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Abstract: Despite advances in remote sensing–based gross primary productivity (GPP) model-
ing, the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product
(GPPMOD) is less well understood over rice–wheat-rotation cropland. To improve the performance
of GPPMOD, a random forest (RF) machine learning model was constructed and employed over
the rice–wheat double-cropping fields of eastern China. The RF-derived GPP (GPPRF) agreed well
with the eddy covariance (EC)-derived GPP (GPPEC), with a coefficient of determination of 0.99
and a root-mean-square error of 0.42 g C m−2 d−1. Therefore, it was deemed reliable to upscale
GPPEC to regional scales through the RF model. The upscaled cumulative seasonal GPPRF was
higher for rice (924 g C m−2) than that for wheat (532 g C m−2). By comparing GPPMOD and GPPEC,
we found that GPPMOD performed well during the crop rotation periods but underestimated GPP
during the rice/wheat active growth seasons. Furthermore, GPPMOD was calibrated by GPPRF, and
the error range of GPPMOD (GPPRF minus GPPMOD) was found to be 2.5–3.25 g C m−2 d−1 for
rice and 0.75–1.25 g C m−2 d−1 for wheat. Our findings suggest that RF-based GPP products have
the potential to be applied in accurately evaluating MODIS-based agroecosystem carbon cycles at
regional or even global scales.

Keywords: random forest; gross primary productivity; eddy covariance; MOD17A2H; rice–wheat
rotation cropland

1. Introduction

Gross primary productivity (GPP), defined as the total photosynthetic carbon uptake
by terrestrial plants, is the first phase of atmospheric CO2 reaching the biosphere [1,2].
Currently, farmland accounts for ~12% of the Earth’s land surface [3], and around 15%
of global CO2 fixation is contributed by crop GPP [4]. Therefore, accurately quantifying
crop GPP can provide valuable information on the ecosystem’s carbon cycle, agricultural
applications and climate change [5].

For assessing GPP in crops, eddy covariance (EC) systems, satellite-driven methods,
and process-based models are frequently employed. Among these, the EC technique
allows the direct and continuous monitoring of land–atmosphere net ecosystem exchange
(NEE) [6]. The gathered NEE data are routinely partitioned into GPP and ecosystem
respiration [7]. However, these EC measurements only represent the fluxes at the scale of
the tower footprint, with an along-wind extent ranging between hundreds of meters and
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several kilometers [8]. Although over 600 EC flux towers are currently in operation around
the world, their point-based measurements are insufficient to cover continuous regions in
space [9].

To deal with the problem of spatial discontinuity in the EC technique, satellite re-
mote sensing, light use efficiency models and process-oriented land surface models are
adopted [6]. However, remote sensing-based GPP may not fully guarantee the accuracy
of data. For instance, Wang et al. [2] assessed the latest Moderate Resolution Imaging
Spectroradiometer (MODIS) GPP product (MOD17A2H) in different biome types com-
pared with global EC flux-estimated GPP and found that MOD17A2H GPP performed
poorly at both annual (coefficient of determination: 0.62) and 8-day scales (coefficient of
determination: 0.52). Thus, a more advanced calibration model is required for large-scale
applications [10]. Process-based land surface models (e.g., Community Land Model [11]
and Simple Biosphere Model 2 [12]) have been designed for cropland GPP, but are subject
to complicated scientific assumptions and model parameters [13].

GPP in crops is a complicated non-linear function due to the spatial heterogeneity
of vegetation and soil properties, and the temporal heterogeneity of the environmental
factors (meteorological conditions and agricultural managements) [9,11]. Currently, data-
driven machine learning algorithms constitute another popular method for predicting GPP,
because they can elucidate precisely nonlinear processes of CO2 exchanges in agroecosys-
tems [14]. Although, in principle, they are black-box models, machine learning methods
(e.g., model tree ensembles [15], support vector machines [13], and neural network mod-
els [16,17], random forest models [18–21]) have good performance for multi-ecosystem
GPP estimations. For instance, Tramontana et al. [22] quantified the 8-day GPP and the
mean European annual carbon budget across ecosystems (e.g., forest, grassland, cropland
and wetland) by using a random forest (RF) algorithm, remote sensing and EC data. Re-
cently, an RF model was also adopted to upscale the EC-based GPP to regional scales in
an arid and semi-arid area in Northwestern China [23]. Previous studies have evaluated
the latest MOD17A2H GPP product across various ecosystems (e.g., forests and grass-
lands) with global EC data [1,2]. However, the validation has rarely been performed for
double-cropping agriculture, especially in rice–wheat-rotation cropland, which is the most
extensive land cover type in the northern Yangtze River Delta (NYRD) region, China [24].
Furthermore, the existing studies on the GPP changes in the NYRD mainly focused on
the temporal characteristics of carbon exchanges [25–27], leaving a knowledge gap with
respect to the upscaling of GPP and the calibration of the MOD17A2H GPP product.

