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Abstract: High-resolution benthic habitat data fill an important knowledge gap for many areas of 
the world and are essential for strategic marine conservation planning and implementing effective 
resource management. Many countries lack the resources and capacity to create these products, 
which has hindered the development of accurate ecological baselines for assessing protection needs 
for coastal and marine habitats and monitoring change to guide adaptive management actions. The 
PlanetScope (PS) Dove Classic SmallSat constellation delivers high-resolution imagery (4 m) and 
near-daily global coverage that facilitates the compilation of a cloud-free and optimal water column 
image composite of the Caribbean’s nearshore environment. These data were used to develop a 
first-of-its-kind regional thirteen-class benthic habitat map to 30 m water depth using an object-
based image analysis (OBIA) approach. A total of 203,676 km2 of shallow benthic habitat across the 
Insular Caribbean was mapped, representing 5% coral reef, 43% seagrass, 15% hardbottom, and 
37% other habitats. Results from a combined major class accuracy assessment yielded an overall 
accuracy of 80% with a standard error of less than 1% yielding a confidence interval of 78%–82%. 
Of the total area mapped, 15% of these habitats (31,311.7 km2) are within a marine protected or 
managed area. This information provides a baseline of ecological data for developing and executing 
more strategic conservation actions, including implementing more effective marine spatial plans, 
prioritizing and improving marine protected area design, monitoring condition and change for 
post-storm damage assessments, and providing more accurate habitat data for ecosystem service 
models. 
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1. Introduction 
Tropical benthic habitats, such as coral reefs and seagrass, harbor immense biodiver-

sity and are an economic engine of goods and services that benefit the coastal communi-
ties that depend on them. Coral reefs not only provide essential habitat for one-quarter of 
all known marine species [1], but they also provide billions of dollars of economic value 
and direct benefits to at least 500 million people who live in close proximity to them [2,3]. 
These benefits include the support of fisheries valued at US$6.8B per year [4], the delivery 
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of an estimated US$26B in global tourism benefits [5], and the reduction of annual ex-
pected damages from storms by more than US$4B, which protects some of the world’s 
most vulnerable communities against the devastating impacts of climate change [6,7]. 
Similarly, seagrass beds provide a wealth of ecosystem services and ecological benefits 
valued at over US$600/ha/year [8], fostering high biodiversity, filtering the water column, 
increasing sediment stability, sequestering carbon, and serving as breeding and nursery 
areas for important species [9,10].  

Despite their immense ecological and economic value, these irreplaceable ecosystems 
are experiencing rapid global decline [11–13]. Coral reefs are suffering from the combined 
impacts of unsustainable coastal development, overfishing, land-based pollution, coastal 
runoff, ocean-warming, and acidification [14–16]. Seagrass habitats are threatened by 
dredging, coastal development, and runoff [17]. Given the increasing threats facing these 
habitats and their resulting deterioration, accurate maps are essential for carrying out spa-
tial prioritization models that provide insight into the most important areas to protect and 
manage in terms of biodiversity value and ecosystem service benefits [18–20]. Over the 
past several decades, marine resource managers have routinely relied upon satellite-de-
rived benthic habitat maps to provide baseline estimates at a variety of scales [21]. Pro-
ducing detailed benthic habitat maps over broad spatial scales has been challenging, often 
requiring significant investments and the deployment of highly skilled practitioners to 
often remote geographies where the majority of coral reefs are located. Many small island 
nations lack the resources and technical capacity to develop accurate ecological baselines 
to assess protection needs and monitor change to inform adaptive management actions. 
For countries that do not have benthic habitat maps, global products are the best available 
option for marine resource planning. While undoubtedly useful for achieving global con-
sistency, global models alone have been reported to be insufficient for national or local-
scale conservation design or marine spatial planning [22]. While these products cover 
broad geographic areas, their spatial resolution is often inadequate for local actions, and 
benthic cover estimates are often underrepresented. For example, narrow fringing or lin-
ear habitats and benthic features that are less than 60 m in their smallest dimension are 
largely missed by publicly available 30 m resolution global datasets. Conversely, higher 
spatial resolution imagery from private satellite companies can be expensive to acquire 
and process; hence, these products are typically used for mapping smaller geographic ar-
eas. Though there has been some success in other geographies using acoustic methods to 
map benthic habitats (e.g., side scan and multibeam sonar) [23–25], these data are not 
readily available in the Caribbean and would be time-consuming and expensive to pro-
cure for very large areas. However, as remote sensing technologies and classification 
methods continue to improve, the ability to map larger areas and quantify finer-scale pa-
rameters that integrate ancillary datasets, such as geomorphic zones, bathymetry, and 
benthic composition, has increased [26–30]. 

