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Abstract: Interferometric synthetic aperture radar (InSAR) technology is known as one of the most 

effective methods for active landslide identification and deformation monitoring in large areas, and 

thus it is conducive to preventing and mitigating the losses caused by landslides. However, great 

uncertainty inevitably exists due to influences of complex terrains, dense vegetations, and atmos-

pheric interferences in the southwestern mountainous area of China, and this is associated with false 

or erroneous judgment during the process of landslide identification. In this study, a landslide iden-

tification method is put forward by integrating InSAR technology and airborne light detection and 

ranging (LiDAR) technology. Via this method, surface deformation characteristics detected by In-

SAR technology and micro-geomorphic features reflected by LiDAR technology were used to iden-

tify and map landslides of large areas. Herein, the method was applied to process 224 Sentinel-1 

images covering Danba County and its surrounding areas (540 km2) from October 2014 to Septem-

ber 2020. Firstly, 44 active landslides with total areas of 59 km2 were detected by stacking InSAR 

technology. Then, major regions up to 135 km2 were validated by data gained from the airborne 

LiDAR technology. Particularly, several large landslides with lengths and/or widths of more than 2 

km were found. Further, the precipitation data were integrated with the above results to analyze 

the temporal deformation characteristics of three typical landslides from major regions via SBAS 

InSAR technology. The key findings were as follows: (1) The combination of InSAR and LiDAR 

technologies could improve the accuracy of landslide detection and identification; (2) there was a 

significant correlation between temporal deformation characteristics of some landslides and 

monthly rainfall, with an obvious hysteretic effect existing between the initiation timing of rainfall 

and that of deformation; (3) the results of this study will be important guidance for the prevention 

and control of geological hazards in Danba County and areas with similar complex geomorpholog-

ical conditions by helping effectively identify and map landslides. 

Keywords: Landslide detection; deformation monitoring; time series InSAR analysis;  
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1. Introduction 

Affected by the recent continuous uplift of the Qinghai–Tibet Plateau, western China, 

especially the east side of the Qinghai–Tibet Plateau, features deep rivers, complex topog-

raphy and geological conditions, and frequently occurring geological hazards such as col-

lapses, landslides, and debris flow[1]. The ever-increasing occurrences of large cata-

strophic landslides in recent years have caused great social impact and huge economic 

and property losses [2,3], including the landslide in Xinmo Village, Maoxian County in 

2017 [4]; the avalanche, landslide, and river-blocking dam of the Yarlung Zangbo River in 

Citation: Xu, Q.; Guo, C.; Dong, X.; 

Li, W.; Lu, H.; Fu, H.; Liu, X.  

Mapping and Characterizing  

Displacements of Landslides with 

InSAR and Airborne LiDAR  

Technologies: A Case Study of 

Danba County, Southwest China. 

Remote Sens. 2021, 13, 4234. 

https://doi.org/10.3390/rs13214234 

Academic Editors: Ali Khenchaf  

and Jean-Christophe Cexus 

Received: 14 September 2021 

Accepted: 13 October 2021 

Published: 21 October 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 4234 2 of 16 
 

 

Tibet during 2018 [5]; and the Baige landslide in the Jinsha River in 2019 [6]. Geological 

hazards in these areas are often concealed, harmful, and difficult to prevent due to the 

high altitude, steep terrain, and dense vegetation. Therefore, it is of great importance to iden-

tify and monitor the displacement of landslides in these mountainous and canyon areas with 

complex terrain in western China to protect the safety of human life and infrastructure [7]. 

In addition to traditional ground surveys, aerospace remote-sensing technologies 

such as optical remote sensing [8,9], airborne light detection and ranging (LiDAR), un-

manned aerial vehicles (UAVs) [10,11], and interferometric synthetic aperture radar (In-

SAR) [12–14] have gradually become the main technical means for landslide identification 

and displacement monitoring. However, satellite and UAV optical imaging cannot accu-

rately measure the displacement of landslides, while airborne LiDAR is very expensive 

and thus not suitable for landslide identification in a large area. In contrast, the InSAR 

technology is favored due to its capacity to detect small surface deformations at all times 

in all weather conditions with high resolution. Therefore, it has become the first choice for 

landslide identification and deformation monitoring. In 1994, Fruneau first proved the 

effectiveness of DInSAR in landslide monitoring [15], and follow-up work has been suc-

cessively carried out on the application of DInSAR technology in landslide detection and 

monitoring [16,17]. Gradually, an increasing number of methods have been developed 

and widely used in large-area landslide identification and displacement monitoring, in-

cluding SBAS-InSAR [18], PS-InSAR [19,20], and SquessSAR [21], which benefited from 

the development of SAR sensors, the continuous accumulation of SAR images, and the 

advancement of science and technology. 