Therefore, a random forest (RF) machine learning algorithm for GPP (GPPRF) was
developed for rice–wheat double-cropping fields by integrating multi-source satellite
remote sensing images as well as ground measurements. Based on the above data, the
main objectives were to: (1) assess the performance of the MODIS GPP product (GPPMOD)
through comparison with EC-estimated GPP (GPPEC) and determine the driving factors of
GPP; (2) extrapolate the GPP from the single-site scale to multi-site scales; and (3) calibrate
the GPPMOD over the rice–wheat-rotation cropland in the NYRD.

2. Study Area, Data and Methods
2.1. Study Area

The NYRD is composed of the northern Anhui and Jiangsu provinces and Shanghai,
ranging between 114◦ and 122◦E and 29◦ and 36◦N (Figure 1). The NYRD covers an area of
176,960 km2, consisting of 73% cropland, 16% grassland, 5% built-up land, 4% water bodies,
and 2% forest (Figure 1). Three EC flux sites were representative of typical rice–wheat-
rotation cropland landscapes found in this cropland (Figure 1, inset map) [24,25]. The soil
pH value (H2O), soil organic carbon and soil total nitrogen in topsoil (0–0.3 cm) for our
study area mainly ranged between 5.5 and 7.2, 1.2, 2, 0.1 and 0.15%, respectively, according
to the results of Wei et al. [28]. Here, the winter wheat grows from November to late May.
At the beginning of June, the rice paddies are flooded, plowed and harrowed to incorporate
the wheat straw residue from the last wheat growing season [29]. Then, one-month-old
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rice seedlings are transplanted to the leveled field in mid-June and harvested in early
November (Figure 2a), which can be indicated by the seasonal dynamics of the 8-day leaf
area index (LAI) averaged from 23 weather stations and 3 EC stations during the period
of 2014–2018 (Figure 2b). The rice/wheat canopy height can reach about 1–1.2 m at the
peak LAI growing seasons. The local climate is sub-tropical monsoon-type, with a mean
annual (2014–2018, calculated from the 23 surface meteorological stations in Figure 1) air
temperature of 16 ◦C and rainfall of 1100 mm.

Figure 1. MODIS landcover maps (resolution: 500 m) in 2016 and the meteorological stations in the
North Yangtze River Delta region. The inset map indicates the distribution of rice–wheat-rotation
cropland areas in China.

Figure 2. (a) Crop calendars for the rice and wheat in the North Yangtze River Delta region. (b) Time
series of the 8-day leaf area index (LAI) for the rice–wheat-rotation croplands averaged from 23 weather
stations and 3 EC stations during the period of 2014–2018 of the North Yangtze River Delta.
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2.2. Data
2.2.1. Eddy Covariance Flux Data

Flux data from three rice–wheat-rotation cropland EC stations within the study area—
the Shouxian site in Anhui and the Dongtai and Dafeng sites in Jiangsu—were selected
for model training and prediction (Figure 1). At the Shouxian site, the EC sensors were
mounted 2.5 m above the ground and consisted of a three-dimensional sonic anemometer
(CSAT3, Campbell Scientific Inc., Logan, UT, USA) along with a CO2/H2O open-path
infrared gas analyzer (EC 150, Campbell Scientific Inc., Logan, UT, USA). At the Dongtai
and Dafeng sites, virtual temperature and wind velocity components were monitored
using a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan,
UT, USA). To measure H2O and CO2 density, a fast response open path gas analyzer (LI-
7500, LI-COR, Inc., Lincoln, NE, USA) was used. The installation height of the sensors
for the Dongtai site was 10 m, whereas for the Dafeng site it was 6.3 m above the ground.
As mentioned in the previous studies ([26,27,29]), the three EC sites are relatively flat,
with more than 90% of the flux primarily contributed by the cropland. EddyPro 5.2.1
(LI-COR, Inc., Lincoln, NE, USA, 2015) software was applied to calculate hourly CO2
fluxes and to correct for CO2 canopy storage to obtain NEE values. Data pre-processing
in the EddyPro software mainly included averaging and statistical tests [30], time lag
compensation, double coordinate rotation, spectral correction [31], and Webb–Pearman–
Leuning density correction [32]. The poor-quality fluxes (Eddypro quality check flag value
= 2) were further discarded. The REddyProc R package (https://www.bgc-jena.mpg.de/
bgi/index.php/Services/REddyProcWebRPackage, accessed on 10 July 2021) inputted
pre-processed half-hourly EC data and supported further processing [33]. Firstly, a quality-
check and filtering were performed based on the relationship between observed flux and
friction velocity to discard biased data [34]. Then, the flux data were gap-filled using the
marginal distribution sampling approach [35]. NEE was separated into GPP and ecosystem
respiration based on the nighttime partitioning algorithms [35]. The gap-filled hourly GPP
data were summed to compute cumulative GPP for daily, 8 day, seasonal and annual time
resolution for further analysis [36]. Data from these three sites were processed using the
same methods. Details of the agricultural practices and processing methods at these three
sites can be obtained from the references in Table 1 [26,27,29].

