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Abstract: On-orbit space technology is used for tasks such as the relative navigation of non-
cooperative targets, rendezvous and docking, on-orbit assembly, and space debris removal. In
particular, the pose estimation of space non-cooperative targets is a prerequisite for studying these
applications. The capabilities of a single sensor are limited, making it difficult to achieve high accu-
racy in the measurement range. Against this backdrop, a non-cooperative target pose measurement
system fused with multi-source sensors was designed in this study. First, a cross-source point cloud
fusion algorithm was developed. This algorithm uses the unified and simplified expression of geo-
metric elements in conformal geometry algebra, breaks the traditional point-to-point correspondence,
and constructs matching relationships between points and spheres. Next, for the fused point cloud,
we proposed a plane clustering-method-based CGA to eliminate point cloud diffusion and then
reconstruct the 3D contour model. Finally, we used a twistor along with the Clohessy–Wiltshire
equation to obtain the posture and other motion parameters of the non-cooperative target through
the unscented Kalman filter. In both the numerical simulations and the semi-physical experiments,
the proposed measurement system met the requirements for non-cooperative target measurement
accuracy, and the estimation error of the angle of the rotating spindle was 30% lower than that of
other, previously studied methods. The proposed cross-source point cloud fusion algorithm can
achieve high registration accuracy for point clouds with different densities and small overlap rates.

Keywords: space non-cooperative targets; cross-source point cloud fusion; conformal geometry
algebra; pose estimation; twistor

1. Introduction

The pose measurement of non-cooperative targets in space is the key to spacecraft
on-orbit service missions [1–3]. In space, the service spacecraft approaches the target
spacecraft from far and near, and the distance and effective measurement field of view
(FOV) affect the accuracy of the entire measuring system. A single sensor can no longer
guarantee an effective measurement range. Therefore, the main focus of current research
is to find ways of combining the advantages of different sensors to achieve multi-sensor
data fusion.

The non-cooperative target pose measurement is generally performed using non-
contact methods such as image sensors [4–6] and LiDAR [7–12]. The method proposed in
this article uses line scan hybrid-solid-state lidar. Because of the space lighting environment,
it is difficult to achieve high accuracy via image-based measurement, and the measurement
distance in this approach is limited. The LiDAR benefits from its own characteristics, and
not only can it achieve long-distance measurement, but the point cloud data obtained
can reflect the geometric structure of the target. However, LiDAR cannot produce rich
texture information. Most scholars use combinations of image sensors and laser algorithms
to reconstruct three-dimensional models to achieve high-precision measurements. For
instance, Wang et al. [13] proposed an adaptive weighting algorithm to fuse laser and
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binocular vision data. Celestino [14] combined a camera with a handheld laser to measure
the plane of a building. Further, Wu et al. [15] presented a navigation scheme that integrates
monocular vision and a laser. Zhang et al. [16] developed a method that combines a
monocular camera with a one-dimensional laser rangefinder to correct the scale drift of
monocular SLAM. It is worth noting that the method of using multi-sensor data fusion
for non-cooperative target measurement is still in its infancy. Therefore, little information
is available from research. Zhao et al. [17] proposed an attitude-tracking method using a
LiDAR-based depth map and point cloud registration. The key was to use line detection
and matching in the depth map to estimate the attitude angle of adjacent point cloud
frames, but the target model needed to be known. Padial [18] reported a non-cooperative
target reconstruction method based on the fusion of vision and sparse point cloud data,
using an improved particle filter algorithm for relative pose estimation. Zhang et al. [19]
used the precise distance information of LiDAR and proposed a method of fusing a
one-dimensional laser rangefinder and monocular camera to recover an unknown three-
dimensional structure and six-degree-of-freedom camera attitude.

With the rapid development of high-precision sensors, such as LiDAR and Kinect sen-
sors, point clouds have become the main data format for representing the three-dimensional
world. The fusion of point clouds acquired by the same sensor is called homologous point
cloud registration. However, given the complexity of the application, combining different
types of sensors also combines their respective advantages; hence, it is necessary to study
multi-sensor point cloud fusion, that is, cross-source fusion [20]. Owing to the dissimilar
imaging mechanisms and resolutions, the density and scale of the captured point cloud
also vary. Therefore, the captured point cloud may contain scale differences [21]. Figure 1a
shows the Kinect and LiDAR point clouds registered at different attitudes, obtained using
RS-LIDAR-32 and Kinect 1.0. Figure 1b shows a comparative histogram of the number of
point clouds in a frame collected at different distances from the target. The point cloud
changes from sparse to dense as the distance decreases. The number of Kinect point clouds
in a frame is greater than that of LIDAR point clouds, and even at a close range of 1.2 m,
the latter is very small, which makes registration difficult. The traditional feature extraction
method [22–24] is not applicable because sparse point clouds contain few feature points.
The ICP algorithm is the earliest point cloud registration algorithm [25]; it does not need
to extract feature points. It requires that the two point clouds to be matched have enough
corresponding points, that the registration speed is slow, and that it is easy to fall into
local extreme value. More recently, many scholars have proposed various improved ICP
algorithms, such as EM-ICP [26], G-ICP [27], GF-ICP [28], and kd-tree ICP [29]. These
methods are not suitable for point clouds with very low overlap. NDT [30] does not
require feature value extraction; instead, it optimizes the matching relationship between
the two point clouds based on normal distribution transformation, which is closely related
to the probability density distributions of the point clouds. The BNB-based global registra-
tion algorithm [31,32] achieves global optimal matching by setting the search boundary,
and the algorithm is highly complex. The plane-based matching method proposed by
Chen et al. [33] can effectively match point clouds with a low overlap rate, but it is only suit-
able for artificial scenes, and the confidence index is only suitable for a dedicated dataset.
Cross-source point cloud registration methods based on deep learning have become an
emerging topic. For instance, Huang et al. [34] designed a semi-supervised cross-source
registration algorithm based on deep learning. For point clouds with a higher overlap rate,
a higher matching accuracy can be achieved, and the algorithm runs faster. However, it
can be seen from Figure 1 that the density of the cross-source point cloud that we studied
is quite different, and the overlap rate is low.
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Figure 1. (a) Comparison of Kinect (upper) and LiDAR (lower) point clouds at different rotation angles. (b) Comparison 
of the numbers of frame point clouds with LiDAR and Kinect at different distances. 

