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Abstract: This article concerns the development of gravimetric quasigeoid and geoid models using
the geophysical gravity data inversion technique (the GGI method). This research work was carried
out on the basis of the data used in the Colorado geoid experiment, and the mean quasigeoid (ζm)
and mean geoid (Nm) heights, determined by the approaches used in the Colorado geoid experiment,
were used as a reference. Three versions of the quasigeoid GGI models depending on gravity data
were analyzed: terrestrial-only, airborne-only, and combined (using airborne and terrestrial datasets).
For the combined version, which was the most accurate, a model in the form of a 1′ × 1′ grid was
calculated in the same area as the models determined in the Colorado geoid experiment. For the same
grid, the geoid–quasigeoid separation was determined, which was used to build the geoid model.
The agreement (in terms of the standard deviation of the differences) of the determined models, with
ζm and Nm values for the GSVS17 profile points, was ±0.9 cm for the quasigeoid and ±1.2 cm for the
geoid model. The analogous values, determined on the basis of all 1′ × 1′ grid points, were ±2.3 cm
and ±2.6 cm for the quasigeoid and geoid models, respectively.

Keywords: airborne and terrestrial gravity data combination; regional disturbing potential model;
regional geoid and quasigeoid model

1. Introduction

Regional gravimetric geoid and quasigeoid models are mainly built on the basis of
Stokes and Molodensky integrals and the least squares collocation (LSC) method. A general
basis for these approaches can be found in physical geodesy textbooks, e.g., [1–3]. It should
be emphasized that the above-mentioned general solutions have many modifications that
significantly improve the quality of the models determined and enable the use of a global
geopotential model (GGM) and digital elevation model (DEM). These additional data are
most often used in the remove-compute-restore (RCR) procedure, in which the calculation
runs in three steps. In the first step, a global model part (long-wavelength part) and a part
based on the DEM (short-wavelength part) are removed from the original gravity data,
determining the residual gravity values. In the second step, the residual gravity data are
transformed into residual geoid or quasigeoid heights by the mentioned techniques. Finally,
in step three, the GGM and DEM components of geoid undulations or height anomalies
are determined and added to their residual values, giving the final results. Among the
ways that the RCR technique is implemented in relation to the use of topography in steps
two and three, the Helmert method of condensation, e.g., [4–7] and the residual terrain
model method, e.g., [8–11] are the most common. A modification to this approach is the
window remove-restore technique [12]. Step two is often carried out with a fast Fourier
technique, e.g., [13–17]. An alternative to the RCR method is the method developed at the
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Royal Institute of Technology in Stockholm (KTH method), which does not require gravity
reduction, but consists of a least squares modification of Stokes’ formula [18–21]. An
alternative solution to that presented above is the method based on spherical radial basis
functions (SRBFs) [22,23], which have been applied in gravity field modeling, e.g., [24–27].
The established approaches to regional geoid and quasigeoid model determination were
utilized in the Colorado geoid experiment, and a detailed description can be found in the
publications on this experiment, while a general description and comparison are included
in [28].

A widespread use of GNSS measurements supplemented the dataset used for local
and regional gravity field modeling, with GNSS/levelling geoid undulations or height
anomalies. The density of GNSS/levelling points increases very quickly and in many
regions allows for geoid and quasigeoid modeling the application of common interpolation
methods, such as kriging [29], polynomials [30,31], radial basis functions, and neural
networks [32,33]. GNSS/levelling data are also often used for the evaluation of gravimetric
geoid and quasigeoid models and the fitting of these models to the local height systems.
They can also be used together with gravity and other data for geoid and quasigeoid
models; e.g., in the LSC approach. The method of the local modeling of the gravity field,
using GNSS/levelling and gravity data, is also a method based on the geophysical inversion
of gravity data and is called the GGI method [34]. This method was developed as a method
for the local modeling of a quasigeoid fitted to GNSS/levelling data. Notably, the accuracy
of these types of models (models using GNSS/levelling data), used for local applications,
can reach values of several millimeters [35,36]. However, such models may be burdened
with long-wavelengths and systematic errors from the GNSS/levelling height anomalies
or geoid undulations used to build the model. Therefore, they cannot be used to detect
such errors in levelling networks. This function can be performed by the aforementioned
gravimetric models, which primarily constitute a reference surface for height systems,
independently of the levelling data.

As mentioned above, the GGI method was proposed as a quasigeoid modeling method
using gravity and GNSS/levelling data, and it has been used with such data. The obtained
accuracies of the quasigeoid model determined with this method for the area of Poland [37]
were comparable or better than the gravimetric models obtained with classical methods,
e.g., in [38,39]; however, this comparison is not entirely reliable, due to the use of different
datasets (GNSS/levelling and gravity data for the GGI method and only gra-vity data for
classical methods).