Table 1. Characteristics of the three rice–wheat-rotation eddy covariance sites (Tave, annual mean air temperature; Pave,
annual cumulative precipitation).

Station Location Altitude (m) Period Tave (◦C) Pave (mm) Reference

Shouxian (32.44◦N, 116.79◦E) 27 15 July 2015–24 April 2019 16 1115 [26]
Dongtai (32.76◦N, 120.47◦E) 2 1 December 2014–30 November 2017 13 1484 [29]
Dafeng (33.21◦N, 120.28◦E) 1 16 November 2015–29 November 2016 15 1060 [27]

2.2.2. Meteorological Data

Hourly air temperature and relative humidity (RH) at 23 automatic stations were
obtained from the China Meteorological Administration for the period of 2014–2018. The
hourly vapor pressure deficit (VPD) was estimated with relative humidity and air tempera-
ture data following the World Meteorological Organization Commission for Instruments
and Methods of Observation Guide conversion equation [37]. The hourly surface down-
ward solar radiation (DSR) ERA5 reanalysis data were provided by the European Center
for Medium-Range Weather Forecasts at a 0.25◦ spatial resolution.

2.2.3. MODIS Data

Land cover maps were available in a 500 m spatial resolution of the MODIS MCD12Q1
product for the year 2016 (Figure 1, ref. [38]). The 16-day Normalized Difference Vegeta-
tion Index (NDVI) data during the period of 2014–2018 were obtained from the MODIS
MOD13Q1 product with a 250 m resolution [39]. The 8-day fraction of photosynthetically
active radiation (FPAR) and LAI data were derived from the 500 m spatial resolution of

https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWebRPackage
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MODIS MOD15A2H [40]. The MODIS GPP product MOD17A2H (version 6) had a 8-day
temporal resolution and 500 m spatial resolution [41]. All of these datasets were down-
loaded from https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 10 July 2021.
These MODIS products were quality-controlled to exclude anomalous pixel interference.

2.3. Methods

RF is a fast and flexible machine learning algorithm, which is often used for analyzing
the classification and regression tasks [42]. This model can successfully process highly
dimensional and multicollinear data, being insensitive to overfitting [43]. The RF model
provides a feature-selection tool to identify the importance of the predictor. Feature
importance is defined as the contribution of each variable to the model, with important
variables showing a greater impact on the model evaluation results [44]. In this section, a
GPP prediction model based on RF framework was proposed. The flowchart of estimating
and upscaling GPP and calibrating the MOD17A2H GPP product with the RF model is
shown in Figure 3, including four steps as follows:

(1) Variable selection and data matching. Crop photosynthesis is a complicated pro-
cess affected by shortwave radiation, air temperature, vapor pressure deficit, soil
edaphoclimatic conditions and fertilization at the canopy scale, etc. Meanwhile, at the
ecosystem level, GPP is closely related to light, water and canopy phenology [23,45].
Based on the previous literature as well as our current available data, nine input ex-
planatory variables, NDVI, LAI, FPAR, DSR, daily maximum air temperature (Tmax),
daily minimum air temperature (Tmin), daily mean air temperature (Tmean), VPD,
and RH, were chosen for predicting the GPP dynamics in the NYRD region. As RF
model training requires a large number of samples, MODIS data were linearly inter-
polated from 8-day/16-day to daily values to match the input parameters, following
a previous study by Reitz et al. [19].

(2) RF model construction, training and testing. In this paper, 90% (the rest 10%) of the
EC data at Shouxian and Dongtai during the entire observation period were employed
to train (validate) the RF model, and 100% of the EC data at Dafeng were applied to
validate the model. The Shouxian and the Dafeng sites were independent of each other
with a negligible autocorrelation between them, as these sites are about 300–400 km
far away from each other (Figure 1). Here, a 10-fold cross-validation (CV) algorithm
was applied to weaken the overfitting [20]. In 10-fold CV experiments, all the training
data at the Shouxian and Dongtai sites during the entire observation period were
randomly partitioned into ten equal-sized subsamples. Of the ten subsamples, nine
subsamples were used as the training data and the remaining one was the testing
data. This CV process was repeated ten times, with all ten subsamples used exactly
once as the testing data. The ten results from the folds were averaged to produce a
single estimation. To select the best model, we adjusted the four hyperparameters of
the RF model based on Bayesian optimization [46,47]: the number of trees to grow
(n_estimators), the minimum sample number placed in a node prior to the node being
split (msplit), maximum number of features considers to split a node (Mfeatures),
and the maximum number of levels in each decision tree (Mdepth). Three statistical
metrics—the index of agreement (IA) [48], the coefficient of determination (R2), and
the root mean square error (RMSE)—were used to examine the simulated performance
of the 10-fold CV results. The range of IA is 0–1, and a better correspondence between
the observed and modeled results often occurs when it approaches 1 [49]. Therefore,
n_estimators = 219, msplit = 2, Mfeatures = 9, and Mdepth = 32 were set for the final
RF model.