After analyzing the above-mentioned research, we developed a point-cloud registra-
tion algorithm based on conformal geometry algebra (CGA). In this approach, the three-
dimensional Euclidean space is converted into a five-dimensional conformal space. Top-
ological operators in conformal geometric algebra can directly construct multidimen-
sional spatial geometric elements, such as points, lines, surfaces, and spheres. Our tradi-
tional understanding of point cloud registration is that points correspond to points. How-
ever, in CGA, the concept of coordinates is abandoned, and the algorithm is no longer 
limited to one geometric element, but rather uses simple and unified geometric expres-
sions in CGA to find congruent relationships between different geometric objects. For ex-
ample, Cao [35] proposed a multimodal medical image registration algorithm based on 
the CGA feature sphere, which constructs a feature sphere from the extracted feature 
points to achieve sphere matching. Kleppe et al. [36] applied CGA to coarse point cloud 
registration. According to the curvature of the point cloud, the qualified point cloud shape 
distribution was determined to obtain the feature points, and the feature descriptor was 
constructed using the distance relationship between the point and the sphere in the CGA. 
However, this method requires the extraction of more feature points. The advantage of 
the method used in this study is that, according to the point cloud characteristics, only a 
few sampling points are needed to construct the rotation-invariant descriptor between the 
point and sphere. In the generalized homogeneous coordinate system, the objective func-
tion is constructed to obtain the best rotation and translation. To acquire the six-degree-
of-freedom parameters and other motion parameters of the non-cooperative target, the 
algorithm we proposed in [37] is employed to obtain the point cloud contour model, using 
a twistor instead of a dual quaternion combined with the Clohessy–Wiltshire (CW) equa-
tion, and then uses the unscented Kalman filter (UKF) to estimate the attitudes of non-
cooperative targets and improves the estimation accuracy of attitude angle. The main con-
tributions of this study are as follows: 
(1) We propose a cross-source point cloud fusion algorithm, which uses the unified and 
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Figure 1. (a) Comparison of Kinect (upper) and LiDAR (lower) point clouds at different rotation angles. (b) Comparison of
the numbers of frame point clouds with LiDAR and Kinect at different distances.

After analyzing the above-mentioned research, we developed a point-cloud regis-
tration algorithm based on conformal geometry algebra (CGA). In this approach, the
three-dimensional Euclidean space is converted into a five-dimensional conformal space.
Topological operators in conformal geometric algebra can directly construct multidimen-
sional spatial geometric elements, such as points, lines, surfaces, and spheres. Our tra-
ditional understanding of point cloud registration is that points correspond to points.
However, in CGA, the concept of coordinates is abandoned, and the algorithm is no longer
limited to one geometric element, but rather uses simple and unified geometric expressions
in CGA to find congruent relationships between different geometric objects. For example,
Cao [35] proposed a multimodal medical image registration algorithm based on the CGA
feature sphere, which constructs a feature sphere from the extracted feature points to
achieve sphere matching. Kleppe et al. [36] applied CGA to coarse point cloud registration.
According to the curvature of the point cloud, the qualified point cloud shape distribution
was determined to obtain the feature points, and the feature descriptor was constructed
using the distance relationship between the point and the sphere in the CGA. However, this
method requires the extraction of more feature points. The advantage of the method used
in this study is that, according to the point cloud characteristics, only a few sampling points
are needed to construct the rotation-invariant descriptor between the point and sphere. In
the generalized homogeneous coordinate system, the objective function is constructed to
obtain the best rotation and translation. To acquire the six-degree-of-freedom parameters
and other motion parameters of the non-cooperative target, the algorithm we proposed
in [37] is employed to obtain the point cloud contour model, using a twistor instead of a
dual quaternion combined with the Clohessy–Wiltshire (CW) equation, and then uses the
unscented Kalman filter (UKF) to estimate the attitudes of non-cooperative targets and
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improves the estimation accuracy of attitude angle. The main contributions of this study
are as follows:

(1) We propose a cross-source point cloud fusion algorithm, which uses the unified and
simplified expression of geometric elements in conformal geometry algebra, breaks
the traditional point-to-point correspondence, and constructs a matching relationship
between points and spheres, to obtain the attitude transformation relationship of the
two point clouds. We used the geometric meaning of the inner product in CGA to
construct the similarity measurement function between the point and the sphere as
the objective function.

(2) To estimate the pose of a non-cooperative target, the contour model of the target needs
to be reconstructed first. To improve its reconstruction accuracy, we propose a plane
clustering method based CGA to eliminate point cloud diffusion after fusion. This
method combines the shape factor concept and the plane growth algorithm.

(3) We introduced a twist parameter for rigid body pose analysis in CGA and combined
it with the Clohessy–Wiltshire equation to obtain the posture and other motion
parameters of the non-cooperative target through the unscented Kalman filter.

(4) We designed numerical simulation experiments and semi-physical experiments to
verify our non-cooperative target measurement system. The results show that the pro-
posed cross-source point cloud fusion algorithm effectively solves the problem of low
point cloud overlap and large density distribution differences, and the fusion accuracy
is higher than that of other algorithms. The attitude estimation of non-cooperative
targets meets the requirement of measurement accuracy, and the estimation error of
the angle of the rotating spindle is 30% lower than that of other methods.

The remainder of this paper is organized as follows. Section 2 describes in detail the
non-cooperative target pose estimation method based on the proposed cross-source fusion
approach. Specifically, it introduces the non-cooperative target measurement system, the
proposed cross-source point cloud fusion algorithm and plane clustering method, and
explains in detail the steps of the UKF algorithm based on the amount of twist. Section 3
presents the results of the numerical simulation and the semi-physical experiment and
discusses the results. Section 4 discusses the value of the number of sampling points in a
frame m. Finally, Section 5 summarizes the conclusions.

2. Method
2.1. Measurement System and Algorithm Framework

As shown in Figure 2a, the measurement system consists of a Kinect sensor, LiDAR,
and a rotating satellite model. From the Figure 1, we know the Kinect point cloud has the
characteristics of denseness, clear texture, and color, but it cannot be measured at long
distances because of the distance limitation, even though rich point cloud information can
be obtained at short distances. Some regions are shadowed from illumination, resulting
in the loss of a local point cloud. LiDAR can accurately measure the distance of a point
cloud; however, owing to the characteristics of the measurement instrument itself, the
point cloud obtained is sparse and noisy. According to Figure 2b, we can calculate the
Kinect and LiDAR measurement ranges. The Kinect has an FOV of 57◦ in the horizontal
direction and 43◦ in the vertical direction. The vertical measurement angle of the LiDAR
is 40◦. The distance between the two sensors is h, and the distance from the sensor to the
measurement target is d. Consequently, the dimensions a and b of the measurement target
satisfy Equation (1). {

a ≤ d2+h2

h+dcot57◦

b ≤ 2dtan40/2
(1)
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Figure 2. (a) Measurement system. (b) Schematic diagram of the FOV for two sensors.