Landslide identification in large areas based on different InSAR methods has been 

carried out in the Three Gorges area [16], the Bailong River Basin [22], the Jinsha River 

Basin [23,24], the Yalong River Basin [25], and other mountainous areas in western China. 

However, these mountainous areas with steep undulations and dense vegetation can in-

evitably result in the geometric distortion of SAR images [26] and problems with volume 

and/or temporal decorrelation. The combined effect of these factors will increase the uncer-

tainty of deformation measurement, which will increase the possibility of false or erroneous 

judgment in landslide identification and mapping. Therefore, when verification is absent, the 

reliability of InSAR identification and monitoring results are compromised to a certain extent. 

As an emerging remote-sensing technology, airborne LiDAR can obtain three-dimen-

sional, dense, real-point cloud data. After filtering and removing vegetation, a high-reso-

lution digital elevation model (DEM) can be obtained, which can well reflect the real mi-

cro-geomorphic features under the vegetation cover to reveal the morphological features 

of the hidden landslides. In recent years, high-resolution digital imagery and elevation 

datasets have become much easier to acquire, owing to the rapid progress of science and 

technology, which has allowed researchers to map smaller and more subtle slope failure 

events. Airborne LiDAR has been widely used in landslide investigations, and it is espe-

cially suitable for mapping the landslides covered by dense vegetation [11,27–29]. In this 

study, high-resolution DEM and its derivatives were used to verify the landslide detection 

results of InSAR by means of remote sensing, and they could also help accurately charac-

terize the boundary of the landslide according to the geomorphological features. 

In this study, InSAR and airborne LiDAR technologies were integrated to identify 

and map landslides in Danba County and the surrounding areas, accompanied by a new 

procedure for landslide identification and deformation monitoring. The aims of this study 

were: (1) To use stacking InSAR technology to detect landslides in a large area, and then 

use LiDAR data to validate the InSAR detection results in a smaller area, and eventually 

improve the accuracy and reliability of landslide identification in the complex mountain-

ous areas with dense vegetation cover; and (2) to analyze the time-series deformation charac-

teristics of typical landslides based on high-precision LiDAR-DEM and rainfall data. 
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2. Methodology 

The steep terrain and dense vegetation in the mountainous areas of western China 

increase the uncertainty of InSAR deformation measurements [30]. Therefore, the lack of 

effective verification may affect the reliability of the landslide identification results to a 

certain extent. In this study, efforts were first made to detect active landslides via the 

stacking InSAR technology in a large area. Subsequently, airborne LiDAR data were em-

ployed to verify, modify, and accurately draw the boundaries of active landslides by ob-

serving the micro-geomorphic features in the high-resolution DEM in a smaller area. Fi-

nally, SBAS-InSAR was applied to analyze the historical deformation characteristics of 

typical landslides to improve the reliability of the InSAR measurement results. A detailed 

workflow is shown in Figure 1. 

 

Figure 1. The adopted workflow for mapping and characterizing landslides in a large area. 

2.1. Stacking InSAR and SBAS InSAR Technology 

Stacking InSAR technology was developed based on conventional DInSAR technol-

ogy, and it can improve the relative accuracy of deformation information from atmos-

pheric disturbances through linear superposition of multiple differential interferograms 

[31]. The basic assumption of stacking InSAR technology is that the phase of atmospheric 

disturbances are random in time, while the ground deformation signal is time-dependent 

and can be approximately regarded to change linearly with time. It is feasible to suppress 

the atmospheric-disturbance phase by superimposing the corresponding unwrapping 

phases of multiple differential interferograms at different times, thereby improving the 

measurement accuracy of the deformation phase. This method can only obtain the relative 

deformation of the landslide in a certain period of time, and thus it cannot reflect the tem-

poral evolution of the landslide. However, it also has certain advantages, since it does not 

require many complicated calculations, thereby contributing to the quick and efficient de-

tection of small ground deformation. Accordingly, it has been widely used to quickly 

identify hidden dangers of landslides in a large area. 