It is also worth emphasizing a certain universality of the discussed approach. For
example, the paper by [40] showed the relationship between the boundaries of the mass
density between the geoid and the Moho surface estimated by the GGI method with the
boundaries of geological units in Poland. The high accuracy of the gravity value prediction
of the GGI method, at the level of accuracy of their interpolation with the Bouguer anomaly
and with the use of kriging, was also demonstrated [41]. The results of these works induced
further research on the discussed solution, the next step of which is this study. The results
presented in this paper concern an attempt to determine a gravimetric quasigeoid and geoid
models using the GGI method. The work was carried out in an area of high mountains, on
the basis of data from the Colorado geoid experiment, and is a continuation of this research,
the results of which were presented in [42].

2. Materials and Methods
2.1. The Utilized Solution: Overview

In the GGI approach, the disturbing potential in the elaboration area is represented by
a three component model [34,43].

The first component covers the potential of local topographic masses included in a
volume Ω, usually denoted as TΩ. The second component (Tκ) is the potential of disturbing
masses located between the geoid and the compensation surface, included in the volume κ,
corresponding in its horizontal ranges to the volume Ω (Figure 1).
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The components TΩ and Tκ are given by Newton’s integrals,

TΩ = G
∫ ∫ ∫

Ω

ρ

r
dVΩ (1)

Tκ = G
∫ ∫ ∫

κ

δ

r
dVκ (2)

where ρ and δ are density distribution functions in defined volumes Ω and κ, respectively, r
is the distance between the attracting masses and the attracted point P located on the Earth’s
surface, G is Newton’s gravitational constant, and dVΩ and dVκ are elements of volumes.

Both volumes (Ω and κ) are horizontally limited, slightly beyond the study area; thus,
they do not cover all the disturbing masses with a local disturbing potential. This makes
it necessary to introduce an additional potential TE, which represents the potential of
the disturbing masses not covered by the TΩ and Tκ components. The TE potential also
covers the systematic and long-wavelength errors of the used data. This assumes its low
variability, so it can be represented in the form of low degree harmonic polynomials:

TE = a1 + a2XP + a3YP + a4XPYP + a5HP (3)

where XP, YP, HP are the coordinates of the point P and a1, . . . a5, are polynomials coefficients.
In general, the disturbing potential at a point on the terrain surface will be written as:

T = TE + TΩ + Tκ (4)

In the model presented above, the unknown parameters are the 3D density distribution
functions ρ and δ, as well as the coefficients of the polynomials defining the external
potential. In the original concept of the method, these parameters are determined by
the least squares method, on the basis of a dense network of gravity points with known
gravity anomalies or gravity disturbances and a sparse network of GNSS/levelling points
with known height anomalies, converted into disturbing potential values. The gravimetric
solution requires the model parameters to be determined without the use of GNSS/levelling
data. The proposed process for their omission will be described at the end of this section.

The determination of the density functions ρ and δ is carried out by the procedure of
the linear inversion of gravity data [44], which requires their discretization. Thus, the Ω
and κ volumes are divided into finite volume blocks, and a constant density is assigned to
each of the blocks. In previous and current studies, a very simple division was used, taking
into account only the lateral density variation in two layers: one for the volume Ω, and one
for the volume κ. Consider that the volume Ω is defined by blocks of the digital elevation
model (DEM), which are grouped into zones of constant, determined densities. The κ
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volume consists of constant density blocks, extending from the geoid to the compensation
surface. The horizontal size of these blocks corresponds to constant density zones of the
volume Ω.

Due to the local nature of the GGI models built so far, the calculations were carried out
in the local Cartesian coordinate system. The Z-axis of the coordinate system is directed
towards the geodetic zenith, at the origin point located in the middle of the study area. The
X and Y axes lie on the plane of the horizon and are directed toward the north and east,
respectively. In such a defined coordinate system, the Ω and κ volumes are represented in
the form of rectangular prisms, for which the solutions of Newton’s integrals for gravity
potential (Equations (1) and (2)) and their derivatives are well-known, e.g., [45,46].

With the Ω and κ volumes defined in this way, Equations (1) and (2) can be written as
follows [41]:

TΩ =
n

∑
k=1

(
ρkG

mk

∑
i=1

Ki

)
. (5)

Tκ =
s

∑
j=1

(
δjGKj

)
(6)

where n is the number of constant density zones of the DEM; ρk is the searched constant
density of zone k; mk is the number of rectangular prisms of the DEM in zone k; s is the
number of rectangular prisms defining the κ volume; and δj is the searched density of the
rectangular prism j.

The Ki and Kj coefficients are solutions of Newton’s integrals for the rectangular
prisms: i of the DEM and j of the κ volume:

Ki =

zi2∫
zi1

yi2∫
yi1

xi2∫
xi1

1
ri

dxidyidzi (7)

Kj =

zj2∫
zj1

yj2∫
yj1

xj2∫
xj1

1
rj

dxjdyjdzj (8)

where xi1, xi2, yi1, yi2, zi1, zi2 are the coordinates defining the rectangular prism i of the

DEM; ri =
√
(xi − XP)

2 + (yi −YP)
2(zi − ZP)

2; xj1, xj2, yj1, yj2, zj1, zj2 are the coordinates
defining the rectangular prism j of the κ volume; and

rj =
√(

xj − XP
)2

+
(
yj −YP

)2(zj − ZP
)2.

