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Abstract: The Visible Infrared Imaging Radiometer Suite (VIIRS) fire detection algorithm mostly
relies on thermal infrared channels that possess fixed or context-sensitive thresholds. The main
channel used for fire identification is the mid-infrared channel, which has relatively low temperature
saturation. Therefore, when the high temperature of a fire in this channel is used for initial screening,
the threshold is relatively high. Although screening results are tested at different levels, few small
fires will be lost under these strict test conditions. However, crop burning fires often occur in East
Asia at a small scale and relatively low temperature, such that their radiative characteristics cannot
meet the global threshold. Here, we propose a new weighted fire test algorithm to accurately detect
small-scale fires based on differences in the sensitivity of test conditions to fire. This method reduces
the problem of small fires being ignored because they do not meet some test conditions. Moreover,
the adaptive threshold suitable for small fires is selected by bubble sorting according to the radiation
characteristics of small fires. Our results indicate that the improved algorithm is more sensitive
to small fires, with accuracies of 53.85% in summer and 73.53% in winter, representing an 18.69%
increase in accuracy and a 28.91% decline in error rate.

Keywords: visible infrared imaging radiometer suite; active fire identification; mid-infrared screen-
ing; weighted fire algorithm; adaptive threshold

1. Introduction

Fires, both natural and man-made, occur frequently and possess strong breaking
speeds. The harmful gases and smoke released during combustion have serious impacts
on the climate and air quality [1–3]. In East Asia, the first step in crop production within a
year is to burn the remaining plants from the preceding year and remove the sundries from
the field. These agricultural fires are characterized by small areas and low temperatures [4].
Using recent remote sensing algorithms, the detection of such small fires is difficult because
the radiation emitted cannot be easily distinguished from non-fire background radiation.
The small fires mentioned in this study are mostly caused by burning of crops by humans
and are characterized by small area and short combustion time. To date, most fire detection
algorithms have been designed for global application. Therefore, the present study aims to
design and evaluate a small-fire detection algorithm suitable for crop combustion in East
Asia and compare its performance with global products. In this study, we review the most
advanced remote sensing technology for detecting small and cold fires and propose an
improved algorithm using Visible Infrared Imaging Radiometer Suite (VIIRS) observation
data.

Satellite data are widely used for detecting active fires and biological combustion. Over
the years, with the validation and improvement of detection algorithms, fire products have
reached a mature level of application [5–9]. The common means of satellite remote sensing-
based fire monitoring include the differences in brightness temperature in the thermal
infrared band, reflection in the visible and near-infrared bands, and the combination
of these two types of information. NOAA’s advanced very high-resolution radiometer
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(AVHRR) and NASA’s Medium Resolution Imaging Spectroradiometer (MODIS) data
provide high-quality fire products. Different satellite datasets have been utilized to support
a variety of active fire and biomass combustion products and applications. AVHRR utilizes
the mid infrared and thermal infrared bands to locate the maximum thermal radiation
of fire, so as to automatically identify the fire activity area. The algorithm considers the
mid infrared threshold on the basis of channel saturation and connects the fire area with
the background warm surface and thermal infrared (10.3–11.3 µm). These are further
separated to ensure that they are not affected by clouds and water bodies [10]. MODIS data
are implemented to generate the currently validated best active fire detection products
MOD14 and myd14 (from Terra and aqua spacecraft, respectively), with a spatial resolution
of 1 km [11]. At present, the most commonly used fire detection algorithms in MODIS are
threshold and contextual methods [12,13]. The major algorithm of MODIS fire products, the
contextual method, identifies fires by the difference between the radiation of a measured
point and background radiation. However, the background radiation is obtained from
the background window composed of the points surrounding the measured point. In this
method, the brightness temperature of the mid-infrared and thermal infrared bands of
a fire pixel is significantly higher than that of the pixels around it, and the fire pixel is
detected based on this difference [14–16]. However, due to the reduced pixel resolution
of MODIS and AVHRR, MODIS and AVHRR fire detection ability will decrease rapidly
at the angle from the lowest point. MODIS may overlook the observation results of fires
that can be detected at the lowest point (at the angle from the lowest point). In addition,
its insensitivity to small fires leads to the deviation of fire emission estimation [17,18]. A
visible infrared imaging radiometer (VIIR) is a sensor mounted on a National Polar-orbiting
Partnership satellite. It is a scanning imaging radiometer that can collect radiation images
of land, the atmosphere, ice, and oceans in the visible and infrared bands. As a result, VIIRS
fire products provide more detailed spatial information, and this improved resolution can
compensate for the omission of small fires [19]. VIIR suite fire products are tested using the
contextual method, which mostly includes a preliminary threshold for identifying potential
fire pixels, a contextual test for confirming fires in potential fire pixels, and thresholding for
rejecting false alarms [20]. Considering that the infrared and thermal infrared channels in
VIIRS data are different from the relatively low-saturation temperatures of other satellites,
the initial threshold cannot be set too low for global applications. In addition, the testing of
brightness temperature during initial screening in the contextual method established by
VIIRS fire products is increased. Such an increase in the brightness temperature threshold
conditions can theoretically meet the band characteristics of the VIIRS data; however, it
also creates unstable factors.