SBAS-InSAR technology is a time-series InSAR processing method based on multi-

master images, which can better overcome the effects of spatiotemporal decoherence and 

extract the effective information of distributed scatterers as much as possible, thereby im-

proving the reliability and accuracy of deformation measurement results [18]. The basic 
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principle is as follows: (1) Conventional DInSAR processing is performed on the M inter-

ferometric pairs obtained from multiperiod SAR images according to a certain spatiotem-

poral baseline threshold, including differential interference, filtering, and unwrapping; (2) 

modeling and calculation of low-frequency deformation and elevation errors are imple-

mented based on the unwrapping phase; (3) low-frequency deformation and elevation 

errors are removed from the original differential interferogram, followed by wrapping on 

the residual differential interference phase and unwrapping to obtain the high-frequency 

deformation phase; (4) this high-frequency deformation phase is then added to the previ-

ous low-frequency deformation phase, the results of which are subjected to low-pass fil-

tering in the space domain and high-pass filtering in the time domain to remove atmos-

pheric errors; and (5) finally, the singular value decomposition is used to obtain the least-

norm least square solution of the deformation rate, accompanied by the acquirement of 

the time-series deformation of the entire time period by integration in the time domain. 

SBAS-InSAR technology can overcome the defects of stacking InSAR technology to a 

certain extent, thereby improving the accuracy of landslide deformation measurement 

and helping obtain the temporal and spatial characteristics of landslide evolution. How-

ever, SBAS-InSAR technology requires extensive image data accumulation in the target 

area, and data processing in large areas is complicated and inefficient. Therefore, it is log-

ical to combine stacking InSAR and SBAS-InSAR by first detecting and identifying land-

slides in a large area with stacking InSAR and then monitoring time-series deformation of 

landslides in key areas with SBAS-InSAR. In this way, it is more efficient to perform land-

slide detection and identification, as well as deformation monitoring. 

2.2. Airborne LiDAR 

Airborne LiDAR uses a manned or unmanned aerial vehicle as the carrying platform, 

and it can accurately obtain the spatial coordinates of the target point through an inte-

grated attitude positioning system and a laser scanner that actively emits a laser beam. 

Moreover, the acquired point cloud data can be combined with the corresponding filtering 

algorithm to effectively remove surface vegetation, buildings, and other undesired objects 

to obtain the real DEM. Then, the high-resolution DEM and its derivatives can be utilized 

to reflect the real micro-geomorphic features. In this context, it is feasible to effectively 

identify and map historical landslides according to the morphologies of fractures, hum-

mocks, pressure ridges, and depressions on the surface during the deformation and move-

ment of the landslides. LiDAR applications have achieved great success in recent years in 

mapping landslide morphology and estimating landslide activity in areas partially or 

completely covered by dense vegetation [32–34]. 

3. Study Area and Datasets 

3.1. Study Area 

The study area was located in Danba County, in the northeastern Ganzi Tibetan Au-

tonomous Prefecture, Sichuan Province, Southwest China (Figure 2a). It was about 400 

km from Chengdu, the capital city of Sichuan. The elevation difference in the study area 

was 3000 m, with an average altitude of about 3200 m, At the same time, there were abun-

dant plant resources and dense vegetation cover in the study area, which indicated a typ-

ical erosion–denudation-dominated high mountain-gorge landform. Geologically, this 

area exposes silver-gray quartz-mica schist, the Fourth Formation-complex (Smx4) of the 

Maoxian group, and the Silurian system; and the overburden material consists of old land-

slide debris (Q4del) and rock-fall deposits (Q4col+dl). The NE-SW Xiaojin River and the N-S 

Dajinchuan River flow through the study area, and converge into the Dadu River after 

flowing through Danba County, and this area is characterized by heavy erosion by the 

river (Figure 2b). The precipitation in the study area has uneven distribution throughout 

the year, and the mean annual and monthly precipitation are about 668 mm and 55 mm, re-

spectively. The monthly precipitation peaks in June and September and the average rainfall in 
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June and September are about 160 mm and 97 mm, respectively. The amount of daily precip-

itation is large during the flood season, and is very likely to trigger geological hazards. 

Physiographically, the study area is located in the eastern part of the Qinghai–Tibet 

Plateau; has a prolonged geological history, complex structure system, and fragile geolog-

ical environment; is characterized by neotectonic movements; and has frequent occur-

rences of geological hazards. Therefore, the area has been graded as a high-susceptibility 

zone of geological hazards in Sichuan Provence. With the continuously expanding human 

activity, the development of geological hazards in Danba County tends to grow, and mul-

tiple landslide deformations are reactivated, which brings about major threats to the life 

and property security of local residents. For example, The June·26 and July·11 debris flow 

disasters in 2003 caused severe casualties (50 missing and 1 dead, and 7 missing and 10 

dead, respectively) and huge financial losses. In February 2005, the Jianshe Road landslide 

in the county reactivated and imperiled the safety of half of the county. This aroused con-

cerns of the state and the Sichuan government, which actively dealt with the emergency 

and spent tens of millions of RMB on emergency rescues and comprehensive treatment. 