It should be noted that the implementation of Equations (7) and (8) takes into account
the sphericity of the Earth. Therefore, for each attracted point P we assume ZP = HP, while
the height coordinates defining DEM blocks and prisms of the κ volume take into account
the sphericity correction ∆z = −

(
R−
√

R2 − d2
)

, where d is the horizontal distance of the
point P and the DEM block center, and R is the mean of the Earth’s radius.

In calculations, a certain reference density model is usually used, wherein a constant
value is assumed for the volume Ω, denoted as ρ0. Based on this, the reference density
model for the volume κ (δ0) is adopted as the density, which balances topographical masses
of the volume Ω. Assuming that the constant density zone i of the Ω volume is located
exactly above the constant density block j of the volume κ, the reference density of this
block

(
δ0

j

)
is defined by the following equation:

δ0
j = −Hiρ0

hj
(9)

where Hi is the mean height of zone i of the Ω volume and hi is the height of block j of the
volume κ.
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Assuming that the determined density model would be written as:

τT =
[
ρT , δT

]
= [ρ1, . . . , ρn, δ1, . . . , δs] (10)

And a reference density model is written in the form:

τT
0 =

[
ρT

0 , δT
0

]
=
[
ρ0

1, . . . , ρ0
n, δ0

1 , . . . , δ0
s

]
(11)

The vector of unknowns can be written as:

dxT =
[
aT , dτT

]
(12)

where dτ = τ− τ0 is the determined vector of residual density and a = [a1, . . . , a5]
T.

Assuming the vector of determined parameters defined by Equation (12), the observa-
tion equations for the disturbing potential (T) and gravity disturbance (δg) at point P will
have the following form [43]:

T + vT = fTdx + T0 (13)

δg + vδg = −fT
z dx + δg0

where f and fz are the vectors of known parameters resulting from the equation of the
disturbing potential model (4) and its ZP derivative respectively, and vT and vδg are
adjustment errors.

The approximate observation quantities are determined based on the vector
xT

0 =
[
aT

0 ,τT
0
]
, wherein a0 is a 5-dimensional zero vector.

T0 = fTx0 (14)

δg0 = −fT
z x0

For the series of observations, a system of Equations (13) is built, which we can
write as:

v = Adx− L (15)

where vT =
[
vT . . . , vδg . . .

]
is the vector of adjustment errors, A is the design matrix of

known coefficients, and LT = [T − T0, . . . , δg− δg0, . . . ] is the vector of observations.
The use of more than one layer of the determined density distribution leads to ambigu-

ity in the solution of the gravity inversion problem. This ambiguity is solved by introducing
a deep weighting function and condition proposed by [47].

For all assigned unknowns the condition can be written as:

dxTWxdx = min (16)

where Wx =

[
Wa 0
0 Wτ

]
, Wa is the zero weighting matrix assigned to the vector a and

Wτ is the density model weighting matrix, defined based on [47].
A detailed description of the definition and determination of the deep weighting

function parameters that were used can be found in [43].
With regard to condition (16), with a defined weight observation matrix P, the least

squares objective function is written as:

vTPv + dxTWxdx = min (17)

This condition leads to the solution of equation system 15 in the following form:

dx =
(

ATPA + Wx

)−1
ATPL (18)
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Note that the use of a deep weighting function (matrix Wτ), not only solves the
problem of solution ambiguity, but also allows for some control over the depth of the
location of the designated densities. The second factor influencing density location is
related to the utilized observations and can be controlled, to some extent, by the weights
given to individual groups of them. Note that in the model under discussion, the gravity
data are more sensitive to density variation located closer to the terrain surface, and the
potential values are more sensitive to density variation in deeper locations. Hence, it is
important to properly design the weight matrix P. In previous studies, it has been assumed
that the weights for the disturbing potential values are closely related to their accuracy (the
accuracy of the GNSS/levelling data). Regarding the gravity values, it has been assumed
that their weights are related, not to the accuracy of their determination, but more to the
accuracy of the GGI model in terms of gravity. For the calculations, a value 2–3 times
greater than the prediction accuracy has been assumed as the basis for estimating the
weights of gravity values.

Calculations can also be performed with the use of global geopotential models. In
this case, the RCR procedure is used. If we calculate gravity potential values (W) for
GNSS/levelling points, the RCR procedure may be carried out according to the follow-
ing scheme:

1. Removal from the original data of a global model part (long-wavelength part) and
determination of the residual disturbing potential values δTr and the residual grav-
ity δgr.

δTr = T − TGM = W −WGM (19)

δgr = g− gGM

where TGM, WGM, and gGM are the disturbing potential, gravity potential, and gravity
from the global model, while g is the measured gravity.

2. On the basis of the residual data, the residual model of the disturbing gravity potential
is built using the GGI method.

δTrGGI = δTE + δTΩ + δTκ (20)

where the components δTE, δTΩ, and δTκ are residual parts of the componenets TE,
TΩ, and Tκ (after removing from them parts contained in the global geopotential
model).

3. For new points, the residual disturbing potential values from the GGI model and the
gravity potential values from the global model are determined. Consequently, the
values of gravity potential (WGGI) and gravity (gGGI) can be determined.