Therefore, h and d vary with the size of the measurement target. In this study, we
required the measurement target to be within the FOV of the two sensors. Figure 3
shows the overall flow chart of the pose measurement system. The attitude estimation of
non-cooperative spacecraft mainly involves three steps: point cloud fusion, model recon-
struction, and state parameter estimation. We further explain each of these steps below.
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2.2. Cross-Source Point Cloud Fusion

It is well known that Kinect can record detailed structural information, but the viewing
distance is limited; meanwhile, LiDAR can record distant objects, but the resolution is
limited. Therefore, the point cloud fusion of different sensors provides more information
and better performance in applications than the use of only one sensor type [20,38]. Point
cloud fusion requires point cloud registration technology, especially when there is a large
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gap between the number of point clouds in a frame, as shown in Figure 1, and it is difficult to
extract geometric features, so higher requirements are imposed on point cloud registration
technology. This paper proposes a registration method based on CGA that can satisfy the
requirements of practical applications. The conformal geometric algebra, also known as
the generalized homogeneous coordinate system, was founded by Li [39]. It has become
the mainstream system in international geometric algebra research. Its efficient expression
and computing capabilities are favored in many scientific fields. The primary aim of the
method for constructing conformal geometric algebraic space is to embed Euclidean space
into high-dimensional space through nonlinear spherical projection and then to convert
the high-dimensional space into conformal space through homogeneous transformation.
The CGA transformation is a conformal transformation. The straight lines and planes in
Euclidean space are respectively converted into circles and spheres in conformal space [40].

In CGA, the inner, outer, and geometric products are the most basic geometric op-
erations, and the topological relationships of different geometric objects, which are con-
structed by the points, lines, surfaces, and volumes, are the basic geometric objects of
three-dimensional Euclidean space. In conformal space, different dimensions and different
types of complex spatial geometric models can be expressed by combining these objects.
For example, the outer product of two points and a point at infinity in a conformal space
defines a straight line L. Similarly, the outer product of three points can be used to obtain
the conformal expression of a circle. The outer product expression of the plane can be
obtained from the outer product of the circle and the point at infinity in the conformal
space. Similarly, if the point at infinity is replaced by the ordinary conformal point, the
conformal expression of the sphere can be obtained.

Under the framework of Euclidean geometry, the calculation of metrics such as the
distance and angle between objects is not uniform for objects of different dimensions, and
the operations between objects of different types also need to be processed separately.
Consequently, traditional algorithms are complex, which is not conducive to the processing
of large-scale data. The expression of geometric objects under the framework of geometric
algebra has inherent and inherited geometric metric relations. For example, the inner
product in space is given a clear geometric meaning that can represent the distance or angle.
The ratio of the inner product between the two geometric objects to the inner product
modulus is the cosine of the angle. For example, the angle between the two straight lines
or two planes can be characterized by Equations (2) and (3). Table 1 shows the expression
of the inner product of different geometric objects in CGA. The inner product of two points
intuitively represents the inverse half of the distance between the two points. The inner
product of the point and the surface is represented by the normal vector n of the plane and
the distance d from the plane to the origin. The inner product between the two balls is
related to the radius of the sphere. Compared to the metric operator in Euclidean space,
the expressions of metrics and relations based on CGA are more concise and easier to
utilize [41].

cos−1 θ =
L1·L2

|L1||L2|
(2)

cos−1 θ = π1·π2 (3)

π1·π2 = n1·n2 (4)

where θ represents the angle between two straight lines, or two planes, and n1 and n2
represent the normal vector of the plane. The symbol (·) represents the inner product, and
(·) in the all Equations used in this paper all represents the inner product.
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Table 1. Expression of the inner product of different geometric objects in CGA [42].

Geometric Objects Geometric Shape Inner Product Representation

Point and point
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2.2.1. Rotation Invariant Features Based on CGA

We used the point clouds collected by LiDAR as the reference point clouds and the
point clouds collected by Kinect as the mobile point clouds, denoted by P = {Pi} and
Q = {Qi}, respectively. For the rotation transformation from any point in {Pi} into {Qi},

F(Pi) = MPi M̃ (5)

M = RT (6)

R = cos
θ

2
− sin

θ

2
lr = e−θlr/2 (7)

T = 1 +
e∞t
2

(8)

where M is the conjugate of M̃, which satisfies MM̃ = 1, and the rotation operator (ro-
tor) is denoted as R. The rotation axis lr is a double vector, and θ is the rotation angle.
The clockwise and axis directions are defined as positive. The translator, denoted as T,
t = t1e1 + t2e2 + t3e3, indicates displacement.

This transformation is applicable to any geometric object, including lines, planes,
and bodies. Therefore, any geometric object composed of these points satisfies rotation
invariance. As shown in Figure 4, the four-point pairs satisfy a certain rotation relationship.
Any geometric object composed of these four points satisfies the same transformation
relationship [42]:

F(P1 ∧ P2 ∧ P3Pn) = MP1M̃ ∧MP2M̃ ∧MP2M̃ ∧MPn M̃ (9)

The usual registration methods are based on the registration of points and points [43],
points and lines [44], points and surfaces [45], and surfaces and surfaces [33]. This report
proposes a registration method for points to spheres. The distance constraint is used as a
rotation-invariant feature and is employed in numerous registration algorithms. The 4PCS
algorithm utilizes the invariant of the cross-ratio generated by the distance of the point pair
to register [46]. The global matching algorithm proposed by Liu et al. [32] also considers
the distance between two points as a rotation invariant. The distance between the lines in
three-dimensional space, the distance between the surfaces, the angle between the lines,
and the angle between the surfaces can also be used as feature descriptors. In CGA, the
distance is represented by the inner product. The sparsity of the reference point cloud
determines that it contains little geometric feature information. Therefore, the method
proposed in [36] is also based on the rotation invariance of the distance between the point
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and the sphere. This method extracts the feature points by constructing the shape factor for
each point, uses the feature points to fit the spherical surface, and constructs a descriptor
of the distance between the point and the spherical surface to match the corresponding
points. The method employed in this study also uses distance constraints; the difference
is that we consider the distance between the point and sphere. The method proposed in
this paper refers to limited sampling points in the point cloud and finds the matching
feature sphere or feature circle in the moving point cloud (because the actual distribution
of Kinect points has an irregular shape, feature spheres are often used). The sphere is the
most basic geometry in CGA, and other geometries can be derived from it. The equation
of a sphere is given by Equation (10), where O represents the center of the sphere S and ρ
represents the radius. The conformal point pCGA expression of the point p(x, y, z) in the
three-dimensional space is given by Equation (11). The conformal point pCGA can also be
regarded as a sphere with a radius of 0, and the sphere S∗ (another expression of sphere
S) can additionally be represented by four non-coplanar points p1, p2, p3, p4, as in (10).
Therefore, each sampling point corresponds to a sphere that is associated with four points.
From (12), we can obtain the center O and radius ρ of the sphere [42]. Where (·) represents
the inner product.