Geological hazards have severely threatened the economic development, social security, 

and local prosperity of Danba County. 

 
(a) (b) 

Figure 2. (a) Location of Danba County and coverage of the SAR datasets; (b) tectonic and geological map of the study area. 

3.2. SAR Data 

The deformation rate along the line of sight (LOS) in the study area was estimated 

based on 134 Sentinel-1 ascending images and 90 descending images from October 2014 

to December 2020 (Table 1). Meanwhile, an SRTM DEM with a resolution of 30 m was 

used as the reference elevation data to remove the terrain phase component from the in-

terferogram. GAMMA software of Switzerland was used for stacking and SBAS InSAR 

data processing; the images from 21 December 2018 and 28 December 2018 were selected 

as the primary images for the ascending and descending orbit data, respectively. The tem-

poral and spatial baseline threshold of ascending data were 192 d and 203 m, respectively. 

Due to the lack of descending images from March 2017 to March 2018, the threshold of 

descending orbit data was set at a temporal baseline of 462 d and a spatial baseline of 180 

m, which resulted in 655 groups and 435 groups of interference pairs, respectively. As the 

study area was located in a mountainous area, the threshold was set to 0.2 in order to 

obtain more coherent points. 
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Table 1. The basic parameters of the SAR datasets. 

Sensor Sentinel-1A Sentinel-1A 

Orbit direction Ascending Descending 

Wavelength (cm) 5.6 5.6 

Resolution (m) 5 × 20 5 × 20 

Repeat cycle (d) 12 12 

Polarization VV VV 

Look angle (°) 20~45° 20~45° 

Temporal coverage Oct. 2014.~Sept. 2020. Oct. 2014.~Sept. 2020. 

Number of images  134 90 

3.3. Airborne LiDAR Data 

In this work, the airborne LiDAR data covered an area of about 135 km2 around 

Danba County, accounting for about 1/4 of the InSAR detection area. The LiDAR data 

were acquired during the period of 13 February2019 to 19 February 2019. During the data 

acquisition, an AS350 helicopter was equipped with a SKYEYE SE-J1200B airborne LiDAR 

system that was applied to areas of high mountains and hills; is the system was manufac-

tured by Mianyang Skyeye Laser Technology Co. Ltd., China. The maximum field angle 

of the laser generator was 50°, and the laser pulse frequency was 50–550 kHz. The point 

density was a close 15 points per square meter. A digital elevation model (DEM) with a 

resolution of 0.5 m was generated by spatial interpolation of ground points after point 

cloud filtering. During aerial photography, an optical camera with 80 million pixels was 

mounted coaxially with the laser scanner to generate an orthographic image (DOM) with 

a resolution of 0.2 m, which was used to assist in landslide identification and interpreta-

tion. The spatial reference of DEM and DOM was CGCS2000_102E, and the elevation da-

tum of DEM was the China national elevation datum in 1985. The root mean square error 

of elevation was less than 0.5 m. The derived DEM helped to generate a number of derived 

layers that supported landslide identification and characterization. In the current study, a 

hillside, slope, and sky view factor (SVF) map were derived from the LiDAR-based DEM. 

LiDAR data processing and LiDAR data products and topographic derivatives were 

shown in Figure 3. 

 

Figure 3. Processing flow and products of airborne LiDAR data. (a) LiDAR pointcloud acquisition and processing; (b) 

LiDAR products and topographic dervatives. 

4. Results 

4.1. Active Landslides Mapped by Stacking InSAR 

Figure 4 shows the differential interferograms acquired by stacking InSAR in the 

study area from October 2014 to September 2020. A total of 44 active landslides with con-

tinuous deformation were detected within a range of 540 km2. Among them, 29 landslides 

were detected by the ascending orbit data, 20 were detected by the descending orbit data, 
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and 5 were detected jointly by both the ascending and descending orbit data. All the de-

tected active landslides had a total area of about 59 km2, and they were mostly distributed 

along the right bank of the Dadu River and its upstream tributary, the Dajinchuan River. 

Most landslides near Danba County moved in an east-to-west direction. The ascend-

ing orbit Sentinel-1 radar images could be used to detect the potential landslides on the 

east-facing slopes. In contrast, west-facing slopes were subjected to influences of shadows, 

top and bottom inversions, and other geometric distortions in the SAR images. Partial 

deformation signals from west-facing landslides could be detected in the ascending orbit 

data. For instance, several landslides, such as Gaoding, Niela, and Jiaju, were located on 

east-facing slopes, and they could be clearly identified in the ascending orbit data. Mean-

while, there were also certain signals in the descending orbit data. Nonetheless, it was 

critically necessary to combine ascending and descending orbit data to identify as many 

potential landslides as possible. However, for south-facing slopes, it seemed that both as-

cending and descending orbit data detected very few landslides. 