WGGI = WGM + δTrGGI (21)

gGGI = gGM + δgrGGI

where δgrGGI is the residual gravity from the GGI model.

On the basis of the gravity potential values, it is possible to determine, for example,
normal heights

(
HN

GGI
)

or height anomalies (ζGGI) using known equations (Heiskanen
and Moritz 1967):

HN
GGI =

Wo −WGGI
γ

(22)

ζGGI =
WGGI −U

γQ
=

TGM + δTrGGI

γQ
=

TGGI
γQ

(23)

where Wo is the gravity potential on the geoid, γ is the mean value of the normal gravity
between the ellipsoid and telluroid, and γQ is the normal gravity on the telluroid.
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The observation Equations (13) for residual values can be written as

δTr + vT = fTdx + T0 (24)

δgr + vδg = −fT
z dx + δg0 (25)

The values T0 and δg0, calculated on the basis of the reference density model (14),
remain unchanged.

Since determination of the gravimetric geoid and quasigeoid models excludes the use
of GNSS/levelling data, these data have to be replaced in the calculation procedure. A
natural solution to the problem is to replace this data with values determined directly from
the global model. In this case, the entire solution remains unchanged. We assume equality,
W = WGM, so the Equation (25) will take the following form:

vT = fTdx + T0 (26)

δgr + vδg = −fT
z dx + δg0

The advantage of this solution is that we can include in the calculations a regular
grid of points with known disturbing potential values, the size and density of which
can be freely defined. On the other hand, these data are mostly less accurate than the
GNSS/levelling data, which may have a negative impact on the accuracy of the model.

Notably, as a result of the solution discussed, the gravimetric GGI model will be a
model locally fitted to the global model used.

Geoid to quasigeoid separation can be determined, for example, based on an equation,
e.g., in [2]:

N − ζ =
g− γ

γ
H = Hn − H (27)

where H and Hn are the orthometric and normal heights, respectively, g is the mean gravity
between the geoid and the terrain surface, and γ is the mean normal gravity between the
ellipsoid and telluroid.

This value can be used for geoid model determination using the above-described
solution. Therefore, we finally determine the geoid model using the following relation:

N = ζ +
g− γ

γ
H (28)

The presented solutions for geoid and quasigeoid determination require supplementa-
tion resulting from the specific conditions applied for the analyzed area:

1. The determined quasigeoid model should be consistent with the IHRS reference level
Wo = 62, 636, 853.400 m2/s2 [48], which is different from the normal potential on the
reference ellipsoid surface GRS80, Uo = 62, 636, 860.850 m2/s2. Hence, determining
the height anomaly based on the gravity potential value (24), the difference ∆Wo =
−7.45 m2/s2 has been taken into account.

2. Since the GM used is in the zero-tide system and the models developed in the Col-
orado geoid experiment were developed in the non-tidal system, for the determined
height anomalies, a small correction dζzn was added [49].

dζzn = −k
(

0.099− 0.296 sin2 ϕ
)

(29)

where ϕ is the point latitude, k ≈ 0.3 is the Love number, and the result is in meters.
Finally, the height anomalies were determined by the following equation:

ζGGI =
WGGI −U

γQ
− ∆Wo

γQ
+ dζzn (30)
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3. It should be added that the mean gravity g (used in Equation (27)) should be consistent
with the orthometric height type used. As in the analyzed area, Helmert orthometric
heights are used, the mean gravity g in our analyses were calculated in accordance
with these heights, according to the following equation [2]:

g = g + 0.0424H (31)

which assumes a density of the topography ρ = 2670 kg/m3.

2.2. The Used Data

The data provided by the US National Geodetic Survey included several datasets
and were the same as used in the Colorado geoid computation experiment [28]. The data
covered the area between the parallels 35◦ and 40◦ North (latitude) and the meridians 110◦

and 102◦ East (longitude) and included the following:

• Terrestrial gravity data (59,303 points)
• De-biased GRAV-D airborne data of the survey block MS05 (283,717 measured values)
• SRTM v4.1 digital elevation model at 3′′ grid spacing
• Historical GPS/levelling data (509 points)
• GSVS17 GPS/levelling data set (223 points)
• A detailed description of these datasets can be found in [28].

The GSVS17 data set consists of points forming a profile with a length of over 350 km,
in which, among others, Helmert geoid undulations, the deflection of the vertical com-
ponents, and gravity values were determined. These points were used to compare the
individual geoid and quasigeoid models developed in the Colorado geoid experiment,
wherein the average value of the 13 developed models was used as a reference for the
evaluation of the individual models [28]. These averaged values were also used in our
analyses, to evaluate and compare the developed models using the GGI method.