S = O +
1
2

(
O2 − ρ2

)
e∞ + e0 or S∗ = p1 ∧ p2 ∧ p3 ∧ p4 (10)

pCGA = (xe1 + ye2 + ze3) +
1
2

(
x2 + y2 + z2

)
e∞ + e0 (11){

ρ = S∗
S∗ · e∞

o = pe123 · S∗
−S∗ · e∞
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Figure 4. Rotation-invariant features of the four geometries. (a) * means the reference point cloud, and + means the
target point cloud. (b) Line segment composed of any two points p1 ∧ p2 ∧ e∞. (c) Plane composed of any three points
p1 ∧ p2 ∧ p3 ∧ e∞. (d) Circumscribed sphere p1 ∧ p2 ∧ p3 ∧ p4 made up of four points.

We use the centroid of the point cloud as a reference and find four points corre-
sponding to the inner product between the centroids in the moving point cloud. Its
rotation-invariant feature satisfies (13):

d4 =


Pi·Pc
∠PiPc
Pi·Pj⌊

PiPjPk
⌋
 =


Qi·Qc
∠QiQc
Qi·Qj⌊

QiQjQk
⌋
 (13)

where Pi·Pj represents the inner product between two points in the reference point cloud
and ∠PiPc represents the cosine of the angle between any point and the center of mass.⌊

PiPjPk
⌋

represents the area of a triangle formed by any three points [47].
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2.2.2. Find the Corresponding Point and Sphere

We use the farthest point sampling (FPS) algorithm to sample the reference point
cloud uniformly and to finally match the four points that satisfy the above formula for
each sampling point in the moving point cloud. If any three of these four points are not
coplanar with the fourth point, that is, (P1 ∧ P2 ∧ P3 ∧ P4 ∧ e∞) 6= 0, the circumscribed
sphere S(PI,2,3,4) is formed. If the points are coplanar, (P1 ∧ P2 ∧ P3 ∧ e∞) = 0, a circle
C(PI,2,3) is formed by any three points (this article mainly uses a sphere for illustrative
purposes). The cross-source point cloud registration algorithm is as follows:

1. Calculate the centroids of the two point clouds and move the centroids to the origins
of their respective coordinate systems: PC = 1

np
∑

np
i=1 pi, QC = 1

nQ
∑

nQ
j=1 Qj.

2. Taking the centroid as the starting point and using the farthest point sampling method,
uniformly sample n points in the reference point cloud.

3. Given the distance from the centroid of the reference point cloud to each sampling
point, { d1

l , d2
l , d3

l , . . . . . . dn
l
}

, look for the distance to the centroid in the moving point

cloud to satisfy the relationship ‖dj
k − di

l‖ < T. In this paper, T is the average distance
between points of the moving point cloud.

4. Use the d4 descriptor from (13) to judge the n points sampled and retain the points that
satisfy (13). Otherwise, continue sampling until the final number of retained sampling
points reaches m pairs. (The value of m is discussed in Section 4 of the paper).

5. According to Equations (10)–(12), construct the corresponding feature sphere in the
moving point cloud and calculate the center and radius of the sphere.

2.2.3. Identifying Optimal Registration

In the previous section, we described how to find the corresponding sphere in the
Kinect for the LiDAR points. Although the FPS algorithm is time-consuming, our algorithm
only needs to detect a few matching point pairs. Generally, if at least three pairs of matching
points are determined, the SVD decomposition method can be used to find the optimal
matching relationship for the two point clouds [48,49]. In the three-dimensional Euclidean
space, we use the minimum distance function (11) to represent the matching result of
the two point clouds. However, because the transformation is nonhomogeneous, the
calculation is difficult. In conformal space, the rotation operator M = RT is homogeneous.
Therefore, (14) can be rewritten as (15). Point P can be expressed as a sphere with a radius
of 0 and P = p− 1

2 ρ2
pn∞. The inner product 〈·〉 represents the distance, so the distance

between the two spheres can be expressed as (16), where Q′i = RQi + T:

E(R, T) = min ∑n
i ‖Pi − (RQi + T)‖ (14)

E(M) = min ∑n
i 2‖Pi·(MQi M̃)‖ (15)

〈PiQ′i〉 = 〈piq′i〉+
1
2

(
ρ2

pi + ρ2
q′i

)
(16)

In this study, we adopted the method of conformal geometric algebra, referring to the
method in [50], to obtain the attitude transformation relationship between two point clouds.
In CGA, we used the similarity measurement function as the objective function, as shown
in Equation (17). From the above, it is evident that any geometry can be expressed as
MXobj M̃. Therefore, this function describes the similarity between all the geometric bodies:

E(M) =
1
2

N

∑
i

wi

(
〈MSi

obj M̃P̂i
obj〉+ 〈

˜̂Pi
obj MS̃i

obj M̃〉
)
= 〈M̃iM〉 (17)

where the symbol i represents symmetry and satisfies MM̃ = 1; consequently, 〈M̃iM〉 =
〈MiM̃〉. The symbol wi represents the weight. In our algorithm, Pi

obj represents the feature

point in the reference point cloud and Si
obj represents the feature ball in the corresponding
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moving point cloud. Therefore, our similarity measurement function can be expressed as
(18), where iM = wi(Ŝi

obj MP̃i
obj):

max
M
〈M̃iM〉 = max

M
∑N

i wi〈M̃Ŝi
obj MP̃i

obj〉 (18)

The basis vector of R is {1 , e12 , e13, e23}, and the basis vector of T is {1, e1∞ , e2∞, e3∞} [51].
Due to

LR
ij = 〈ẽiiej〉4∗4 (19)

the eigenvector corresponding to the largest eigenvalue of LR
ij is dk, and the rotation matrix

R can then be calculated using Equation (20).

R = ∑
k

dkek (20)

Similarly, LT
ij = 〈ẽiiej〉4∗4 and can be decomposed into sub-matrices

[
LRR LRT
LTR LTT

]
.

Next, we can calculate t = −L+
TT LTR, where L+

TT is the pseudo-inverse matrix of LTT
(Moore-Penrose pseudoinverse). T is given by Equation (21), and the optimization we are
looking for is M.

T = ∑
k
(1 + t)kek (21)

2.3. Point Cloud Model Reconstruction

In this step, it is necessary to perform a three-dimensional reconstruction of the fused
point cloud. In this section, we use the method proposed in our previous article [37] to
obtain the outer contour model of the non-cooperative target to estimate the pose and
motion parameters of the non-cooperative target in the next step. In that study [37], we
proposed a new point cloud contour extraction algorithm and obtained the contour model
of the non-cooperative target through multi-view registration-based ICP. However, in
this study, the reconstructed object is a frame point cloud after the fusion of two sensors.
As shown in Figure 5a, the point cloud distribution obtained by the fusion algorithm is
rather scattered. Consequently, the point cloud density varies greatly at the edge, which
affects the accuracy of model reconstruction. Therefore, in this study, we propose a plane
clustering method to eliminate point cloud diffusion. This method combines the shape
factor concept proposed in [52–54] with the plane growth algorithm. Because the number
of Kinect point clouds in the frame is large and the distribution is dense, the shape factor
of the Kinect point cloud (denoted as Pk in what follows) is extracted and the LiDAR point
cloud (denoted as Pl in what follows) is clustered to the nearest plane.