 
(a) (b) 

Figure 4. Geometrically corrected and filtered differential interferograms of the Sentinel-1 stacking InSAR: (a) ascending 

image pair; (b) descending image pair. 

4.2. Landslide Validation Using Airborne LiDAR Data 

More than half of the landslides in the study area were concentrated in densely pop-

ulated towns in Danba County, such as Jiaju, Wulipai, and Zhonglu towns in the middle-

upper parts of the slopes, although there were also some active landslides detected by 

stacking InSAR along the banks of the river. It was challenging to verify these landslides, 

because it is difficult to conduct manual ground surveys in such terrain, and also because 

it is difficult for satellite and optical drone images to show surface features below the veg-

etation cover. As a countermeasure, this study employed airborne LiDAR data to verify 

the active landslides detected by InSAR in the above-mentioned major regions (135 km2). 

Figure 5 shows the stacking-InSAR-acquired differential interferograms of 10 se-

lected landslides and the SVF images derived from LiDAR-DEM. The landslides detected 

in the stacking InSAR differential interferograms had a good correspondence in the spatial 

position with the landslide interpreted from the LiDAR SVF images. However, there were 

some differences in the landslide boundaries and areas of the same landslide identified 

by InSAR and LiDAR. In addition, for each location with a large landslide deformation 
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rate, there were more obvious traces of motion in the corresponding area on the SVF im-

age, indicating active landslide movement. 

 

Figure 5. (a) Enlarged differential interferograms; and (b) DEM-derived SVF images of 10 exemplary landslides. The black 

solid lines and the red dotted lines indicate the boundaries of the InSAR-based and LiDAR-based landslides, respectively. 

4.3. Displacements of Selected Giant Landslides by SBAS InSAR 

Three giant landslides were confirmed to have obvious deformation or sliding marks 

by airborne LiDAR, and they were distributed in the Gaoding area on the right bank of 

the Dajin River and in Zhonglu Town on the left bank of the Xiaojinchuan River (see Fig-

ure 4 for locations). It was crucially important to conduct time-series deformation moni-

toring for these landslides, because there are potential landslides that can destroy nearby vil-

lages, as well as the G248 and G350 national highways at the foot of the slope, thereby threat-

ening people’s lives and properties in Danba County and its upstream and downstream areas. 

Figure 6 shows the Gaoding landslide in Niega Town, which was about 5.3 km long 

and 1.9 km wide, covering an area of about 10 km2. The elevation difference between the 

front and rear edges was up to 1940 m. The annual average deformation rate of the 

Gaoding landslide was as high as −46 mm/year (Figure 6a), and there were three main 

deformation zones on the back, middle, and right-front sides of the landslide. Figure 6b 

shows the SVF image derived from LiDAR-DEM (the red solid line delineates the land-

slide boundary). The deformation ranges of InSAR-based landslides were found to be in 
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good agreement with those of LiDAR-based ones. Meanwhile, InSAR-based highly de-

formed areas also presented obvious traces of activity in the LiDAR images. However, 

these geomorphological features were not easily found in the satellite optical image (Fig-

ure 6c). Figure 6d shows the severely deformed area at the rear edge of the landslide, 

where there was a small landslide with a height difference of about 165 m and a length of 

about 370 m. Additionally, there was a small landslide dam at the toe of the above-men-

tioned landslide, with a height of about 63 m. Figure 6e shows an area with a large defor-

mation rate in the middle of the landslide, and there were clear traces left by the material 

movement (indicated by yellow arrows), accompanied by some loose debris. Figure 6f shows 

the strongly deformed area on the right side of the front edge of the landslide, and black ar-

rows show the obvious boundary of the local landslide that left traces of sliding on the surface. 

Jiaju Tibetan Village is known as the first of the six most beautiful ancient rural towns 

in China, and it is just below the toe of the landslide, suffering from potential dangers 

(Figure 6g). Two points (i.e., Points P1 and P2) in the strongly deformed area were selected 

for time-series-deformation analysis, with consideration of the monthly rainfall data of 

Danba County (data source: China Meteorological Data Network, http://data.cma.cn/ ac-

cessed on 20 December 2020). Landslide deformation was found to be closely related to 

the monthly precipitation, and it presented obvious features of seasonality. In particular, 

deformation was obviously accelerated during the rainy season, while it significantly de-

clined and even tended to stop during the dry season. According to the rainfall character-

istics of Danba County, the entire year was divided into a rainy season from May to Oc-

tober and a dry season from November to April. The rainfall in the rainy season accounted 

for more than 80%, and even 90% in some years, of the total annual rainfall. Subsequently, 

efforts were made to analyze the relationship between landslide deformation and seasons. 