The three products use the test concept of contextual method to evaluate fire with
background radiation and modify the algorithm adaptively according to the difference of
sensors. Theoretically, the contextual method has reached a mature level of application
and has become the most developed and widely used fire detection algorithm in the
past decade [5,6]. Moreover, this global fire detection algorithm has several weaknesses,
including: (1) the determination of a fixed threshold for potential fire pixels, (2) ignoring
the sensitivity difference of test conditions, and (3) spectral difference of small fire [21].
Small and cold fires are often ignored because of the particularity of the region and fire
radiation, while cryogenic organisms exhibit different characteristics [22,23].

The contextual VIIRS-based method is still a hierarchical model. After the initial
conditions are met, the second part of the judgment is performed. An increase in the test
threshold results in the loss of some fire information when the model takes the intersection.
Moreover, the characteristic parameters of special, low-temperature fire pixels are ignored.
In the second part of the test, it is assumed that the surrounding non-flame pixels have
similar brightness temperatures, which is inappropriate in heterogenous areas. In the
second part of the test, it is difficult to compare the brightness temperature of surrounding
pixels as the complete judgment condition, which is inappropriate under the radiation
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characteristics of small fires. In short, reflected solar radiation reduces the contrast between
fire pixels and non-fire background pixels [24].

For the reasons outlined above, VIIRS fire products can be improved by changing the
threshold for identifying potential fire pixels, and by adjusting the overall test conditions
and its weight. In this study, we analyzed the weight of test conditions according to the
differences in the sensitivity of test conditions to fires, proposed a new fire probability
algorithm created by the sensor, and calibrated a new global optimal probability threshold
to reduce false positive errors in fire detection. The achieved increase in the weights of test
conditions effectively reduced the problem of small fires being ignored during model-level
screening.

2. Input Data

VIIRS is a remote-sensing instrument flying on the S-NPP and NOAA-20 (also referred
to as JPSS-1) satellite platforms [25]. VIIRS has 22 channels, with a nominal spatial reso-
lution of 375 m in the five imagery bands (I-bands) and 750 m in 16 moderate resolution
bands (M-bands), covering a spectral range from 0.412 µm to 12.01 µm. In addition, the
unique DNB is included on VIIRS, that measures radiances over a broadband spectrum
from 0.4 to 0.9 µm with a nominal spatial resolution of 750 m [26,27]. It can be downloaded
from the Earthdata Search website of the United States National Aeronautics and Space Ad-
ministration (https://search.earthdata.nasa.gov). The spectral and spatial characteristics
of the VIIRS channels utilized in this study are listed in Table 1.

Table 1. Spectral and spatial characteristics of VIIRS channels.

Channel No. Band Range (µm) Dynamic Range (ρ OR K)