In the calculations for the primary data, we used 55,161 terrestrial gravity points and
24,030 airborne gravity values. The location of these points is marked in Figure 2a. The
Helmert orthometric heights of terrestrial gravity points were converted to the normal
heights used in the calculations, while the ellipsoidal heights of these points were deter-
mined using the height anomalies from the global model XGM2016 [50], which were also
used in the calculations as a reference GM in the RCR procedure. The height anomalies
from the XGM2016 model were also used to determine the normal heights of airborne
gravity points.
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Figure 2. Data accepted for the calculations. (a) airborne gravity points: light blue dots; terrestrial
gravity points: dark blue dots. (b) The DEM, which defines the horizontal range of the Ω and κ

volumes; white dots: positions of points with known disturbing potential values from GM. Red lines
show the location of the GSVS17 profile points and black lines define the area for which the geoid
and quasigeoid models with a 1′ × 1′ grid were determined.

On the basis of SRTM v4.1 DEM, with a resolution of 3”, two DEMs used directly in
the calculations, with resolutions of 100 m and 500 m, were determined. The relief map in
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the analyzed area is presented in Figure 2b. The DEM shown in Figure 2b also defines the
horizontal range of the Ω and κ volumes used. In accordance with the adopted strategy of
developing a gravimetric quasigeoid model, 910 points with known disturbing potential
values from the GM were accepted into the calculations. These points evenly cover the
entire elaboration area and are marked in Figure 2b with white dots. The red lines in
Figure 2 show the location of the GSVS17 profile points and the black rectangles define the
area for which the geoid and quasigeoid models with a 1′ × 1′ grid were determined.

3. Results

The calculation process included two stages, which led to the development of the final
quasigeoid and geoid models. The first, preliminary stage, covered the analyses indicating
parameters important for the modeling results, which were used in the second stage, in
which the final models were developed.

3.1. Preliminary Phase Analyses

In the preliminary phase, the accuracy of the XGM2016 model, in terms of height
anomalies, and the accuracy of the gravity prediction by the GGI method were estimated.
These values are necessary for the correct estimation of the observation weights. To estimate
the accuracy of gravity prediction, initial modeling was performed in a smaller, central part
of the elaboration area for various ρ0 values, assuming that the gravity errors adopted were
at the level of ±3 mGal (1 mGal = 10 µm/s2). Based on this, the accuracy of the gravity
prediction was estimated to be at the level of ±2.2 mGal, which, as stated above, indicates
that the gravity errors used to estimate the gravity weights should be approximately in the
range ±(4− 6) mGal. Therefore, the value of ±5 mGal was adopted for further analyses.
The height anomalies determined from the XGM2016 model were compared along the
GSVS17 profile; with the mean height anomalies obtained from the 13 models participating
in the Colorado geoid experiment hereinafter marked as ζRe f [28]. The obtained standard
deviation of the differences, at the level of ±10 cm, was adopted for the weight estimation
used in further calculations. So far, the GGI method has been applied to land plains and
low mountains. For such areas, the significance of the adopted reference density model
for the accuracy of the GGI model in terms of gravity values was demonstrated [41]. The
currently analyzed area covers high mountains (average height over 2200 m and with the
highest point above the height of 4000 m) and the disturbing potential values used have
lower weights, so their impact on the estimated densities will be smaller. Therefore, we
can also expect a significant impact of the reference density model on the accuracy of the
model, in terms of the height anomalies. To analyze this issue, a series of test calculations
were performed, covering a wide range of reference densities ρ0 (from 0 to 2670 kg/m3 in
increments between 100 and 500 kg/m3). We assumed that the size of the constant density
zones was 6× 6 km. The calculations were performed for three versions of the gravity data
used:

1. terrestrial-only,
2. airborne-only and
3. combined (with the use of terrestrial and airborne gravity data).

Height anomalies determined from the GGI model (ζGGI) for each version of the
gravity data and for different ρ0 values were compared to the reference values (ζm) for
the GSVS17 points. The standard deviations of the differences, ∆ζ = ζGGI − ζm, were
next determined as the model accuracy parameters. Relations between these standard
deviations and the ρ0 values are presented in Figure 3 by solid lines. For each analyzed
version of the reference density model, the mean density of the Ω volume (ρmean) from the
GGI model was also determined. This allowed us to state the value of the mean density
changes ∆ρ0 = ρmean− ρ0 for each modeling cycle. These values are represented in Figure 3
by dotted lines. Individual versions of the gravity data used are marked with different
colors: airborne-only = green, terrestrial-only = black, and combined = red.
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The results presented in Figure 3 show a clear relationship between the reference
constant density model and the accuracy of the height anomalies determined by the GGI
method. The least accurate are the results for ρ0 = 0 kg/m3. There is a noticeable increase
in the accuracy with the increase in the reference density values up to an optimal range
of ρ0, for which the accuracy is the highest. This optimal range is the narrowest for the
terrestrial version and significantly wider for the two other versions

The optimal ranges of ρ0 values for individual versions are presented in Table 1. The
ranges were adopted as the ranges, giving an accuracy no worse than 0.2 cm from the
best results.

Table 1. Optimal ranges of ρ0 values and estimated quasigeoid accuracy based on ζm values in the
GSVS17 profile points.