Obvious hysteretic effects existed between the initiation timing of deformation and that 

of the rainy season. Similarly, there were also hysteretic effects between the termination 

timing of deformation and the onset timing of the dry season. As shown in Figure 6h, the 

black and red solid arrows indicate the time differences between the initiation timing of 

the rainy season and that of deformation at Points P1 and P2, respectively, which were on 

average 3.17 and 3.36 months, respectively. The black and red dashed arrows show the 

time differences between the onset timing of the dry season and the termination timing of 

deformation at Points P1 and P2, respectively, which were on average 3.62 and 4.08 

months, respectively. In general, the initiation of landslide deformation was about 3.23 

months after the beginning of the rainy season, while the termination of landslide defor-

mation was a bit longer, about 3.85 months after the end of the rainy season. During the 

period of October 2014 to September 2020, except for the first and last rainy seasons, the 

other five rainy seasons corresponded to five complete continuous deformation processes. 

According to statistics, except for 2015, in the four rainy seasons of 2016–2019, the average 

annual deformation rate of the landslide during each rainy season was basically positively 

correlated with the total rainfall of the rainy season and the maximum monthly rainfall. 

The average annual deformation rates of P1 and P2 during each rainy season were about 

−110~−125 mm/year and −145~−175 mm/year, respectively. 
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Figure 6. The Gaoding landslide in Niega Town and the relationship between its time-series deformation and rainfall: (a) 

InSAR-acquired annual average deformation rate of the Gaoding landslide; (b) airborne LiDAR-SVF image; (c) optical 

image; (d) local landslide at the rear edge of the Gaoding landslide; (e) strong deformation in the middle of the Gaoding 

landslide, with yellow arrows showing the landslide movement path; (f) a strongly deformed area on the right side of the 

front edge of the Gaoding landslide, with black arrows indicating the local sliding boundary; (g) Jiaju Tibetan Village; (h) 

time-series deformation at Points P1 and P2 against monthly precipitation. 

As shown in Figure 7, Landslides L01 and L02 in Zhonglu Town had deformation 

areas of 1.12 km2 and 1.24 km2, maximum annual average deformation rates of −24 

mm/year and −16 mm/year, and highest elevations of 4100 m and 3400 m, respectively. 

The maximum elevation difference from the river bed was about 2170 m. Specifically, Figure 

7b shows the topographic features of Landslide L01, where the landslide wall and the front-

edge uplift are clearly visible in the high-resolution DEM-derived SVF image. Tensile stress 

on the rear edge of landslide L02 resulted in fractures that were about 10 m wide and 5–10 m 

deep. There were many obvious secondary ridges formed by smaller sliding on the surface of 

the slope, accompanied by some small eroded grooves resulting from rain wash (Figure 7c). 

Section line A-A’ (Figure 7a) was made along the sliding direction of Landslide L01 

to further study the relationship between the surface morphology and the deformation 

rate of the landslide (Figure 7d). The landslide was divided into six zones (i.e., I–VI) ac-

cording to the deformation rate and topographic characteristics along Line A-A’. Zone I 

was mainly composed of bedrock with rare deformation. Zone II was the source area of 

the landslide, where loose rock and soil debris were dominant, and the deformation rate 

showed an increasing trend year by year. Zone III had the highest deformation rate, with 

an average of 20 mm/y. Zone IV featured a decreasing deformation rate, mainly due to 

the steepened landslide front caused by the obstruction of the terrain. Consequently, ob-

vious wavy squeezed structures were formed on the surface. The landslide deformation 

rate gradually increased in Zone V, but it turned from a negative value to a positive value, 

indicating accelerating deformation. Zone V was the main landslide accumulation area. 
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The landslide deformation rate decreased to zero and tended to be stable in Zone VI, as 

was represented by the relatively stable bedrock in the topography. 

Points P3 and P4 were selected for time-series deformation analysis (Figure 7e). Slow 

and uniform deformation was observed at Point P3 from October 2014 to October 2017, 

followed by accelerating deformation from October 2017 onward. Constant slow defor-

mation was seen at Point P4 from October 2014 to September 2020. According to the areas 

with positive and negative displacements rates observed Figure 7a e, the landslide L01 

could be a rotational landslide. 