I4 3.55–3.93 180–367
I5 10.5–12.4 180–380

3. Fire Detection Algorithm

The major driving factors of the fire detection algorithm proposed in this study are
VIIRS I4 and I5. The spectral response of channel I4 ranges from 3.55–3.93 µm, centered
at 3.74 µm. Channel I5 is centered at 10.5–12.4 µm and is the major channel of com-
parison with I4. The remaining three I-band channels (I1, I2, and I3) cover the visible
light (0.6–0.68 µm), near-infrared (0.846–0.885 µm), and short-wave infrared (1.58–1.64 µm)
spectra to support the recognition of clouds, solar scintillation, and water bodies in fire
detection algorithms [28,29]. Channel I4 provides the millimeter-wave imaging radiometer
brightness temperature, which can be utilized as the main parameter in active fire detection.
The wavelength range of the channel has a peak spectral radiation for blackbody emissions
at temperatures between 737 and 817 K. However, the saturation temperature of the channel
is 367 K, and improved spatial resolution leads to frequent fire pixel saturation. Therefore,
this is considered to be the most important channel feature affecting the development of
the active excitation algorithm in this dataset. The VIIRS fire product model was originally
composed of a two-channel temperature test and stepped judgment. The first part of
the test involved the VIIRS channels I4 and I5. The brightness temperature was initially
required to meet the initial threshold. Further, the differences in the spatial contrast of the
brightness temperatures of the VIIRS channels were analyzed in order to capture areas of
abnormally high temperature. Based on similar methods to those utilized in the Interna-
tional Geosphere Biosphere Program and Moderate Resolution Imaging Spectroradiometer
fire products, pixels containing optically thick clouds were independently classified as
part of the fire algorithm [30], eliminating clouds, desert and coastal boundaries, and solar
flares.

Visible Infrared Imaging Radiometer Suite active fire detection and characterization
products provide a good foundation for fire identification but ignore the fact that the low-
temperature state of small fires in channels I4 and I5 does not meet the initial threshold. The

https://search.earthdata.nasa.gov


Remote Sens. 2021, 13, 4226 4 of 12

difference in fire sensitivity under different test conditions is not taken into consideration.
Therefore, the probability of variation in brightness temperature must be modified to
capture small, low-temperature fires by adding the proposed contrast test to eliminate the
entrustment error from specific surfaces with significant contrasts.

In this study, we mostly focused on test conditions and threshold selection, analyzed
the feasibility of test conditions, the optimal threshold range, and the sensitivity of the
new threshold. Furthermore, we resolved the instability of the test conditions and error
caused by the use of a fixed threshold, so as to reduce false positives. Weight analysis
of the fire test conditions serves as the core of the improved algorithm and therefore,
different test condition weights were employed for two seasons (winter and summer).
Additionally, as the original fire probability threshold is outdated, our approach represents
an improvement in the probability of algorithm accuracy. However, a global optimal fire
probability threshold must also be proposed for the new algorithm.

3.1. Contextual Concept

The contextual analysis implemented by VIIRS fire products samples the dynamically
allocated window size to achieve the best representation of the candidate fire pixel’s
background. Adjacent pixels are utilized to estimate the radiation signal of potential fire
pixels. In addition, effective adjacent pixels in the window centered on potential fire pixels
are identified and utilized to estimate the background value. In the case of VIIRS I-bands,
the minimum sample size was set to 11 in this study and centered on the candidate fire
pixel × 11 element window. The sampling window was allowed to grow to a maximum
size of 31 × 31 pixels—until at least 25% of the sample size consisted of effective pixels
or at least 10 effective pixels were found. Similar to large-area background sampling
applied to daytime data, effective pixels do not include those classified as clouds, water
bodies, potential background fires, or pixels with non-zero quality marks on any input
band, including pixels with filled values. If the minimum number of effective pixels cannot
be met, the pixel is designated as an “unknown,” indicating that the background condition
could not be correctly characterized [20].

3.2. Combined Fire Weight Probability
3.2.1. Spectral Test Weight

In this study, the final fire probability was calculated by analyzing the differences in the
spectral probabilities and fire sensitivities under different test conditions. In single-channel
parameter selection, the brightness temperatures of channels I4 and I5 (BT4, BT5) and the
differences between them (∆BT45) were the major analytical parameters. Figure 1 displays
the light temperature characteristic curve of fire pixels in the two seasons considered, which
was established by taking 30 typical samples for the fire and non-fire cases. As observed
from this figure, a significant difference in the brightness temperature in the I4 channel
between fire and non-fire pixels existed, leading to the inference that this channel is most
suitable for distinguishing pixels containing sub-resolution combustion components from
pixels composed of cooler flameless background areas. Here, BT4 is still the basic condition
for preliminary judgment and a weight of 0.3 is added to the fire probability.