To fill the data gap and address the need for more consistently mapped, detailed 
benthic habitat products across broader scales, a first-of-its-kind high-resolution (4 m) 
thirteen-class regional benthic habitat map was developed for 203,676 km2 of shallow hab-
itat (<30 m depth) across the Insular Caribbean using an object-based classification ap-
proach. The map was created using the PlanetScope (PS) Dove Classic satellite constella-
tion and utilized a standardized benthic habitat classification scheme that was performed 
on a composite of 38,642 scenes. Each scene was selected for water clarity and optimal 
water column properties with low sunglint and water surface roughness. When compared 
to global benthic datasets, the object-based method using the PS imagery captured more 
detailed, ecologically meaningful shapes and classes that were derived from both spectral 
and non-spectral attributes of the imagery, including bathymetry, geomorphic zones, and 
corresponding spatial and contextual information (Figure 1). Thousands of GPS-refer-
enced field video transects, drone imagery, and scuba diver data collected throughout the 
region were used to train the classification algorithm and assess the accuracy. Local ex-
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perts throughout the region were consulted to manually adjust and refine the final prod-
uct. Compared to global products, this innovative, scalable approach to coastal ecosystem 
mapping and monitoring delivers a much higher spatial resolution and regionally con-
sistent map product and ecological baseline. For many Caribbean countries that lack these 
data, this product represents the basis for more strategic and targeted conservation spatial 
actions, such as the improved design and implementation of more effective marine pro-
tected area networks and marine spatial plans, a baseline for monitoring biophysical con-
ditions and system changes, such as post-storm damage assessments, and the provision 
of more accurate input data for ecosystem service models and benefit calculations. 

 
Figure 1. Comparison of multiple scale benthic habitat data around the island of Carriacou, Grenada: (a) PlanetScope Dove 
Classic imagery (4 m); (b) Global-scale Landsat-derived (30 m) five-class coral reef map; (c) National-scale PlanetScope-
derived (4 m) thirteen-class benthic habitat map. 

2. Materials and Methods 
2.1. PlanetScope Imagery 

The foundation for successful image feature extraction is based on the selection of 
optimal imagery [31]. With 150+ SmallSats (4-kg) in a 475 km altitude sun-synchronous 
orbit (~98° inclination), the PS Dove constellation provides four-band multispectral cov-
erage over major landmasses and coastal areas at ~3.7 m ground sample distance and a 
geolocation accuracy of ~10 m [32] (Table 1; Figure 2). Two limitations identified with PS 
imagery include the radiometric differences between the different PS Dove “flocks” and 
the low signal-to-noise ratio for high-accuracy detection and mapping of the coastal ben-
thos [33]. Despite lower spectral fidelity and variable radiometric quality, PS data provide 
higher spatial resolution over publicly available image datasets and a much higher tem-
poral resolution (near-daily) over existing imagery providers. The collection capacity of 
the Dove constellation is 340 million km²/day. This is particularly useful in marine and 
coastal applications when cloud-free and clear water column conditions are needed for 
continuous monitoring for detecting changes in benthic cover, tracking sediment plumes 
and water quality, or assessing post-storm damage. Obtaining a cloud-free observation 
with calm, clear water conditions and minimal sunglint and turbidity is critical for achiev-
ing accuracy in benthic habitat classification. Therefore, the high temporal cadence makes 
PS imagery well-suited to this task, as daily observations dramatically increase the likeli-
hood of capturing scenes with optimal water column clarity, which has been successfully 
applied to similar use cases [30,34–36]. However, each PS scene has a relatively small foot-
print (i.e., swath) (~20 × 12 km), and therefore, to cover a large area, numerous individual 
scenes acquired at different times must be selected and mosaicked together. Comparing 
or combining observations from different times is often challenging due to the highly var-
iable nature of the ocean surface and atmospheric conditions. To partially mitigate this, a 
compositing and normalization method was developed that seamlessly combined the 
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suite of scenes that were chosen based on optimal water clarity and atmospheric condi-
tions. 