 

Figure 7. Images of two landslides in Zhonglu Town and the corresponding time-series-deformation analysis: (a) InSAR-ac-

quired annual average deformation rate of Landslides L01 and L02 in Zhonglu Town (the lower-left corner shows the Zhonglu 

Tibetan Village under the slope); (b) airborne LiDAR-SVF image of Landslide L01; (c) airborne LiDAR-SVF image of Landslide 

L02; (d) topographic profile and deformation rate profile along Line A-A’; (e) time-series deformation of Points P3 and P4. 

5. Discussion 

5.1. Comparison of InSAR-Based and LiDAR-Based Landslides 

As mentioned above, boundaries and areas of the same landslide identified by InSAR 

and LiDAR were different. In order to quantify the differences, three parameters were 

proposed, including AIn, which represented the area of the InSAR-based landslide; ALi, 

which represented the area of the LiDAR-based landslide; and At, which represented the 

common area between the InSAR-based and LiDAR-based landslides. As shown in Figure 

8a, good fitting was seen between ALi and AIn (� = 0.843� − 2.041 × 10�; R2 = 0.844) as 

well as between AIn and ALi (� = 0.876� − 1.876 × 10�; R2 = 0.945). 

Then, two derivative parameters were proposed to quantify the matching degree be-

tween the landslide identification result and the corresponding technical method, ex-

pressed as ���  and ���  for the LiDAR-based and InSAR-based landslides, respec-

tively, In Equations (1) and (2) [35,36], higher ��� and ��� values (ranging from 0 to 1) 

indicate higher matching degrees. 

M��=
���∩���

���
 (1)
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���=
���∩���

���
 (2)

Among the 36 landslides that were identified in both the InSAR and LiDAR data, the 

InSAR-based ones had higher M values (median 0.85 and mean 0.70) than the LiDAR-

based ones (median 0.68 and mean 0.63). Moreover, the M values of the InSAR-based 

landslides were relatively concentrated in the vicinity of 0.8, whereas those of the LiDAR-

based ones were more scattered, with a wider range of 0.4–1. 

 

Figure 8. Comparison of InSAR-based and LiDAR-based landslides: (a) relationships between areas of InSAR-based and 

LiDAR-based landslides and the common area; (b) the matching degrees between the landslide identification results and 

the corresponding technical methods. 

5.2. Advantages of Combining InSAR and LiDAR Technologies 

Combining InSAR and LiDAR technologies could improve the landslide detection 

and recognition results, which mainly resulted from the following three aspects. 

5.2.1. Eliminating Slope Deformation Caused by Nonlandslide Activities 

Although InSAR technology could detect millimeter-level deformations on the sur-

face, not all the detected deformation areas were caused by landslide activities. In this 

context, the employment of LiDAR images could well eliminate the deformations caused 

by nonlandslide activities. As shown in Figure 9a, the yellow solid line in the differential 

interferogram marks the main deformation area with the monitoring time of January 2014 

to October 2020. However, this area was identified as influenced by a building in the SVF 

image derived from LiDAR-DEM. Moreover, such influence of building construction was 

confirmed by the three phases of optical images in October 2015, March 2017, and Febru-

ary 2019, (Figure 9c–e, respectively). 

5.2.2. Identifying Small Landslides and Landslides with Unobvious Deformation 

It is generally difficult to detect and effectively identify some small, deforming land-

slides in SAR images due to the limitation of the spatial resolution [37]. Moreover, the 

western mountainous areas in China have steep terrain and dense vegetation, and thus 

effective interferometric measurement points are relatively sparse, making it difficult to 

identify small landslides [30]. The red solid lines in the differential interferogram of Figure 

9f delineate the same areas as those landslides identified in the SVF image of Figure 9g. 

However, it was almost impossible to infer these two landslides in the differential inter-

ferogram (Figure 9f). In contrast, these two landslides were clearly visible in the SVF im-

age. Moreover, these two landslides were seen with obvious signs of deformation within 

the time range of the InSAR detection during the field survey. An indicative example is 

the crack on the surface of the highway (built in 2016) passing through the middle of the 

landslide (Figure 9h,i), with a length of 20 m, a width of approximately 0.1 m, and a height 

of approximately 0.15 m. 
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In addition, some areas with insignificant deformation could be detected by InSAR, 

but they could not be determined as deformed areas, since the slope deformation was 

insignificant (e.g., the area within the yellow line in Figure 9j). In contrast, two landslides 

could be obviously observed in the LiDAR image (i.e., the red solid lines in Figure 9k). A 

zoomed-in view of the slope toe showed obvious sliding deformation (i.e., the black dot-

ted lines in Figure 9l,m), which most likely was influenced by the Xiaojin River. 