Theoretically, channel I5 is the major channel for comparison with I4 to separate active
fires from their non-fire backgrounds. However, for small fires, the sensitivity of channel I5
was observed to be weak, and its sensitivity in winter was higher than that in summer. The
test of channel I5 in the original algorithm was thus changed to adapt to the difference in
the test conditions (i.e., weighted by 0.2 in winter and 0.1 in summer) of fire probability.
The differential sensitivity for distinguishing between fires and exposed ground heated
by the sun was calculated as ∆BT45 and the characteristic curve of VIIRS data (Figure 1)
demonstrated better sensitivity than channel I5. Therefore, a weight of 0.3 was added to
the fire probability.
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Figure 1. Comparison of brightness temperature between pixel channels I4 and I5. (a) Characteristic
curve in winter; (b) characteristic curve in summer. The horizontal axis represents the case number,
and the vertical axis represents the brightness temperature of a typical case.

3.2.2. Contextual Test Weight

It is impractical to detect clear daytime fire-affected pixels based on the simple fixed
threshold applied to the brightness temperature data of VIIRS channels I4 and I5, as the
spectral characteristics of these channels may lead to a large number of false positives. The
initially large sampling area can adapt to changes in background conditions and increase
the flexibility of candidate fire pixel selection. The aim of such adaptability is to improve
the sensitivity of the algorithm to fires in cold high latitudes and to reduce the false positive
rate at low latitudes with warmer backgrounds.

The VIIRS fire product explores the unique radiative characteristics related to ac-
tive fires and compares them with adjacent pixels without fires, which constitutes the
key test conditions for fire identification. When the minimum pixels constructed by the
background pixel window are met, the average brightness temperature deviation of the
background pixel in I4 and i5 channels is (BT4b, δ4b) (BT5b, δ5b), as was the difference in
brightness temperature between these channels (∆BT45b, δ45b) using a background sample.
Additionally, the mean and mean absolute deviations were calculated for channel I4 bright-
ness temperature data from potential background fire pixels found within the sampling
window (BT4

′ , δ4
′ ):

∆BT45 > ∆BT45b + 2× δ45b (1)

∆BT45 > ∆BT45b + 10 (2)

BT4 > BT4b + 3.5× δ4b (3)

BT5 > BT5b + δ5b − 4δ,
4 > 5. (4)

These tests formed the key fire test conditions in the product. For this part of the
test, we only allocated the weight and did not change the factors in the formula. As an
important part of the VIIRS fire product, the proportion of weight distributions for each
test condition was 0.3, but for BT5, the test weight was set to 0.1.

Based on the VIIRS fire product contextual test, we added judgment conditions to
expand those already available in order to eliminate the spatial heterogeneity of fire detec-
tion. The differences in the brightness temperature between potential fire and background
pixels in channels I4 and I5 were ∆BT4 and ∆BT5, respectively, and the difference between
potential fire and adjacent background pixels for channels I4 and I5 was ∆BT45

′ (Figure 2).
In Figure 2a, the surface temperature in winter represents the air and ground temperatures
caused by the overall climate, snow cover, and other factors. The special high-temperature
conditions of winter fires display the large changes in their difference with respect to the
adjacent non-fire pixels in channel I4. These changes were weighted (0.3) into the fire
probability. The differences in the information between channels I5 and I4 still revealed
this obviously large spatial difference and was also weighted (0.3) into the fire probability.
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However, there was no significant change in the difference between the brightness temper-
ature of fire areas and adjacent non-fire pixels in channel I5, which were similar to the pixel
characteristics of adjacent non-fire areas.
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Figure 2. Comparison of differences in the spatial distribution of brightness temperatures between
pixel channels I4 and I5 when 15 typical samples were selected. Contextual comparison between
channels I4 and I5 of some fire and non-fire pixels (a) in winter; (b) is summer. The x-axis is the
number of sampled pixels, and the y-axis represents the difference in brightness temperature between
the potential fire and the effective adjacent pixels in the window.

Channel I5 is a single-gain channel with a saturation temperature of 380 K. For the
judgment of small and cold fire pixels, the effect of separating an active fire from its non-fire
background is poor. Even in winter, the fire probability weight (0.2) was adjusted. Figure
2b displays the contextual comparison of channels I4 and I5 for fire and non-fire pixels
of partial sample data in summer. Owing to the influence of sunlight and temperature
in summer, the overall surface temperature increased and the difference between the fire
and adjacent pixel temperatures decreased significantly. Although the spatial differences
in brightness temperatures in the fire areas decreased, they remained obviously different
from the non-fire areas. In contrast, the spatial differences in the brightness temperatures
of channel I5 were not clear in summer, and the division between fire and non-fire areas
was not obvious. The best weight of height differences in channel I4 between fire and
background pixels was 0.3, the best weight for channel I5 was 0.1, and the best weight
for height differences between fire pixels in channels I5 and I4 and the background pixels
weight (0.2) which was lower in summer than in winter.

