between wavenumber deviations and W̃(

⇀
x ), which represents the magnitude of wave sig-

nals for the analysis of the local phase gradient. The accuracy of wavenumber estimations
is obviously poor, and the value of W̃(

⇀
x ) is too low. In general, the higher the value of

W̃(
⇀
x ) is, the more reliable the results of wavenumber estimations.
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After determining the best weighted least-squares fits of the dispersion relation curve
from the estimated wavenumbers of different spatial locations

⇀
x , we obtain the bathymetry

result, which is shown in Figure 7a. The resolution of the estimated depth is set to 0.01 m.
The relationship between the estimated wavenumbers and the fitted dispersion curve is
also key to quantifying the accuracy of the depth determination. For each of the fitting
results from different locations, we can estimate the coefficient of determination R2 from the
estimated wavenumbers and modeled wavenumbers of the fitted dispersion relation curve:

R2 = 1− ∑ (k− km)
2

∑ (k− k)
2 , (16)

where km is the modeled wavenumber of the fitted dispersion relation curve and k is the
average value of k.

In general, R2 is defined as the square of the correlation between the modeled
wavenumber and the estimated wavenumbers k. However, R2 can produce a negative
value when the model poorly fits k [24]. Figure 7b shows the results of R2 in the spatial
domain. Compared to the bathymetry map in Figure 7a, we observe that poor results of R2

occur mostly in shallow-water locations. The defect of the linear dispersion relation in the
determination of shallow water depth is obvious. Because our depth estimations are based
on the fits of the dispersion relation curve using estimated wavenumbers, the accuracy of
depth estimation should be related to R2.

As shown in Figure 8, all the cases with negative values of the coefficient of determina-
tion are from locations where the in situ depths are less than 2 m. Wave nonlinearity, which
is unavoidable in shallow-water areas, makes the wavenumber–frequency pairs deviate
clearly from the linear wave dispersion relation curve and makes the depth estimation
unreliable. Compared to the errors of depth estimation from shallow-water areas, the
relationships between R2 and depth errors from deeper-water areas show clearer trends. To
determine these trends, the linear regression lines of different categories are also presented
in Figure 8. The relations between R2 and the errors of depth estimations from deeper-
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water areas of radar images are obvious. The lower the values of R2 are, the higher the
errors of depth estimation from deeper-water areas. We can confirm the quality of depth
estimations according to the value of R2. Figure 9 shows the comparisons of the depth
estimations between the radar-estimated depth and survey depth. For some safety-related
applications, e.g., ship navigation, depth information with poor accuracy can be worse
than insufficient depth information. In consideration of the quality of depth estimations,
we remove the estimated depth results whose R2 values are less than 0.6.
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Although the depth results from Figure 9a,b are all obtained by the least-squares fit,
the depth estimations are obtained using different ways of estimating the wavenumbers.
For the UW method in Figure 9a, there is only one wavenumber result from each frequency
bin. The wavenumber is estimated from the nearly monocomponent wave field, which
implements only directional filtering with θ = θp ± (∆θ/2) from Equation (3). However,
the PW method in Figure 9b shows the results from abundant wavenumbers that are
implemented using different θj from Equation (3). For each of the methods, we also discuss
the depth estimations with and without the Kalman filter. Both Figure 9a,b show that
the Kalman-filtered wavenumbers are helpful for obtaining more reliable depth results.
Compared to the results of Figure 9a, the depth estimations using the least-squares fit of the
plural wavenumber–frequency pairs can be improved. To evaluate the accuracy of depth
estimation using estimated wavenumbers after Kalman filtering, we estimate different
statistical parameters from the estimations and ground truths shown in Table 1. Although
the correlation coefficients of different methods are all over 0.95, the depth estimations
using abundant wavenumbers still show a higher correlation with the survey depth. In
addition, the root-mean-square deviation of depth estimation can be improved when the
Kalman-filtered wavenumbers are applied to estimate the depth.

Table 1. Statistical results of depth estimations.

UW Method PW Method

Raw
Wavenumbers

Kalman-Filtered
Wavenumbers

Raw
Wavenumbers

Kalman-Filtered
Wavenumbers

Correlation coefficient 0.95 0.95 0.97 0.97
Root-mean-square deviation 1.43 1.17 1.26 0.98
Slope of the regression lines 1.00 0.97 1.03 0.99

Bias 0.91 0.81 0.72 0.73
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4. Limitations and Uncertainties

An accurate wavenumber is undoubtedly necessary to obtain the reliable depth result
using wave dispersion relation. Figure 5 shows that most of the inaccurate wavenumber es-
timations are derived from higher-frequency bins. According to Equation (1), the influence
of depth on the wavenumber–frequency pairs is obvious at lower frequencies. In contrast,
the wave–current interaction is obvious at higher frequencies. The coastal current can be
highly nonstationary and inhomogeneous due to the influences of sea states and coastal
bathymetry. In our study, the wave–current interaction is assumed to be neglected when
using the dispersion relationship. However, the influences of sea surface currents induce
wavenumbers in high-frequency bins to deviate from the dispersion relation curve without
currents. Another reason for the inaccurate wavenumber is the aliasing effect. In the
physical sciences, the wavenumber is the spatial frequency of a wave. The complex spectral
densities at higher frequencies are easily influenced by aliasing [29]. Due to the overlap of
complex spectral densities at spatial frequencies near the Nyquist spatial frequency, the
influence of phase estimation from complex spectral densities is unavoidable.