Version The Optimal Range
of ρ0

Minimal Accuracy in
the Optimal Range

The Best Accuracy in
the Optimal Range

Unit kg/m3 cm cm

Terrestrial only 2000–2300 1.5 1.3
Airborne only 1200–2670 1.9 1.7

Combined 1700–2670 1.1 0.9

The shown strong dependence of the GGI model accuracy on the ρ0 values causes
a certain problem for the estimation of the optimal density (ρ0optimal ) giving the highest
quasigeoid accuracy. The best solution of this problem would be the use of a set of accurate
reference GNSS/levelling data for the estimation of the ρ0optimal value. In the absence of
such data, it is necessary to rely on the experience in various implementations of the
method. Taking into account the wide range of optimal ρ0 values for the airborne-only and
combined versions, it can be expected that for these versions, it will not be very difficult to
estimate the ρ0optimal value based on experience. For the terrestrial-only version, however,
it will be much more difficult. In this case, the range of optimal values of ρ0 is relatively
narrow. Moreover, beyond this range, the decrease in accuracy is significant (compared to
the versions using airborne gravity data). Hence, some additional parameters supporting
the determination of the ρ0optimal value should be indicated. In this regard, the ∆ρ0 values
defined above may turn out to be helpful. The relationships between ∆ρ0 and ρ0 values
are represented in Figure 3 by dotted lines. Note that these relationships are linear for
all versions. Importantly, for versions using terrestrial gravity data (terrestrial-only and
combined), the values of ∆ρ0 achieve 0 for a ρ0 value inside or close to the optimal range.
These values of reference density (ρ0zero ), for individual versions, are marked in Figure 3
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by arrows and can be used to estimate the ρ0optimal value. For the combined version, the
ρ0zero value is in the middle of the optimal range, so we can assume ρ0optimal = ρ0zero . For the
terrestrial-only version, there is a slight but visible shift of the ρ0zero value from ρ0optimal . This
shift shows that the use of the ρ0zero value to estimate the ρ0optimal value requires a further,
broader and more detailed analysis. However, the presented results give hope that in the
terrestrial-only or combined versions, this will be an effective method.

The above analyses were performed by comparing the modeling results with the
reference data on the GSVS17 profile points. The best results were obtained for the com-
bined version; hence, the final quasigeoid model was determined for this data version. The
ρ0optimal value, used in further calculations, for this version was computed based on the
ρ0zero value, assuming the equality of both quantities. As the changes of ∆ρ0 are linear, in
order to determine the ρ0zero value, it is sufficient to find the value of ∆ρ0 for two ρ0, e.g.,
for minimal ρ0min = 0 kg/m3 and maximal ρ0max = 2700 kg/m3 (∆ρ0max ) values, and then
to determine the ρ0zero value by a simple relation:

ρ0zero =
∆ρ0min

∆ρ0min − ∆ρ0max

(
ρ0max − ρ0min

)
(32)

3.2. Determination of GGI Geoid and Quasi Geoid Models for Colorado Geoid Experiment Area

Geoid and quasigeoid models were determined according to the scheme presented in
Figure 4.
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On the basis of the preliminary phase analyses, the gravity quasigeoid model was
determined for the area used in the methods that participated in the Colorado geoid
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experiment. The data set presented in Figure 2 was used in the calculations. In this figure,
the area for which the 1′ × 1′ grid of the quasigeoid model was determined is marked by
the black line. In the calculations, zones of constant density with a size of 6× 6 km were
assumed, and the ρ0optimal = ρ0zero value was determined using Equation (32). A map of the
determined quasigeoid model is presented in Figure 5.
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The geoid model was determined on the basis of the quasigeoid model, based on
relation (28). The g values necessary to calculate the geoid to quasigeoid separation (27)
were calculated according to formula (31). The gravity values g at each 1′ × 1′ grid point
were determined by the interpolation of the complete Bouguer anomalies (CBA) using
the kriging method. The CBA values were calculated using the same DEM as in the
quasigeoid modeling, taking into account topographic masses within a radius of 167 km
and assuming their constant density ρ = 2670 kg/m3. Figure 6 shows the CBA values used
for gravity prediction and Figure 7 presents the geoid to quasigeoid separations used for
geoid model determination.
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4. Discussion

In order to evaluate the developed models, height anomalies (ζGGI) and geoid undu-
lations (NGGI) determined by the GGI method in the 1′ × 1′ grids were compared to the
average values obtained from the models analyzed in the Colorado geoid experiment (13 for
the quasigeoid and 14 for the geoid) at the GSVS17 points. These values for height anoma-
lies are marked in the same way as before (ζm), and for geoid undulations they are hereafter
referred as Nm. Subsequently, the differences ∆ζ = ζGGI − ζm and ∆N = NGGI − Nm were
determined, the basic statistics of which are presented in Table 2.

Table 2. Basic statistics of the differences ∆ζ = ζGGI − ζm, ∆N = NGGI − Nm, as well as ∆ζGNSS/lev = ζGGI − ζGNSS/lev
and ∆NGNSS/lev = NGGI − NGNSS/lev, based on the GSVS17 profile points (in centimeters). In brackets are ranges of
corresponding values obtained for methods participating in the Colorado geoid experiment (based on [28]).