3.2.3. Weight Calculation

The temperatures of different underlying surfaces have variable impacts on the results
of fire detection. In addition, different algorithms provide unique contributions to the
final results, which mostly depend on the accuracy of the tests performed. In this study,
the accuracy of the fire detection algorithm was weighted to the results of different tests,
and a fire probability diagram was generated. A probability = 1 denoted a fire point of
complete combustion and a probability = 0 denoted an area without fire. We also limited
the results several times, including cloud water discrimination and solar flare removal. The
following formula gives the probability (G), wherein Fi is the fire detection result, Qi is the
corresponding weight of the algorithm, and N is the total number of algorithms.

G =
∑N

i=1 QiFi

∑N
i=1 Qi

(5)

3.3. Optimal Threshold of New Fire

Threshold selection played a decisive role in the test results. With the improvement of
weight calculations, the threshold was required to be updated. To find the best threshold
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for each test, the minimum and maximum values of the corresponding test conditions of
the fire pixels were counted, and the threshold changed from the statistical minimum to
the maximum at the interval of the corresponding step of the test conditions. With these
changes in the threshold, the accuracy and surface misjudgment rate also changed. When
the accuracy of the pixel was maximized and resulted in minute impact on the threshold,
the corresponding test threshold performed best; when the threshold reached a certain
value, the accuracy increased slowly with changes in the threshold, while the misjudgment
rate increased significantly with increase in the threshold. The threshold with the lowest
misjudgment rate was selected as the best threshold. This method reduced the influence of
subjectivity and resulted in reasonable conditions.

3.3.1. Optimum Spectral Threshold

Image-based thresholds were used to extract fires in VIIRS fire products. However, by
changing the weighted probability, the threshold of fire detection also changed. Therefore,
we recalibrated the fire probability threshold based on a sensitivity analysis of 100 fire
pixel reference images. To determine the best threshold, we allowed it to vary between
260 and 350 (at an interval of 1) and selected the threshold with the highest overall
accuracy (Figure 3). In fire detection, the accuracy rate should be considered, and any
increase in accuracy should not be affected by the error rate. We inferred that the best
thresholds (highest overall accuracy) of BT4 were 325 K in winter and 335 K in summer,
while those for BT5 were 295 K in winter and 306 K in summer. The optimal thresholds of
differential information from the I4 and I5 channels were 32 in winter and 26 in summer.
However, these were global optimal thresholds, and different surface types may require
the implementation of different thresholds.
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3.3.2. Optimal Contextual Threshold

Under the original spatial test conditions of the VIIRS fire products, the central fire
pixel should be greater than the sum of the mean and deviation of adjacent pixels. This
condition has important implications for fire alarms, but the difference in fire sensitivity
under different conditions should be reconsidered. In this study, weight calculations were
added to the spatial comparisons, from which the test conditions were corrected, and the
fire probability threshold was calibrated with a test fire point (Figure 4). Nevertheless, it
remains necessary to determine the optimal threshold of the parameters in combination
with the error rate. As the I5 channel does not exhibit obvious differences in the window
as displayed in Figure 4, the optimal threshold was not selected, and complex changes
were observed. Ultimately, the 5-K threshold of the product was implemented. Meanwhile,
for channel I4, the test condition threshold was 11 K in winter and 13.5 K in summer. The
threshold for the test conditions of the difference between channels I4 and I5 was 14 K.
However, it was obvious that the accuracy of the best threshold selected in summer was
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lower than that in winter, and the difference in sensitivity required compensation via the
aforementioned weight calculations.
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each channel and the adjacent effective pixel in the window, and the x-axis shows the fire probability.