(3) GPP upscaling. The general relationships between GPPRF and explanatory data
were first trained at site level, and then applied regionally by using regional surface
meteorological stations of explanatory variables as follows: GPPRF VS f (Tmax, Tmin,
Tmean, VPD, RH, NDVI, LAI, FPAR, DSR).

https://ladsweb.modaps.eosdis.nasa.gov/search/
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(4) MOD17A2H GPP product calibration. Based on the upscaled results of GPPRF and
GPPMOD at the station scale, a relationship between GPPRF and GPPMOD was built.
The calibration function was then applied from the site scale to the regional scale.

Figure 3. Flowchart of the random forest model for estimating, validating, upscaling gross primary
production (GPP), and calibrating the MOD17A2H GPP product.

3. Results
3.1. Intraseasonal Variations of GPP

MOD17A2H GPP has been extensively employed to evaluate the terrestrial carbon
balance [1]. However, to have confidence in GPPMOD, it is critical to validate it against in
situ measurements [49]. As shown in Figure 4a–c, the 8-day GPPMOD and GPPEC exhibit
close agreement in their seasonal patterns, with peaks in July (May) for the rice (wheat)
growing seasons across the three rice–wheat-rotation cropland sites. The GPP increases
during the no-planting period in 2017 (Figure 4a), mainly due to weed photosynthesis.
GPPMOD underestimated GPPEC during the rice (wheat) active growing periods from July
to September (from March to May), with IA = 0.56 and RMSE = 47 g C m−2 (IA = 0.61 and
RMSE = 29 g C m−2) across the three sites. However, GPPMOD performed well during the
intercropping periods from late May to early June (or late November), with IA = 0.77 and
RMSE = 8 g C m−2 across the three sites.

The seasonal cumulative GPPEC at the three cropland sites was larger for the summer
rice growing seasons (1170, 1066, and 889 g C m−2 for Shouxian, Dongtai and Dafeng,
respectively) than for wheat (609, 848 and 701 g C m−2, respectively) (Figure 4d–f). The
seasonal cumulative GPPMOD was significantly lower than GPPEC during the wheat growth
seasons, with a 32–47% underestimation of the seasonal cumulative GPPEC at the three
sites; the seasonal average GPPMOD was 27–47% lower than the seasonal cumulative GPP
during the summer rice growth seasons (Figure 4d–f).
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Figure 4. (a–c) Eight-day averaged gross primary production (GPP) measured by EC (GPPEC) and MOD17A2H (GPPMOD),
and (d–f) seasonal cumulative GPP for rice and wheat growth seasons.

3.2. Driving Factors of GPP on a Seasonal Scale

The possible drivers related to the GPP variations in the NYRD are investigated
by the RF model in Figure 5 to assess their relative contributions. NDVI was the most
important factor in modulating GPP, accounting for 56% of the overall variable importance.
As illustrated in Figure 6, GPP showed the strongest positive correlation with NDVI,
with the highest Pearson correlation coefficient (r) of 0.74, which was consistent with
the variable importance value in Figure 5. In addition to NDVI, there were another
three dominant variables—namely, LAI, DSR, Tmax and FPAR, with importance values
of 13%, 10%, 8% and 3%, respectively. NDVI and LAI were important indicators of the
phase of terrestrial photosynthesis, which tracked well the crop phenological dynamics
over time [22,48,50]. DSR and FPAR covaried with light to a large degree—the source of
energy for photosynthesis in vegetation [51]. Tmax played a critical role in the chemical
reactions of biological processes [17]. In contrast, the impact of Tmean, Tmin, VPD and
RH on GPP was not obvious, exhibiting the lowest relative importance, with values of 2,
2, 2 and 2%, respectively. Although FPAR was highly correlated with NDVI (Figure 6),
the importance of FPAR was very low in the RF model. This was because NDVI was
directly derived from the satellite spectrum, while FPAR was indirectly calculated based
on LAI and the physical models. The uncertainties in the MODIS LAI product can be
attributed to the input data (surface reflectance or radiation data), model imperfections,
and the inversion process [52]. The Pearson correlation coefficient for Tmean (r = 0.64) lay
in the range of those for Tmax (r = 0.65) and Tmin (r = 0.60), as Tmean incorporated both
day- and nighttime conditions (Figure 6). Generally, all these predictors were involved
to different degrees in CO2 exchange processes. Vegetation indices (i.e., NDVI and LAI),
related to the phenological properties of the plants, had the greatest influence on GPP
variations. In terms of meteorological factors, DSR, Tmax and FPAR carried the information
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of the light-dependent reactions of photosynthesis, which had a moderate effect on the
GPP changes. In particular, Tmean, Tmin, VPD and RH showed weak influences on the
GPP cycles.