Min Max Mean RMS Stdev Range

∆ζ −0.5 3.3 1.1 1.4 (1.0 ÷ 3.4) 0.9 (0.7 ÷ 2.4) 3.9 (3.4 ÷ 13.9)
∆N −2.3 3.9 1.0 1.5 (1.3 ÷ 3.6) 1.2 (1.1 ÷ 2.9) 6.2 (6.8 ÷ 16.6)

∆ζGNSS/lev 83.8 94.9 90.2 90.2 2.6 (1.8 ÷ 3.6) 11.2 (10.7 ÷ 17.1)
∆NGNSS/lev 82.3 94.7 89.4 89.9 2.5 (2.0 ÷ 4.1) 12.4 (10.0 ÷ 25.1)

Ellipsoidal and Helmert orthometric heights measured at the GSVS17 profile points
were used for the independent evaluation of the developed models. Based on the data
provided, we determined the measured geoid undulations (NGNSS/lev). The gravity values
measured at the GSVS17 profile points were used to convert the Helmert orthometric
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heights into the normal heights (according to Equation (27)), and consequently we calculate
the GNSS/levelling height anomalies (ζGNSS/lev) by the difference between the ellipsoidal
and normal heights. Those values were compared to ζGGI and NGGI values. Hence, the
differences ∆ζGNSS/lev = ζGGI − ζGNSS/lev and ∆∆GNSS/lev = NGGI − NGNSS/lev were
calculated; the basic statistics of which are also presented in Table 2.

All of the differences, the statistics of which are presented in Table 2, are also presented
in Figure 9. From ∆ζGNSS/lev and ∆NGNSS/lev, offsets of 90 cm (associated with the long-
wavelength errors of the US vertical datum [51]) were removed.
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The determined geoid and quasigeoid models were also compared with the Nm and
ζm values for all 1′ × 1′ grids points. The most important statistics of the differences
∆ζ = ζGGI − ζm and ∆N = NGGI − Nm are presented in Table 3.

Table 3. Basic statistics of the differences ∆ζ = ζGGI − ζm and ∆N = NGGI − Nm based on all
1′ × 1′ grids points (in centimeters). In brackets are the ranges of corresponding values obtained for
methods participating in the Colorado geoid experiment (based on [28]).

Min Max Mean RMS Stdev Range

∆ζ −10.5 14.2 1.4 2.7 (1.6 ÷ 5.2) 2.3 (1.5 ÷ 5.2) 24.6 (18.0 ÷ 70.0)
∆N −17.5 17.0 1.4 3.0 (2.3 ÷ 5.6) 2.6 (2.1 ÷ 5.6) 34.4 (25.5 ÷ 68.7)

When assessing the determined geoid and quasigeoid models, it is useful to refer to
the results obtained by the methods participating in the Colorado geoid experiment. On
the basis of [28], we summarized the ranges of the corresponding values obtained for all
methods taking part in the experiment. These values are presented in Table 2; Table 3
in brackets, next to the values determined for the GGI method. Accepting the standard
deviation (STD) values of the differences between the quantities determined by the GGI
method and their reference values as the basic parameters of the accuracy assessment,
we can determine the relation of the GGI method to the methods participating in the
Colorado geoid experiment. The STD values determined in reference to the mean geoid
and quasigeoid models, calculated based on the GSVS17 profile points (Table 2), were
±0.9 cm for the quasigeoid and ±1.1 cm for the geoid model. Using the results of [28],
we can notice that only in one quasigeoid model and one geoid model from the Colorado
geoid experiment were lower STD values obtained. The analogous STD values calculated
on the basis of all 1′ × 1′ grid points (Table 3) are worse; they are ±2.3 cm and ±2.6 cm for
the quasigeoid and geoid, respectively. Additionally, the relationships with the methods
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participating in the Colorado geoid experiment are worse. Slightly lower STD values were
obtained for seven quasigeoid models and four geoid models. An independent evaluation
of the developed models is their comparison with the GNSS/levelling height anomalies
and geoid undulations. The STD values determined in reference to these values at the
GSVS17 profile points (Table 2) for the quasigeoid and geoid models were ±2.6 cm and
±2.5 cm, respectively. Among the Colorado geoid experiment models, lower STD values
were obtained for three quasigeoid and three geoid models. It should also be noticed
that there was a relatively small decrease or no decrease in the accuracy parameters of
the determined geoid model in relation to the quasigeoid model. Taking into account the
technique used for the determination of the geoid model, the accuracy of the obtained
geoid–quasigeid separation should be assessed as high.

Note that the differences of both ∆ζ and ∆N, represented in Figure 9 by red solid and
dotted lines, respectively, are within very narrow ranges and are close to each other. The
graphs of the differences ∆ζGNSS/lev and ∆NGNSS/lev (blue solid and dotted lines) are also
interesting. There is a clear change in their values in their final sections (approximately
80 endpoints of the profile). The shift of the mean values for the points in the start and end
sections is at the level of −5 cm and is also visible for other geoid and quasigeoid modeling
methods participating in the Colorado geoid experiment [28]. This shift is the main reason
for the significant increase in the STD values of the ∆ζGNSS/lev and ∆NGNSS/lev differences.