First, for each point in Pk, we find the covariance matrix in its neighborhood and
its corresponding eigenvalue di, eigenvector vi, and normal vector nk

i . The shape factors
FL, FH , and FS represent linear, planar, and spherical shapes, respectively. The calculation
formula is given by Equation (22): FL

FH
FS

 =
1
d

 1 −1 0
0 2 −2
0 0 3

 d1
d2
d3

 (22)

where d1, d2, and d3 represent the eigenvalues arranged in descending order, d = d1 + d2 +
d3. When any one of FL, FH , and FS is much larger than the other two, the K-neighborhood
of this point conforms to its corresponding shape distribution. If there are two larger
shape factors FL and FH , then this point is the edge point of the plane. The highest number
of Kinect point clouds we obtained conformed to two distributions: linear and planar.
Therefore, we only considered these two cases in this study. When the K-neighboring
points of any point in Pk are arranged in order of ascending distance, and when these points
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all satisfy a shape distribution at the same time, we consider these points to be collinear or
coplanar. These points can be fitted to a straight line L or plane P∗. The definitions of a
straight line and plane in CGA are given by Equations (23) and (24), respectively:

L = p1 ∧ p2 ∧ e∞ (23)

P∗ =
→
n + de∞ (24)

where p1 and p2 are two points on a straight line. The value
→
n is the normal vector of plane

P∗, and d is the distance from plane P∗ to the origin.
When a point in Pl and the line or plane closest to it meet the judgment condition of

Equation (25), the projection point p0 of the point in Pl on Pk is obtained according to Equa-
tion (26). Otherwise, we consider this point to be a noise point, which can be eliminated:

cos−1
∣∣∣∣ nk

i ·n
l
j

‖nk
i ‖ ‖n

l
j‖

∣∣∣∣ ≤ σ∣∣∣pl
j·Lk

i

∣∣∣� δ or
∣∣∣pl

j·Hk
i

∣∣∣� δ
(25)


cos−1

∣∣∣∣∣∣
→

p0 pl
j ·
→

p0 pk
i

‖
→

p0 pl
j‖ ‖

→
p0 pk

i ‖

∣∣∣∣∣∣ = 90◦(
pl

j ∧ p0 ∧ e∞

)
·Hk

i = 0

(26)

In particular, pl
j is a point in Pl and pk

i is a point in Pk. Lk
i represents the straight line

closest to pl
j in the Pk point cloud, and Hk

i represents the plane closest to pl
j in the Pk point

cloud. The value nk
i represents the normal vector of the center point of Lk

i or Hk
i , and nl

j
represents the normal vector of a point in Pl. The value σ = 45◦ is the normal vector angle
threshold, and δ is twice the distance between two adjacent planes in Pk. Figure 5b shows
the results of the point cloud fusion using the plane-clustering algorithm.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 27 
 

 

study, the reconstructed object is a frame point cloud after the fusion of two sensors. As 
shown in Figure 5a, the point cloud distribution obtained by the fusion algorithm is rather 
scattered. Consequently, the point cloud density varies greatly at the edge, which affects 
the accuracy of model reconstruction. Therefore, in this study, we propose a plane clus-
tering method to eliminate point cloud diffusion. This method combines the shape factor 
concept proposed in [52–54] with the plane growth algorithm. Because the number of Ki-
nect point clouds in the frame is large and the distribution is dense, the shape factor of the 
Kinect point cloud (denoted as 𝑷𝒌 in what follows) is extracted and the LiDAR point 
cloud (denoted as 𝑷𝒍 in what follows) is clustered to the nearest plane. 

 
(a) (b) 

Figure 5. Point cloud (a) before clustering and (b) after clustering. 

First, for each point in 𝑷𝒌, we find the covariance matrix in its neighborhood and its 
corresponding eigenvalue 𝑑 , eigenvector 𝑣 , and normal vector 𝑛 . The shape factors 𝐹 , 𝐹 , and 𝐹  represent linear, planar, and spherical shapes, respectively. The calculation 
formula is given by Equation (22): 𝐹𝐹𝐹 = 1𝑑 1 −1 00 2 −20 0 3 𝑑𝑑𝑑  (22)

where 𝑑 ,𝑑 , and 𝑑   represent the eigenvalues arranged in descending order, 𝑑 = 𝑑 +𝑑 + 𝑑 . When any one of 𝐹 , 𝐹 , and 𝐹  is much larger than the other two, the K-neigh-
borhood of this point conforms to its corresponding shape distribution. If there are two 
larger shape factors 𝐹  and 𝐹 , then this point is the edge point of the plane. The highest 
number of Kinect point clouds we obtained conformed to two distributions: linear and 
planar. Therefore, we only considered these two cases in this study. When the K-neigh-
boring points of any point in 𝑷𝒌 are arranged in order of ascending distance, and when 
these points all satisfy a shape distribution at the same time, we consider these points to 
be collinear or coplanar. These points can be fitted to a straight line 𝐿 or plane 𝑃 ∗. The 
definitions of a straight line and plane in CGA are given by Equations (23) and (24), re-
spectively: 𝐿 = 𝑝 ∧ 𝑝 ∧ 𝑒  (23)

𝑃 ∗ = 𝑛 + 𝑑𝑒  (24)

where 𝑝 and 𝑝  are two points on a straight line. The value 𝑛 is the normal vector of 
plane 𝑃 ∗, and 𝑑 is the distance from plane 𝑃 ∗ to the origin. 

When a point in 𝑷𝒍 and the line or plane closest to it meet the judgment condition of 
Equation (25), the projection point 𝑝  of the point in 𝑷𝒍 on 𝑷𝒌 is obtained according to 
Equation (26). Otherwise, we consider this point to be a noise point, which can be elimi-
nated: 

Figure 5. Point cloud (a) before clustering and (b) after clustering.