Figure 5. Feature importance for the random forest model in the North Yangtze River Delta region.

Figure 6. Correlations among the GPP (gross primary productivity) and Input variables. The
correlations were calculated by all training data from the Dongtai and Shouxian sites.
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3.3. Random Forest Model Evaluation

The RF model performed well for both the training (R2 = 0.99, RMSE = 0.42 g C m−2 d−1)
and testing (R2 = 0.89, RMSE = 2.8 g C m−2 d−1) datasets (Figure 7a,b). This indicated that the
input variables in the RF model were representative and can accurately capture the temporal
characteristics of GPP. RF model also proved to be good at the validation site (i.e., Dafeng
site), in which the seasonal distributions of GPPRF showed high correlation and coherence
with GPPEC (IA = 0.94, Figure 8c). All sites exhibited double peaks, with the peaks during the
rice growth season being higher than those during the wheat growth season (Figure 8), which
is a common pattern in this double-cropping field. The R2 and RMSE at the validation site
(i.e., Dafeng site) were 0.80 and 4.39 g C m−2 d−1 (Figure 7d)—a result that was similar to that
across global FLUXNET sites conducted by Tramontana et al. [53], in which the R2 ranged
from 0.61 to 0.81. Hence, the RF model was deemed suitable for GPP prediction at unknown
stations as well as regional GPP upscaling.

Figure 7. Scatter density plots for the random forest model in predicting gross primary productivity
in the (a) 10-fold cross-validation training set, (b) 10-fold cross-validation testing set, (c) validation
by the rest of the samples at the Shouxian and Dongtai sites, and (d) validation by all samples at the
Dafeng site.

3.4. Upscaled GPP

Figure 9a–c show that the regional RF-modeled cumulative seasonal GPP (GPPRF)
averaged from 23 weather stations and 3 EC stations during the period of 2014–2018 was
much higher for the rice growth seasons (924 g C m−2) than that for the wheat growth
seasons (532 g C m−2). This relationship (cumulative seasonal GPP in the rice growth
season > cumulative seasonal GPP in the wheat growth season) was also be confirmed by
the GPPMOD in Figure 9d–f. For our study sites, the annual mean for GPPMOD and GPPRF
averaged from 23 weather stations and 3 EC stations were 966 g C m−2 and 1548 g C m−2,
respectively. Figure 9g–i show the difference between the two GPP products across all
sites (relative error at each site as computed by (GPPMOD–GPPRF) × 100/GPPRF) during
the period of 2014–2018. Relative errors exhibited negative values across all sites, with
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−18–−46% for rice growing seasons, −1–−50% for wheat growing seasons and −5–−47%
for the whole year, respectively. In general, relative errors during the wheat growing
seasons were relatively larger than those during the rice growing seasons/the whole year
at most sites (Figure 9g–i).

Figure 8. Daily gross primary productivity (GPP) measured by EC (GPPEC) and predicted by the
random forest (RF) model (GPPRF) at (a) Shouxian, (b) Dongtai, and (c) Dafeng during the rice and
wheat growth seasons.

To examine the spatial consistency of the GPPRF dynamics among the upscaled sites,
Figure 10 shows the seasonal variations in GPPRF among 23 weather stations and 3 EC
stations during the period of 2014–2018 over the rice–wheat-rotation cropland in the North
Yangtze River Delta region. The daily mean GPPRF averaged from 23 weather stations and
3 EC stations during the period of 2014–2018 for wheat was lower than 2 g C m−2 d−1

during the winter extensive bare soil period (December–February). It started to increase
in the active tillering stage (March) and reached a maximum of about 8–10 g C m−2 d−1

during the heading stage (late April), and next decreased to around 4 g C m−2 d−1 at
harvest. The largest daily GPPRF for rice paddies occurred in late July, with a peak value of
about 11 g C m−2 d−1, suggesting that the rice biological activities (e.g., photosynthetic
rates) were quite strong at this stage. After that, daily GPPRF decreased to approximately
1 g C m−2 d−1 at rice harvest (Figure 10). Generally, good consistency was found in the
seasonal variation among all upscaled sites, exhibiting similarly temporal characteristics of
the real GPP over the rice–wheat-rotation system (Figure 4).