5. Conclusions

The conducted analyses lead to several important GGI method conclusions. Primarily,
the proposed use of the disturbing potential values determined from the GGM, instead of
the GNSS/levelling data, turned out to be very effective. This allows for the determination
of a local gravimetric quasigeoid model, fitted to the GGM used.

Test calculations were based on terrestrial and airborne gravity data. Such a data
set made it possible to carry out analyses on the three versions of the gravity data used:
terrestrial-only, airborne-only, and combined, which used the airborne and terrestrial
datasets. The GGI models developed for each version turned out to be dependent on
the reference density model adopted for the calculations. By comparing the determined
quasigeoid models with the reference values obtained in the Colorado geoid experiment,
it was possible to estimate the optimal density ranges giving the most accurate results.
The narrowest and the most unfavorable range of optimal density values was obtained
for the terrestrial-only version. Significantly wider ranges of the optimal values of ρ0
(more favorable) were obtained for the version using airborne gravity data (airborne-only
and combined). Moreover, the highest accuracy was achieved for the combined version
(Table 1). Therefore, the supplementing of the data set with airborne gravity data leads to
an improvement of the quality of geoid and quasigeoid models.

The demonstrated relationship between the accuracy of the GGI model and the ρ0
value causes problems for determining an accurate quasigeoid model and indicates the
need to determine or estimate the optimal ρ0 as one of the most important parameters
in the modeling process. At the present stage, the estimation of the optimal reference
density model should be based on the GNSS/levelling control dataset. In the absence
of such data, one could follow the results of previous applications of the method and
the optimal ρ0 estimation, the first of which are the presented results obtained by the
Colorado geoid experiment. Analyses of changes in the mean density of topographic
masses (∆ρ0 = ρmean − ρ0) can also be helpful in searching for the optimal ρ0 values. For
the terrestrial-only and combined versions, these values achieve 0 for a ρ0 value inside or
close to the optimal ranges. Therefore, they can be used for the estimation of the optimal
densities for these versions. However, it should be clearly emphasized that the study of
these relationships requires further analysis, mainly on the use of GGMs with different
resolutions and for other types of terrain.

In the analyzed case, these relations allowed determining the optimal density for
the combined version, for which the model in the form of a 1′ × 1′ grid was calculated
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in the same area used for the models determined in the Colorado geoid experiment. For
the same grid, the geoid–quasigeoid separation was determined, and this was used to
build the geoid model. The standard deviations of the differences between the geoid and
quasigeoid models determined by the GGI method and the mean models determined for
the GSVS17 profile points were ±0.9 cm for the quasigeoid and ±1.2 cm for the geoid
model. Analogous values, determined on the basis of all 1′ × 1′ grid points, were ±2.3 cm
and ±2.6 cm for the quasigeoid and geoid models, respectively. The presented results
indicate the high-quality of the determined quasigeoid and geoid models. A relatively
small difference between the accuracy parameters of the geoid and the quasigeoid also
proves that this was a very accurate determination of the geoid-quasigeoid separation.
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Colorado geoid computation experiment—Overview and summary. J. Geod. Special Issue on Reference Systems in Physical
Geodesy (under review). 2021.

29. Ligas, M.; Kulczycki, M. Kriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling.
Surv. Rev. 2018, 50, 155–162. [CrossRef]

30. Zhong, D. Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. J. Geod.
1997, 71, 552–561. [CrossRef]

31. Das, R.K.; Samanta, S.; Jana, S.K.; Rosa, R. Polynomial interpolation methods in development of local geoid model. Egypt. J.
Remote Sens. Space Sci. 2017, 21, 265–271. [CrossRef]

32. Lin, L. Application of a back-propagation artificial neural network to regional grid-based geoid model generation using GPS and
leveling data. J. Surv. Eng. 2007, 133, 81–89. [CrossRef]

33. Cakir, L.; Yilmaz, N. Polynomials, radial basis functions and multilayer perceptron neural network methods in local geoid
determination with GPS/levelling. Measurement 2014, 57, 148–153. [CrossRef]

34. Trojanowicz, M. Local modelling of quasigeoid heights with the use of the gravity inverse method—Case study for the area of
Poland. Acta Geodyn. Geomater. 2012, 9, 5–18.

35. Trojanowicz, M.; Osada, E.; Karsznia, K. Precise local quasigeoid modelling using GNSS/levelling height anomalies and gravity
data. Surv. Rev. 2020, 52, 76–83. [CrossRef]

36. Banasik, P.; Bujakowski, K.; Kudrys, J.; Ligas, M. Development of a precise local quasigeoid model for the city of Krakow—
QuasigeoidKR2019. Rep. Geod. Geoinform. 2020, 109, 25–31. [CrossRef]

37. Trojanowicz, M. Assessment of the accuracy of local quasigeoid modelling using the GGI method: Case study for the area of
Poland. Studia Geophys. Geod. 2015, 59, 505–523. [CrossRef]

38. Łyszkowicz, A. Quasigeoid for the area of Poland computed by least squares collocation. Tech. Sci. 2010, 13, 147–163. [CrossRef]
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