The scatter plot in Figure 9 shows that the Kalman-filtered wavenumbers are helpful
for obtaining more reliable depth results. However, the accuracy of radar estimations
seems to depend on the survey depth. Figure 10 presents the differences between radar
depths and survey depths, which are classified into different conditions of survey depths.
We observed that most of the radar-estimated depths are overestimated from the shallower
area. As we pointed out in the data analysis section, the wavenumber–frequency pairs
at higher-frequency bins, whose normalized magnitude is W̃(

⇀
x ), are mostly weak and

are excluded from the fitting process. The nonlinear effects are often unavoidable for
the wavenumber–frequency pairs at lower-frequency bins, even though we removed the
estimations whose R2 values are too low. Large amplitude waves in shallow water are
known to travel slightly faster than predicted by linear wave theory, which causes a slight
overestimation of the radar depth [30]. This finding should explain the positive bias of
radar-estimated depth estimation. The cases of shallow-water areas are often overestimated,
regardless of whether Kalman filtering is applied.
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The overestimation of radar-estimated depths is not obvious in deeper water. However,
we observe more inaccurate radar-estimated depths from the sea area where the survey
depths exceed 10 m. The uncertain radar estimations in the deep-water case are related
to the unclear wave patterns on the radar image. In our study site, the deep-water areas
are located farther from the radar antenna. Because the radar echo intensities decay with
distance, the unclear wave pattern on the radar image is unavoidable. A sufficiently clear
wave pattern is important for estimating the wavenumbers.

5. Conclusions

The phase gradient (PG) has been demonstrated to be a powerful tool for extracting
local wavenumbers from spatial images. Since only one local PG can be found along the
horizontal or vertical direction, only one wavenumber modulus can be obtained at any
given spatial location of a remotely sensed image. Although it is still possible to use a
single wavenumber to estimate depth using the theory of the wave dispersion relation,
the wavenumber obtained from the wave field of a remotely sensed image is sensitive to
noise. The depth result can be uncertain if a single and unreliable wavenumber is used.
Some studies obtain the representative wavenumber, which can be more reliable than
the wavenumber from the PG method, i.e., from the 2D image spectrum. However, the
resolution between the spatiotemporal domain and the wavenumber–frequency domain
is the opposite of that based on the Heisenberg uncertainty principle. To obtain reliable
and accurate wavenumber and frequency results from the spectrum, degeneration of the
spatiotemporal resolution is unavoidable.

The depth determination in our study is based on the fit of the dispersion relationship
curve to abundant frequency-dependent wavenumbers. Some previous studies extracted
different wavenumber–frequency pairs from different frequency bins of the image spec-
trum and then best fitted all frequencies to determine the local depth. Under the same
idea, we extract the features of the plural wavenumbers of each frequency bin from fixed
locations within the wave field image. To extract more wavenumbers of each frequency
bin from the same location, we applied directional filtering technology. Different nearly
monocomponent wave images can be produced from remotely sensed images using differ-
ent directional pass filters. As a result, we can estimate more wavenumbers from nearly
monocomponent wave images using the PG method.

The remotely sensed images we analyzed in this study are X-band radar images.
Within the area of radar monitoring, we have the in situ depth data that were measured
8 days after the radar observation. Due to the influences of ocean currents and image noise,
the raw wavenumber results extracted from the nearly monocomponent wave images
are highly uncertain in higher-frequency bins. The Kalman filter is confirmed to improve
highly scattered wavenumbers. For the cases with lower coefficients of determination, the
errors of depth estimation from deeper-water areas are higher. As a result, the coefficient of
determination can be used as an index to obtain reliable depth estimations. After removing
the depth estimations with low coefficients of determination, we discuss the performance
of radar depths using the survey depth data. In contrast to the depth estimations from a
single wavenumber of each frequency bin, the depth estimations from more wavenumbers
of each frequency bin show results that are more reliable. In addition, Kalman filtering is
helpful in reducing the root-mean-square deviation of depth estimations.

As stated before, the spatial resolution of bathymetry determination using the PG
method can be higher than that using the spectral method. In previous studies, the
application of spatial or temporal filters was common in reducing the error of bathymetry
maps. In our study, there is no low-pass filter for the spatial domain in the process of
depth determination from our radar images, and the spatial resolution of the bathymetry
maps is the same as that of radar images. Long-term radar image sequences are also
unnecessary for our image process. After checking the quality of the depth results using
the coefficient of determination, 128 continuous radar images that take approximately three
minutes were found to be sufficient to obtain a reliable bathymetry map. We also confirm
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that directional filtering can produce different nearly monocomponent wave images and
then obtain plural local wavenumbers at the same location. Plural wavenumber fitting is
workable in improving the reliability of depth estimation.
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