3.5. Calibration of the MOD17A2H GPP Product

Based on the upscaled results of GPPRF and GPPMOD at the station scale in the previous
section, the relationship between GPPRF and GPPMOD is shown in Figure 11. Here, the
daily GPPRF was aggregated to 8-day sums to match the 8-day GPPMOD product.
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Figure 9. Spatial distributions of gross primary productivity (GPP) (a–c) predicted by the random
forest (RF) model (GPPRF), (d–f) measured by the MODIS product (MOD17A2H) (GPPMOD), and
(g–i) their difference ((GPPMOD–GPPRF) × 100/GPPRF) at the station scale for wheat growth seasons,
rice growth seasons, and the whole year during the period of 2014–2018. The dark yellow background
represents cropland.

Figure 10. Seasonal variations in gross primary productivity (GPP) predicted by the random forest
(RF) model (GPPRF). The blue line represents the daily GPPRF averaged from 23 weather stations
and 3 EC stations during the period of 2014–2018 over the rice–wheat-rotation cropland in the North
Yangtze River Delta region.

Then, the linear relationship between GPPMOD (Figure 12a–c) and the calibrated GPP
MOD (GPPCMOD) (Figure 12d–f) at the grid scale was established as follows:

GPPCMOD =


1.5 × GPPMOD, f or wheat
1.7 × GPPMOD, f or rice
1.6 × GPPMOD, f or annual

(1)

Both GPPMOD and GPPCMOD exhibited a higher value during the rice growth seasons
than that during the wheat growth seasons. The annual mean GPP in most parts of the
NYRD varied from 2 to 4 g C m−2 d−1 for GPPMOD and 4 to 6 g C m−2 d−1 for GPPCMOD,
with the higher values in the eastern coastal areas of the NYRD (Figure 12c,f). Here, sea–
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land breezes prevail, carrying rainfall and water resources sufficient to favor crop growth.
Figure 12g–i show the seasonal mean of the error ranges of daily GPP (∆GPP, as computed
by subtracting GPPMOD (Figure 12a–c) from GPPCMOD (Figure 12d–f)) during the period of
2014–2018. ∆GPP in most parts of the NYRD ranged between 2 and 4 g C m−2 d−1 during
the rice growing seasons, while they were smaller (i.e., 0–1.5 g C m−2 d−1) for wheat. The
probability density function (PDF) of ∆GPP in the NYRD is shown in Figure 13. The PDF
of ∆GPP varies seasonally, which play a pivotal role in regulating the carbon dynamics in
the NYRD. Rice paddies had a broader distribution in the peak PDF of the mean ∆GPP
than that for wheat fields, i.e., between 0.75 and 1.25 g C m−2 d−1 during the wheat growth
seasons, between 2.5 and 3.25 g C m−2 d−1 during the rice growth seasons, and around
1.75 g C m−2 d−1 for the annual mean.

Figure 11. Relationship between the gross primary productivity (GPP) predicted by the random
forest (RF) model (GPPRF) and that measured by MODIS (GPPMOD) for the (a) wheat growth seasons,
(b) rice growth seasons, and (c) the annual mean during the period of 2014–2018.

Figure 12. Spatial patterns of the gross primary productivity (GPP) (a–c) measured by MODIS
(GPPMOD), (d–f) measured by MODIS and then calibrated (GPPCMOD), and (g–i) their difference
(GPPCMOD minus GPPMOD) (∆GPP) at the grid scale for wheat growth seasons, rice growth seasons,
and the annual mean during the period of 2014–2018.
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Figure 13. Probability distribution functions of the error ranges of daily GPP at the grid scale (∆GPP) in the NYRD during
the period of 2014–2018.

4. Discussion
4.1. Complexity of the Drivers of Spatio-Temporal Variation in GPP

In this work, three rice–wheat-rotation cropland EC sites were quantified and used
to explore the complexity of the drivers of spatio-temporal variation in GPP. In order to
eliminate the errors induced by instrument measurements, Table 2 only summarized GPP
values in EC-based literatures. The cumulative GPP for the wheat fields ranged from 609 to
848 g C m−2 in eastern China, which was equivalent to that reported in India (621 g C m−2,
ref. [54]) but lower than that reported in Germany (1241 g C m−2, ref. [55]) and northern
China (1174 g C m−2, ref. [56]). The total seasonal GPP during the rice growing season in
eastern China (889–1170 g C m−2) was higher than that in India (811 g C m−2, ref. [57]) and
the Philippines (778 g C m−2, ref. [51]). The discrepancy in the cumulative seasonal GPP
among the previous studies is probably because of the difference in local meteorological
conditions (e.g., precipitation, air temperature, and photosynthetically active radiation) and
phenology (e.g., growth duration, NDVI and LAI) [55–57]. For example, the summer rice
growing season was warmer (23–24 ◦C in eastern China) and received more precipitation
(735–1028 mm in eastern China, Table 2) as compared with the winter wheat growing
season. The mean seasonal GPP for rice paddies (889–1170 g C m−2) was obviously higher
than those for wheat fields (609–848 g C m−2) in eastern China, mostly because of the
different crop growth conditions. Furthermore, values of 609–848 g C m−2 for winter wheat
fields in eastern China were lower than the value of 1174 g C m−2 in northern China, mainly
because the growth duration of winter wheat in northern China is generally longer [56].
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Table 2. Review of EC-based cumulative seasonal gross primary productivity (GPP, g C m−2), mean growing-season air
temperature (T, ◦C), and cumulative growing-season precipitation (P, mm) across different rice/wheat sites.