5.2.3. Accurately Drawing Landslide Boundaries 

InSAR could detect the deforming slope area, but its ability to accurately characterize 

its boundary was relatively weak [38]. In this context, it was feasible to combine InSAR 

and LiDAR to more accurately draw the boundary of the landslide, including the second-

ary boundaries caused by multiple sliding. As shown in Figure 10a, the black line in the 

differential interferogram of the Zhonglu Town marks the suspected deformation area. 

Similarly, only two landslides could be identified in the high-resolution optical image (the 

yellow solid lines in Figure 10b). In contrast, the boundaries of all landslides could be 

accurately delineated in the LiDAR image (Figure 10c). Moreover, even some small fea-

tures such as landslide ridges and secondary sliding boundaries could be determined 

from the LiDAR image (Figure 10d). 

 

Figure 9. Combination of InSAR and LiDAR technologies to detect landslides: (a) stacking InSAR differential interfero-

gram and the interpreted deformation zone; (b) the corresponding LiDAR-SVF image; (c–e) Optical images corresponding 

to October 2015, March 2017, and February 2019, respectively; (f) stacking InSAR differential interferogram with suspected 

landslide boundaries delineated according to those identified in LiDAR images; (g) LiDAR-SVF image and two interpreted 

landslides; (h) a photo near the landslide area; (i) cracks in the highway caused by landslide activities; (j) stacking InSAR 

differential interferogram and an area with insignificant deformation; (k) the corresponding SVF image and interpreted 

landslide boundaries; (l) an enlarged SVF image of the deformed area; (m) an enlarged optical image of the deformed area. 
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Figure 10. (a) Landslide boundary interpreted in the stacking InSAR differential interferogram; (b) landslide boundary 

interpreted in the satellite optical image; (c) LiDAR-SVF image; (d) landslide boundaries, ridges, and secondary sliding 

boundaries interpreted in the LiDAR-SVF image. 

6. Conclusions 

In this study, an integrated method was developed to identify and monitor landslides in 

densely vegetated and complex mountainous areas. It could detect the surface deformation 

features by using InSAR technology, while characterizing the micro-geomorphic features by 

using LiDAR technology. It was successfully applied in Danba County and the surrounding 

areas in Sichuan Province, China. First, stacking InSAR technology was employed to process 

224 Sentinel-1 satellite ascending and descending orbital images, thereby recognizing 44 hid-

den landslides with continuous deformation in an area of 540 km2. These landslides occupied 

a total area of 59 km2, and more than half of them were located in densely populated areas 

around Danba County, severely threatening people’s safety, property, and infrastructure. 

Subsequently, the airborne LiDAR data were used to verify the InSAR identification results in 

the 135 km2 of major regions. In this way, 33 active landslides were jointly confirmed by Li-

DAR and InSAR technologies. Three large landslides were found with obvious signs of defor-

mation or sliding, and they were subjected to an SBAS InSAR time-series-deformation analy-

sis. The slope deformation rate was found to be positively correlated with rainfall, with obvi-

ous hysteresis effects between the initiation timing of the deformation and that of the rainy 

season (3.17–3.36 months on average), as well as between the determination timing of the de-

formation and that of the rainy season (3.62–4.08 months on average). Therefore, it is of critical 

importance in landslide prevention and early warnings to analyze the slope deformation char-

acteristics and rainfall data. 

It was very difficult to classify the landslides only from the deformation characteristics 

reflected from the interferogram of the stacking InSAR. Even with the validation of LiDAR, it 

was not particularly easy to classify all landslides in detail based on the geomorphic features. 

However, for some typical regions or landslides, it was helpful to determine the landslide ty-

pology by combining LiDAR high-resolution DEM data and InSAR deformation results. So, 

we are also collecting InSAR and LiDAR results from more areas in order to determine the 

landslide typology by using morphological and deformation characteristics. In addition, it 
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was helpful to use InSAR results and LiDAR high-resolution DEMs, combined with some ad-

vanced algorithms, to invert the landslide thickness and analyze the landslide failure mecha-

nism. The results of this study can provide important guidance for landslide monitoring in the 

Dadu River Basin of Danba County. In addition, the proposed method is of great value in the 

identification, prevention, monitoring, and early warning of landslides in vegetation-covered 

mountainous areas with complex terrain conditions. 
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