2.4. Estimation of Attitude and Motion Parameters

Through the reconstruction of the contour model, the relative pose estimation of the
point cloud between consecutive frames can be obtained. It is also necessary to predict
the centroid position, motion speed, and angular velocity to estimate the motion state
of a non-cooperative target. In addition, it is beneficial to capture tasks. Because of the
singularity of Euler angles, quaternions are frequently used, since their kinematic equations
are linear. In particular, the attitude description of the Kalman filter [55] prediction step
is important in spacecraft attitude control systems. Most previous researchers have used
the extended Kalman filter (EKF) method to estimate the relative attitude, the position
motion parameters, and the moment of inertia [56–59]. When dealing with the nonlinear
problems of dynamic and observation models, the UKF can achieve the same accuracy as
the EKF [60], but when the peak and high-order moments of the state error distribution are
prominent, the UKF can yield more accurate estimations. Conformal geometric algebra
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can provide an effective method of dealing with three-dimensional rigid body motion
problems [61,62]. The rigid body motion equation described by CGA is consistent with the
dual quaternion rigid body motion equation. The author [63] proposed a six-dimensional
twistor to model the rotation and translation integrally without unitization constraints.
In this study, we used a twistor combined with the CW equation and applied the UKF to
estimate the motion parameters of non-cooperative targets.

The state equation described by the pose dual quaternion is

x(t) = (dT(t),
.
d

T
(t), q̂(t), ω(t))

T
(27)

where dT(t) represents the translation vector of the target,
.
d

T
(t) represents the linear veloc-

ity of the movement, ∆t = tk+1− tk, and ω(t) represents the angular velocity. Equation (28)
is then employed to obtain the expression of the dual quaternion of the pose:

q̂(t) = q + ε
1
2

.
d

T
∆tq (28)

Because the unitization constraint cannot be guaranteed when the pose dual quater-
nion is used in the UKF to generate sigma points, we use the twist as the error pose orbit
state parameter to generate sample points [64]. The twist representation is the Lie algebra
representation. The parameterized space of the rigid body motion given by it is a vector
space, which is very beneficial for parameter optimization [61]. The twist error correspond-
ing to the dual quaternion error is given in (29), and the corresponding covariance matrix
is PB, where q̂∆ is the dual quaternion error and (∗) represents quaternion multiplication:

B̂∆ =
q̂∆ − 1
q̂∆ + 1

(29)

PB = E
[(
〈B̂∆〉r, 〈B̂∆〉i

)
∗
(
〈B̂∆〉r, 〈B̂∆〉i

)T
]

(30)

q∆ =

[
cos( 1

2‖ωk‖(tk+1 − tk))
ωT

k
‖ωk‖

sin
(

1
2‖ωk‖(tk+1 − tk)

) ] (31)

Construct sigma sample points with error twistor: xi
B,0

xi
B,k

xi+ρ
B,k

 =

 B∆,k
B∆,k +

(√
(L + ρ)PB,k

)
i

B∆,k −
(√

(L + ρ)PB,k
)

i

i = 1, 2, · · · · · · L (32)

The weight is
[

W0
Wi

]
=

[ ρ
L+ρ

1
2(L+ρ)

]
, where L is the dimension of the state quantity

xk and ρ = a2(L + k)− L. After obtaining the sample points of the twist error, the inverse
transformation of the twist is used to obtain the corresponding sample points of the dual
quaternion error q̂i

∆, and the pose dual quaternion q̂i
k (36) and predicted point q̂k are

obtained through the state equation:

q̂i
∆ =

1 + Bi
∆,k

1− Bi
∆,k

(33)

q̂i
k = qk ∗ q̂i

∆ (34)

q̂k = q̂i
k + ε

1
2

di
k q̂i

k (35)

q̂∆ = q̂i
∆ + ε

1
2

.
dk (tk+1 − tk)q̂i

∆ (36)
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q̂k+1 = q̂k·q̂∆ (37)

When the state propagation time interval is sufficiently small and the angular velocity
wk is constant, the state propagation equation of the pose dual quaternion is:

xk+1 = (dT(t) +
.
d

T
(t)∆t,

.
d

T
(t) +

..
d

T
(t)∆t, q̂k+1, wk) (38)

The CW equation [65] can be used to obtain the kinematic equation of the centroid
offset position:

..
d

T
=

 0 0 0
0 n2 0
0 0 −3n2

 .
d

T
+

 0 0 −2n
0 0 0

2n 0 0

dT (39)

where n =
(
µ/r3)1/2 and µ is the gravitational constant 6.67428± 0.00067× 10−11 m3kg−1s−2.

The observation Equation (40) can be used to generate the observation points of the
predicted points. In this study, the observation point Qk+1 of the pose dual quaternion and
observation position Dk+1 were constructed through the model reconstruction:

zi
k+1 = wixi

k+1 (40)

H
(
Q̂k+1

)
= Qk+1 + ε

1
2

Qk+1Dk+1 (41)

The Algorithm 1 flow for using the UKF [64] for pose and motion parameter estimation
is as follows:

Algorithm 1. UKF Algorithm

Input:
State variable at time k Xk = [xk , Wk, Vk]

T , covariance

matrix Pk =

 Pk
Qk

Rk


Output: At time k+1 Xk+1, Pk+1

Initial value: X0 = [X0 , 0 , 0]T , P0 =

 P0
Q0

R0


Iteration process

Step 1: Convert the pose quaternion into the error twistor B̂∆, and perform sigma
sampling on it

Step 2: Convert the sigma sample point of the error twistor into a pose dual quaternion,
and obtain a new prediction point xi

k+1,k through the state equation

Step 3:
Determine the mean and covariance of the predicted points
X̂k+1,k = ∑2L

i=0 Wixi
k+1,k, δi

Xk+1
= xi

k+1,k − X̂k+1,k, and

Pk+1,k = ∑2L
i=0 WiδXk+1 δXk+1

T

Step 4:
Obtain the new observation point mean and covariance through the observation
equations Ẑk+1,k = ∑2L

i=0 Wizi
k+1,k, δi

Zk+1
= zi

k+1,k − Ẑk+1,k, and

Pzk+1 = ∑2L
i=0 WiδZk+1 δZk+1

T

Step 5:
Determine the Kalman gain for the UKF using Pk+1

XZ = ∑2L
i=0 δi

Xk+1
δZk+1

T and

Kk+1 = Pk+1
XZ /Pzk+1

Step 6:
Update the status according to Xk+1 = Xk + Kk+1

(
Zk+1 − Ẑk+1

)
and

Pk+1 = Pk − Kk+1Pzk+1 Kk+1
T

3. Experimental Results and Analysis

To verify the CGA-based cross-source point cloud fusion algorithm proposed in this
study, numerical simulation experiments and semi-physical experiments were conducted.
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3.1. Numerical Simulation

The CGA-based cross-source point cloud fusion algorithm proposed in this paper
served as the basis for pose estimation and was also the core of this study. We used
Blendor software to generate satellite point clouds [66] and verified the proposed algorithm
according to the following approach.

Step 1: Set the positions of the Kinect and LiDAR sensors in the Blendor software, and
select the appropriate sensor parameters. Table 2 lists the sensor parameter settings
for the numerical simulation in this study.

Step 2: Rotate the satellite model once around the z axis (inertial coordinate system), and
collect 16 frames of point cloud in 22.5◦ yaw angle increments.