Crop Climate Location Period GPP T P Reference

Wheat

Semi-humid Shouxian, China (32.44◦N, 116.79◦E) October–May, 2007–2010 1071 10 351 [25]
Temperate and semi-humid Weishan, China (36.65◦N, 116.05◦E) October–May, 2005–2016 1174 – – [56]
Sub-tropical dry sub-humid Saharanpur, India (29.87◦N, 77.57◦E) December 2014–April 2015 621 20 224 [54]

Temperate maritime Selhausen, Germany (50.87◦N, 6.45◦E) October 2007–October 2009 1241 10 734 [55]
Semi-humid Shouxian, China (32.44◦N, 116.79◦E) November–May, 2015–2019 609 9 378 This study

Sub-tropical monsoon Dongtai, China (32.76◦N, 120.47◦E) November–May, 2014–2017 848 9 298 This study
Sub-tropical monsoon Dafeng (33.21◦N, 120.28◦E) November–May, 2015–2016 701 9 300 This study

Rice

Semi-humid Shouxian, China (32.44◦N, 116.79◦E) October 2007–May 2010 976 26 567 [25]
Sub-tropical monsoon Cuttack, India (20.45◦N, 85.94◦E) July–November 2012 811 – – [57]

Tropical Laguna, Philippines (14.16◦N, 120.25◦E) January–May 2008 778 26 – [51]
Semi-humid Shouxian, China (32.44◦N, 116.79◦E) June–October, 2015–2019 1170 23 735 This study

Sub-tropical monsoon Dongtai, China (32.76◦N, 120.47◦E) June–October, 2015–2017 1066 23 1025 This study
Sub-tropical monsoon Dafeng, China (33.21◦N, 120.28◦E) June–October, 2015–2016 889 24 1028 This study

In addition to the meteorological factors and phenology, crop management (e.g.,
fertilizer) and edaphoclimatic conditions (e.g., soil temperature, soil water content and
microbial populations) also have influences on the GPP dynamics. The fertilization time
for wheat and rice is basically fixed (Figure 2) during the sowing period (early June for
rice and middle November for wheat) and the tillering period (early July for rice and
late February for wheat). Chen et al. [15] reported that the basic fertilizer applied during
the rice/wheat sowing period had the most remarkable effect, with an increase in GPP
reaching 2–3 g C m–2d–1 over 8 days. Spraying leaf fertilization during the crop tillering
stages had a minor effect on GPP, with an increase in GPP up to 1–2 g C m–2d–1 over
8 days. Edaphoclimatic conditions (such as soil temperature and soil moisture) varied
seasonally, modulating the GPP dynamics [18]. However, detailed information about the
in situ fertilization and the edaphoclimatic conditions was not available for us to input
into our RF models. Considering the importance of these factors, nevertheless, we cannot
ignore the potential influence of the crop management or edaphoclimatic conditions.

4.2. Potential Discrepancy between GPPEC and GPPMOD

Figure 4 shows the inconsistency between GPPMOD and GPPEC at the three sites,
which can be attributed to three aspects: (a) input parameters such as FPAR data and
meteorological conditions [49]; (b) the uncertainties in the MOD17A2H GPP algorithm [2];
and (c) the spatial mismatch between remotely sensed pixels and EC footprints [58,59].
In the past few decades, a wide network of sites have been established across various
ecosystems and climate regions; for example, AmeriFlux, Integrated Carbon Observation
System, National Ecological Observatory Network, and FluxNet [60,61]. These EC sites
provide potential opportunities to annually update the cropland sites in the land cover
maps, redefine the MOD17 cropland parameters and greatly improve GPPMOD at regional
or even global scales. To the best of our knowledge, China has the largest area of the
rice–wheat-rotation croplands in the world. In China, these croplands are distributed
widely along the Yangtze River Basin (Figure 1, inset map), covering around 13 Mha in
total [24]. This rotation cropland system is a non-negligible part of the agroecosystem.
While the MOD17 algorithm defines only 11 land cover classes, i.e., one type of cropland,
one type of woodland, two types of grasslands, two types of shrubland and five types
of forests [49]. Therefore, the large discrepancy between GPPMOD and GPPEC over the
rice–wheat-rotation cropland indicates that the parameters in the MOD17 product should
be modified and more types of cropland (e.g., double-cropping or mixed-cropping systems)
should be defined.