4. Results and Discussion

Most of the “true” fires provided in the fire verification incorporate the currently
utilized fire products and fire databases as reference data. However, the small fires detected
in this paper are characterized by a small over fire area and short combustion time. The
fire database or fire products are not suitable for verifying the detection of small fires based
on VIIRS data, high-resolution data (Landsat 8 OLI) as a visual interpretation. In addition,
an imaging time difference with VIIRS data is observed, and the burning time of crops is
short. This difference in imaging time makes Landsat 8 unable to be utilized as validation
data. In order to verify the identification of small fires by the improved algorithm, the
fire was tracked manually. Due to the problem of labor cost, a typical area is selected
in the East Asia (34◦22.9′–38◦24.01′N, 114◦47.5′–122◦42.3′E). The tracking periods were
considered from 1 October to 30 December 2020 (winter) and from 1 June to 30 June 2021
(summer). We compared previous VIIRS fire products and analyzed the characteristics of
the fires. Each fire event was manually verified, as displayed in Figure 5, and the results of
algorithm comparisons are presented in Table 2. The verification work carried out in this
study aims to test the improved algorithm in the detection of small crop combustion fire.
The global VIIRS fire products are utilized for comparison, and the fire characteristics are
analyzed. Compared with global products, the improved algorithm has a high miss rate
of 66.66% and an error rate of 96.55% in summer in crop combustion fires in the Far East.
The improved algorithm is more sensitive to small fires, the accuracy has been improved,
and the miss rate has decreased to 46.15%. In order to accurately demonstrate the accuracy
difference between the improved algorithm and the global VIIRS fire products, the missing
fire points of VIIRS fire products are extracted and analyzed in different seasons to exhibit
the advantages of the improved algorithm.
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Table 2. Comparison of algorithm accuracy.

Algorithm Season Accuracy 1 Omission Rate 2 Error Rate 3

Improved algorithm summer 53.85% 46.15% 36.36%
VIIRS fire products 33.33% 66.66% 96.55%

Improved algorithm
winter

73.53% 26.47% 67.11%
VIIRS fire products 56.71% 43.28% 64.48%

1 Ratio of the number of real fires detected to the number of actual fires. 2 Ratio of the number of undetected fires to the actual number of
fires. 3 Ratio of the number of detected non-fires to the number of detected fires.

4.1. Comparison of Algorithms in Summer

During the summer detection period, six fire points were selected from the fires not
detected by the VIIRS fire products (Table 3). Taking Point 1 as an example, the improved
algorithm detected a thermal anomaly at 4:42 on 19 June 2021, but no fire was detected
in the VIIRS fire products. Upon field investigation, a fire was confirmed. In Table 3, the
BT4 and BT5 of fire Point 1 exhibited an obvious trend towards high temperatures and the
brightness temperatures of the potential fire pixels in the I4 and I5 channels were 35.52 K
and 7.41 K higher than those of the adjacent pixels. The fire at this location was obvious.
However, the judgment value of ∆BT45

′ in the VIIRS fire product algorithm was high,
resulting in a thermal anomaly that could not meet this test requirements and was therefore
eliminated. At 5:36 on 19 June 2021, the brightness temperatures of the I4 channel at points
2, 3, and 4 were very high. The potential fire pixel values of the I4 channel were more than
30 K higher than those of the surrounding pixels. It was verified from field investigations
that a fire occurred. It can be inferred from the information in Table 3 that these fire
points were also observed in channel I5, wherein the potential fire pixels were close to the
surrounding pixels and the difference in their brightness temperatures did not exceed the
5 K required in the VIIRS fire product algorithm. Thus, it was ignored. Through improved
identification, the judgment weights of the potential fire pixels and adjacent pixels of fires
in points 2, 3, and 4 in the I5 channel only accounted for 0.1. After the calculation, the
probability of such fires was 99.9%. As VIIRS fire products have been developed globally,
such a small fire will fall victim to omission errors owing to the limitations of certain test
conditions. In contrast, the improved algorithm allowed for the clear identification of small
fires.
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Table 3. Fires missing from summer VIIRS fire products that were recovered by the improved algorithm.

Point Time Position Area (m2) BT4 (K) BT5 (K) ∆BT45 (K) ∆BT4 (K) ∆BT5 (K) ∆BT45’ (K)

1 2021.06.19
(04:42) 117.03, 37.10 6500 345.12 309.59 35.52 17.04 7.41 9.62

2 2021.06.19
(05:36)

118.49, 37.30 6400 336.82 306.51 30.30 21.67 1.41 20.25
3 116.22, 37.09 10,000 342.23 302.29 39.94 27.16 1.67 25.48
4 116.11, 36.63 19,000 343.49 309.19 34.29 23.95 3.19 20.75