Step 3: Use the proposed fusion algorithm to register the point clouds collected by the
two sensors.

Step 4: Rotate the satellite model around the x axis or y axis, and repeat steps 2–4.
Step 5: Adjust the distance between the two sensors and the satellite model, and repeat

steps 2–5.
Step 6: Use the root mean square error (RMSE) to verify the effectiveness of the algorithm.

Table 2. Kinect and LIDAR parameters in the numerical simulation experiment.

Sensor Parameter Value

Kinect 1.0

Resolution 640 px × 480 px
Focal Length 4.73 mm

FOV (V,H) (43◦, 57◦)
Scan Distance 1–6 m

Velodyne HDL-64
Scan Resolution

(0.08◦–0.35◦) H
0.4◦ V

Scan Distance 120 m
FOV (V) 26.9◦

3.1.1. Registration Results

In the numerical simulation experiment, we set six distances between the non-cooperative
target and the service spacecraft. At each distance, 16 groups of point clouds around the x
axis, y axis, and z axis of the non-cooperative target were obtained respectively. At each
distance, we obtained 48 sets of point cloud data to evaluate the root mean square error at
each distance. We compared the cross-source point cloud fusion algorithm (FMR) based on
the deep learning technique in [34] and the curvature-based registration algorithm (CBD)
in [36] with the algorithm proposed in this paper. Figure 6a–c shows the errors of the three
methods for point cloud fusion with different attitude angles when the non-cooperative
target rotates around the x, y, and z axes. From the figure, it can be implied that irrespective
of the type of axis around which the target rotates, our method is optimal. Figure 6d shows
the root mean square error of the three algorithms at different distances when the serving
spacecraft approaches the non-cooperative target from far to near. This experiment verifies
that our algorithm has a high matching accuracy and robustness.
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3.1.2. Pose Estimation Results of Simulated Point Clouds

In this study, we used the method proposed in our previous study [37] to obtain a 3D
contour model of the non-cooperative target. Figure 7 shows the three-dimensional views
of the reconstructed 3D satellite model.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 27 
 

 

 
(c) (d) 

Figure 6. (a–c) When rotating around the x axis, y axis, and z axis, simulated point cloud fusion error for different rotation 
angles. (d) RMSE change curve for registration at different distances. 

3.1.2. Pose Estimation Results of Simulated Point Clouds 
In this study, we used the method proposed in our previous study [37] to obtain a 

3D contour model of the non-cooperative target. Figure 7 shows the three-dimensional 
views of the reconstructed 3D satellite model. 

 
Figure 7. Simulated point cloud contour model. 

For the point cloud obtained from the simulations, the following pose estimation 
method was used. We set the target to rotate around the z axis at a speed of 5°/s. The initial 
parameters were set by the software, as shown in Table 3. Except for the Euler angle that 
changed with the target rotation, the initial and final parameters were the same. 

Table 3. Initial parameters set in the numerical simulation experiment. 

Parameter Symbol Value 
Initial relative position (P , P , P ) (0, 0, 0) m 
Initial relative velocity (V , V , V ) (0, 0, 0) m/s 

Orbit altitude (circular orbit) r 0.2 m 
Initial Euler angle (Pitch , Roll, Yaw) (0, 0, 0) 

Initial angular velocity (W , W , W ) (0, 0, 5) °/s 
Sensor acquisition frequency f 0.22 Hz 

Frame number N 16 

In Figure 8a,c, the blue and red curves represents the result of pose estimation and 
true values, respectively. In the simulation experiment, the maximum error between the 
translational position of the target along the x, y, and z axes and the true value was 0.16, 

Figure 7. Simulated point cloud contour model.



Remote Sens. 2021, 13, 4239 16 of 26

For the point cloud obtained from the simulations, the following pose estimation
method was used. We set the target to rotate around the z axis at a speed of 5◦/s. The
initial parameters were set by the software, as shown in Table 3. Except for the Euler angle
that changed with the target rotation, the initial and final parameters were the same.

Table 3. Initial parameters set in the numerical simulation experiment.

Parameter Symbol Value

Initial relative position
(
Px, Py, Pz

)
(0, 0, 0) m

Initial relative velocity
(
Vx, Vy, Vz

)
(0, 0, 0) m/s

Orbit altitude (circular orbit) r 0.2 m
Initial Euler angle (Pitch , Roll, Yaw) (0, 0, 0)

Initial angular velocity
(
Wx, Wy, Wz

)
(0, 0, 5) ◦/s

Sensor acquisition frequency f 0.22 Hz
Frame number N 16

In Figure 8a,c, the blue and red curves represents the result of pose estimation and
true values, respectively. In the simulation experiment, the maximum error between the
translational position of the target along the x, y, and z axes and the true value was 0.16,
0.02, and 0.08, respectively. The speed error along each of the three axes was less than 0.05.
Figure 8b,d depicts the errors between the attitude angle and angular velocity. The results
indicate that the attitude angle errors along the x and y axes were less than 0.3◦. Notably,
the target was rotated around the z axis, making the point cloud change in this direction
very clearly. The error around the z axis was less than 1◦. In addition, the angular velocity
error along the x and y axes was less than 0.001◦.

3.2. Semi-Physical Experiment and Analysis

Because the point cloud generated by the software is dense, the distribution is regular
and there is little noise. However, in fact, the point cloud collected by our sensors was
irregularly distributed and sparse. We simulated the rotation of non-cooperative targets in
space in the laboratory, employed sensors to collect point clouds, used the method proposed
in this article for registration, and finally determined the pose and motion parameters.

3.2.1. Experimental Environment Setup

To test the performance of the proposed estimation algorithm further, a semi-physical
experiment was conducted. As shown in Figure 9, the satellite model was used as a non-
cooperative spacecraft, a three-dimensional rotating platform was used to simulate the
motion of the non-cooperative spacecraft, and a self-made flatbed was utilized instead of
the chasing spacecraft. We installed a lifting platform on the chasing spacecraft to control
the position of the LiDAR. A Kinect was installed on a lifting bracket, and a displacement
sensor was installed under the chasing spacecraft. By adjusting the distance from the
LiDAR to the ground, we ensured that the target was in the FOV of the LiDAR. The three-
dimensional rotating table was controlled using a control box to adjust its movement in
space. The speed of the rotating table was 5◦/s, and all three axes could rotate at a uniform
speed. An IMU was installed in the main box of the non-cooperative target to transmit
the true attitude angle and motion parameters of the target back to the personal computer
through the 433 wireless communication module. Tables 4 and 5 list the parameters of the
Kinect and LiDAR sensors used in this experiment.
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Table 4. Kinect 1.0 specifications.