Meanwhile, the MOD17 GPP product has a fine resolution with 500 m, and so the high-
quality MOD17 GPP product can be employed to accurately assess the ecosystem’s carbon
cycle and agricultural productions. In particular, out-of-academy precision agriculture or
commercialized precision agriculture put forward higher requirements for the accuracy
evaluation of GPP products. Nowadays, EC-based calibration of MODIS products is a
common method. In the present work, due to the study being limited to three EC sites
over rotation cropland areas in eastern China, the observations cannot be used to stand
for the whole area. Therefore, we proposed the machine learning-based GPP prediction
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model for 23 meteorological sites by using multi-source data to derive more virtual EC
sites (23 sites) over the whole area, which can offer more ground-based GPP samples for
calibrating MOD17 GPP. Generally, the simulations of the RF-based GPP models show a
better performance with respect to other machine learning methods (e.g., Decision Tree
Regression, support vector machine, artificial neural network, and deep belief network,
referring to Figures S1–S4 in the Supplementary Materials), which is consistent with the
results in Yu et al. [23]. In our present work, thus, RF-based upscaling and calibrating
methods are more suitable over large-scale agroecosystem areas if EC measurements,
meteorological observations and MODIS data are available.

5. Conclusions

In this study, the GPP estimated from EC flux measurements over rice–wheat-rotation
cropland can represent the amount of carbon uptake by the main land cover type in the
NYRD area. To obtain multiple samples for calibration of the MOD17A2H GPP product, a
RF model for estimating GPP was designed by integrating multi-source satellite retrievals
and in situ ground observations during the period of 2014–2018 over the rice–wheat double-
cropping fields of eastern China. The RF model showed that multiple co-acting factors
(NDVI, LAI, DSR, Tmax, and FPAR) modulate GPP dynamics. GPPRF performed well
when compared with GPPEC, with a R2 of 0.99 and RMSE of 0.42 g C m−2 d−1, indicating
these explanatory variables are reasonably representative and reliable for regional GPP
upscaling. The regional upscaled cumulative seasonal GPPRF in rice paddies (924 g C m−2)
was roughly two times higher than that in a wheat field (532 g C m−2) at the station scale,
probably because of the much longer growing season and lower LAI of wheat. Compared
with GPPEC, this indicates that GPPMOD underestimates GPP during the active crop growth
stages but performs well during the crop rotation periods. Based on the upscaled results
of GPPRF at the station scale, the functional relationship between GPPMOD and GPPRF at
the grid scale was established to calibrate the GPPMOD. The error range of ∆GPP (GPPRF
minus GPPMOD) was higher for rice paddies than for wheat fields, i.e., between 0.75 and
1.25 g C m−2 d−1 during the wheat growth seasons, between 2.5 and 3.25 g C m−2 d−1

during the rice growth seasons, along with an annual mean of 1.75–2 g C m−2 d−1.
To sum up, the GPP in rice–wheat-rotation agroecosystems is considerably diverse

and varies with the seasons. Our findings are potentially applicable in terms of the climate
response of greenhouse gases over wide-scale cropland areas. Our research demonstrates
that RF machine learning is a powerful and expedient modeling tool for estimating and
even calibrating the MODIS GPP product. In future, it would be worthwhile using global
FLUXNET data, multi-source satellite observations and machine learning methods to
simulate the GPP in more ecosystem types (e.g., grassland and forests) and climate zones
at large scales to fully understand the nature of global carbon dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13214229/s1, Figure S1: Scatter density plots results for the support vector machine model
in predicting gross primary productivity in the (a) 10-fold cross-validation training set, (b) 10-fold
cross-validation testing set, (c) validation by the rest samples at Shouxian and Dongtai sites, and
(d) validation by all samples at Dafeng site, Figure S2: Scatter density plots results for the Decision
Tree Regression model in predicting gross primary productivity in the (a) 10-fold cross-validation
training set, (b) 10-fold cross-validation testing set, (c) validation by the rest samples at Shouxian
and Dongtai sites, and (d) validation by all samples at Dafeng site, Figure S3: Scatter density plots
results for the deep belief network model in predicting gross primary productivity in the (a) 10-fold
cross-validation training set, (b) 10-fold cross-validation testing set, (c) validation by the rest samples
at Shouxian and Dongtai sites, and (d) validation by all samples at Dafeng site, Figure S4: Scatter
density plots results for the artificial neural network model in predicting gross primary productivity
in the (a) 10-fold cross-validation training set, (b) 10-fold cross-validation testing set, (c) validation by
the rest samples at Shouxian and Dongtai sites, and (d) validation by all samples at Dafeng site.
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