5 2021.06.20
(05:18) 118.15, 35.23 10,000 357.88 300.83 57.05 35.21 2.91 32.29

6 2021.06.19
(04:42) 118.65, 35.28 7000 357.88 300.83 57.05 35.21 2.91 32.29

4.2. Comparison of Algorithms in Winter

Surface temperatures were lower in winter than in summer, as were the brightness
temperatures of the thermal anomaly points. Four fire points were selected for a case study
in fires that were left unidentified by the winter VIIRS fire products (Table 4). Taking the fire
Point 1 at 4:24 on 7 October 2020 as an example, on-site validation demonstrated that the
identification of the improved algorithm was correct. A fire had occurred here, but it was
not identified in the product. Fire Point 1 was observed in channel I4, and the brightness
temperature was high, reaching 342.46 K. The brightness temperature of potential fire
pixels was 35.13 K higher than those of the adjacent pixels, and the fire characteristics were
obvious. However, because the brightness temperature of the I5 channel was close to those
of the surrounding pixels, the fire was eliminated from the data, resulting in an omission
error. For the Point 4 fire at 6:12, the brightness temperature of channel I5 was only 277.27 K,
which also resulted in the rejection of the VIIRS fire products. Nevertheless, according to
the brightness temperature of channel I4, it can be observed that there a thermal anomaly
existed at this location and the potential fire and adjacent pixels of channels I4 and I5 met
the conditions for fire determination. It was also confirmed by field investigation that a fire
had occurred. The improved algorithm compensated for the uncertainty of the channels
and identified the fires with an accuracy of >95%, allowing for the accurate identification
of these small fires.

Table 4. Fires missing from the winter VIIRS fire products that were recovered by the improved algorithm.

Point Time Position Area (m2) BT4 (K) BT5 (K) ∆BT45 (K) ∆BT4 (K) ∆BT5 (K) ∆BT45’ (K)

1 2020.10.07
(04:24)

117.32, 36.95 13,000 342.46 299.83 42.63 35.13 2.93 32.19
2 116.02, 35.71 1300 339.1492 298.66 40.48 25.25 0.64 24.61
3 117.27, 35.84 10,000 331.0194 293.86 37.15 24.38 1.19 23.19

4 2020.12.15
(06:12) 116.93, 37.81 1400 329.0843 277.27 51.81 39.46 5.09 37.37

The characteristics of small cold fires not detected by VIIRS fire products are listed
in Tables 3 and 4. These fires were seriously affected by seasonal images and show
different brightness temperatures in different seasons. Additionally, it was difficult to
distinguish potential fire pixels from the surrounding pixels using channel I5. Therefore,
in the improved algorithm, it was deemed reasonable to set the weight according to the
sensitivity of the fire characteristics and test conditions in the area, which compensated for
the differences in some of the radiative conditions of small fires.

5. Conclusions

According to the seasonal analysis of small fires caused by crop combustion in the Far
East, this study introduces a fire detection algorithm based on VIIRS data and verifies the
accuracy of the detection algorithm. We aim to provide fire management and environmen-
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tal protection personnel in the East Asia with detection data for small fires caused by crop
combustion. This study introduces an improved small fire detection algorithm based on
VIIRS data and validates its accuracy. A basic contextual structure of a fire detection algo-
rithm similar to a medium-resolution imaging spectrometer already exists. At this stage,
the detection model conducts a hierarchical judgment based on the contextual structure.
The intersection of various test results causes the loss of some fire information. To ensure
that small fires are not lost during hierarchical judgment, the new algorithm introduces a
weight calculation, which is divided according to the difference in fire sensitivity under
different test conditions. According to the calculated changes in weight, the fixed threshold
was outdated, and the global thresholds for winter and summer were reestablished. During
the simulation process, when the accuracy of fuzzy pixels was maximized and minimally
affected by changes in threshold, the corresponding reflectivity was determined to be the
best threshold for detecting fires. Through comparisons between manual field-validated
data and VIIRS fire products, the accuracy of the new algorithm reached 53.85% in summer
and 73.53% in winter and the overall detection effect was stable.

The small-scale fire explored in this study demonstrates high combustion frequency
and wide impact range, which has brought some difficulties to environmental governance.
However, due to the wide distribution of fire and difficult supervision, the support of
remote sensing technology has solved the governance problem. Moreover, due to the
difficulty in selecting this type of fire samples, only the data of the Far East have been
studied and verified. Analyses of change based on change detection cannot fully illuminate
the relationship between many multitemporal images or separate the coverage conditions
and subtle or long-term changes under climate change from background noise. After
long-term detection and fire data selection, we can gradually analyze the fire temperature
characteristics of various regions and establish a global algorithm model.
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