Cloud Depth Range of
Detection

Depth
Uncertainty

Angle

Resolution FPS Resolution FPS Horizontal Vertical

640 × 480 30 320 × 240
(16 bit) 30 0.8–6.0 m 2–30 mm 57◦ 43◦

Table 5. RS-LiDAR-32 specifications.

Channel Number Rotation Speed Scan
Distance

FOV Angular Resolution

Vertical Horizontal Vertical Horizontal

32 nonlinear 300/600/1200 rpm 0.4–200 m −25◦~+15◦ 360◦ 0.33◦ 0.1◦~0.4◦

3.2.2. Results of Semi-Physical Experiments

In the semi-physical simulation, we also set six distances, as well as, 14, 10, and 16
sets of point cloud at each distance for the target spacecraft rotating around the x axis,
y axis, and z axis, respectively. Figure 10a–c shows the point cloud fusion error under
different rotation attitudes collected by the two sensors when the target spacecraft rotates
around different axes. Each distance corresponds to 40 sets of point cloud. Figure 10d
shows the RMSE of the point cloud registration at different distances obtained when the
service spacecraft approaches the target spacecraft. We compared the accuracy of the
proposed algorithm with the other two algorithms [34,36], and the results reveal that the
proposed algorithm had the smallest error. Figure 11 demonstrates the results of using the
cross-source point cloud fusion algorithm proposed in this study at different poses. It can
be seen that even at a very low overlap rate, our algorithm still showed strong robustness.
Figure 12 shows the 3D contour model of the non-cooperative target. The overall structure
can be clearly identified, which proves the effectiveness of our algorithm.
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Figure 13a–d presents the results of the translational position estimation, Euler angle
estimation, velocity estimation, and angular velocity estimation of the target obtained
by the proposed method, respectively. In our semi-physical experiment, the target was
rotated clockwise around the z axis, the sampling interval was approximately 22.5◦, and
the number of sampling frames was 100. Although the initial position of the rotating
platform was set to (0, 0, 0) m and the initial rotation angle was (0, 0, 0)◦, the position
of the mass center of the target spacecraft did not change visually. However, because
the target spacecraft was connected to the rotating table, there were errors in the angle
and translational positions of the rotating table during the continuous rotation process.
Through the IMU, we indeed detected that the target spacecraft had a linear acceleration of
±0.0002 m/s2. Therefore, the velocity in the x direction was no longer 0, and there was a
displacement change between frames 40 and 60, but it quickly converged.
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(c) velocity, and (d) angular velocity estimation results.

Figure 14a–d compares the errors between the attitude estimation and the true values
of the parameters obtained by the proposed algorithm and the quaternion-based EKF
algorithm [57] (the true value was determined based on the IMU supply). The translational
position estimation error along the x, y, and z axes for these algorithms, m, was less than
0.3 m; the linear velocity estimation error along the x, y, and z axes was less than 0.01 m/s;
the angular velocity estimation error was less than 0.1◦/s; and the estimated errors of the
three parameters obtained by these two methods were the same. However, the error of
the Euler angle (yaw angle) acquired using the twist-based UKF method in this study was
30% lower than in previous studies [57]. Therefore, the proposed algorithm yields attitude
angle estimations close to the true value.
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4. Discussion

In this section, we discuss the value of the sampling point m mentioned in the cross-
source point-cloud fusion algorithm. In the proposed approach, the FPS algorithm is
used to sample the reference point cloud to ensure that the sampling points are as evenly
distributed on the reference point cloud as possible to achieve global registration. The
execution time of the algorithm is related to the number of sampling points m. Figure 15a–c
shows the relationship between RMSE of the cross-source point cloud fusion algorithm
and the running time with different values of m, when the non-cooperative target uses the
x, y, and z axis, respectively, as the main axis of rotation. Figure 15d shows the relationship
between the RMSE and the running time of the cross-source point cloud fusion algorithm
when m takes different values at different distances. We can see that when m = 10, the
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algorithm consumes less time, but the error is greater. When m = 20, the algorithm time
increases, but the registration error does not change significantly compared to that in the
case of m = 15. Therefore, as a compromise, m was set to 15 for this paper.
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The cross-source point cloud fusion algorithm proposed in this paper has a higher
accuracy than the other two algorithms [34,36]. The number of point clouds in a frame
obtained at different distances is quite different. In the semi-physical experiment, we
collected 40 frames of point cloud for each distance. Table 6 shows the average number
of point cloud in a frame at different distances, and the average running time of the point
cloud fusion algorithm at each distance. Table 6 shows that as the number of point clouds
in a frame increases, our algorithm does not lag behind in terms of time.
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Table 6. Algorithm average running time.

Average Number of Point
Clouds in a Frame

(Kinect/LIDAR)

Our Method (s) FMR [34] (s) CBD [36] (s)

Rotate
Around

x axis

Rotate
Around

y axis

Rotate
Around

z axis

Rotate
Around

x axis

Rotate
Around

y axis

Rotate
Around

z axis

Rotate
Around

x axis

Rotate
Around

y axis

Rotate
Around

z axis

1239/126 3.06 3.46 3.60 2.06 2.01 2.56 5.79 5.60 6.17
1724/217 3.18 3.57 3.91 2.15 2.96 2.96 5.41 6.54 6.29
2653/358 3.43 3.31 4.18 2.40 3.29 3.06 6.32 6.38 6.33
4496/641 4.20 3.78 3.73 2.43 3.75 3.76 6.70 6.25 7.05
7921/951 4.10 4.35 4.27 3.18 3.09 3.92 6.19 6,06 7.10
8105/828 3.99 3.89 4.51 3.26 4.56 4.75 6.82 6.14 7.24

5. Conclusions

A non-cooperative target pose measurement system fused with multi-source sensors
was designed in this study. First, the cross-source point cloud fusion algorithm-based
CGA was proposed. This method used the unified and simplified expression of geometric
elements, and the geometric meaning of the inner product in CGA constructed the matching
relationship between points and spheres and the similarity measurement objective function.
Second, we proposed a plane clustering algorithm of point cloud, in order to solve the
problem of point cloud diffusion after fusion, and the method proposed in [37] was
used to obtain the model reconstruction of non-cooperative targets. Finally, we used the
twistor along with the Clohessy–Wiltshire equation to obtain the posture and other motion
parameters of the non-cooperative target through the unscented Kalman filter. The results
of the numerical simulation and the semi-physical experiment show that the proposed
measurement system meets the requirements for non-cooperative target measurement
accuracy, and the estimation error of the angle of the rotating spindle was found to be 30%
lower than that of other methods. The proposed cross-source point cloud fusion algorithm
can achieve high registration accuracies for point clouds with different densities and small
overlap rates.

To achieve a seamless connection between long- and short-distance measurements,
multi-sensor data fusion is the main research direction for the future. Our future work will
focus on non-cooperative target measurement based on cross-source point cloud fusion
within the framework of deep learning.
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