Table 1. Technical specifications of PlanetScope (PS) Dove Classic imagery (adapted from [37]). 

Spectral bands (nm)  
(Full width at half maximum (FWHM) and range)  

Blue: 470 (455–515)  
Green: 540 (500–590)  
Red: 610 (590–670)  
NIR: 790 (780–860)  

Ground sampling distance  3.5–4.1 m  
Camera dynamic range 12-bit 

Signal-to-noise ratio (SNR) ~80  
Scene dimension (frame size)  ~20 km × 12 km  

Geometric accuracy (horizontal)  ~10 m 

 
Figure 2. Relative Spectral Response (RSR) of the PlanetScope (PS) Dove four multispectral bands 
(adapted from [37]). 

2.2. Composite Processing 
A four-band (blue, green, red, near infrared) surface reflectance composite combin-

ing over two years of observations from PS images was created for the Caribbean Basin 
using 38,642 scenes that were acquired between 1 October 2017 and 15 September 2019 
and mosaicked using a Mercator projection. A multi-year timeframe was necessary to re-
duce cloud contamination and ensure adequate coverage. A best-scene compositing 
method was used instead of traditional pixel-based methods, since PS data do not have 
sub-pixel geolocation accuracy, which can cause problems when using pixel-based com-
positing methods [38]. Planet’s best-scene approach operates by ranking all available 
scenes, using all valid pixels from the best scene, then filling any unfilled areas by pixels 
from the next best scenes in ranked order. This ensures that adjacent pixels are highly 
likely to have come from the same scene, mitigating geolocation differences while reduc-
ing the likelihood of artifacts due to changing sea conditions between scenes. However, 
this method also necessitates additional processing to remove scene edges from the final 
composite and requires an accurate scene ranking algorithm to avoid undesirable effects, 
such as waves and sunglint.  
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To avoid atmospheric (e.g., haze, cloud cover) and oceanographic effects (e.g., sun-
glint, wave patterns, surf, and turbidity) during the compositing process, scenes were 
ranked based on a variety of metrics that are sensitive to these conditions. A linear model 
combining three independent cloud estimates and average gaussian gradient magnitude 
and brightness was used to find scenes most likely to yield clear seabed observations. Two 
of the cloud estimates incorrectly classified surf and sunglint as clouds and were, there-
fore, used to identify poor quality scenes. Scenes yielding a low average gaussian gradient 
magnitude were likely to have been acquired on calm days with low surface roughness 
(i.e., waves). Darker scenes were more likely to be less turbid with low atmospheric haze. 
The model was trained on hand-ranked lists of overlapping scenes in a variety of coastal 
and open water areas to find optimal weights for each of these input parameters. Due to 
the relatively low tidal amplitude in the Caribbean (~0.5 m), scenes were not filtered based 
on the tidal stage, since differences in water depth and exposed area are minimal. 

PS surface reflectance data contain a high degree of scene-to-scene variability, since 
the process relies on Moderate Resolution Imaging Spectroradiometer (MODIS)-based at-
mospheric optical depth estimates collected at a different time and at a lower spatial res-
olution [39]. Additionally, PS data have a significantly different spectral response than 
MODIS or other common imaging platforms (Figure 3a). Therefore, each PS scene was 
empirically normalized to MODIS MOD09A1 reference data in addition to the physics-
based atmospheric correction approach used in the PS surface reflectance scene product. 
The normalization takes the form of a linear Spatial Band Adjustment Factor (SBAF) for 
each band and is applied uniformly to the entire scene (Figure 3b) [40]. However, the 
SBAFs are calculated independently for each scene, rather than on a per-satellite or per-
constellation basis. As a result, a variety of constraints were applied to ensure stability in 
the presence of sunglint. Rather than a least square fit, which is sensitive to outliers and 
insensitive to small changes in dark features, the absolute value (L1 norm) of percentage 
difference between co-located, non-cloudy pixels of the reference data and scene were 
minimized. Pixels over land were excluded during the fitting to ensure consistency over 
water at the expense of accuracy and consistency over land. To avoid overfitting of sun-
glint, clouds, or surf, the SBAFs are constrained such that they always preserve a reflec-
tance of 1.0 in the input data and cannot have an unrealistic slope. Furthermore, major 
changes in band ratios were minimized by including a metric that measures changes in 
band ratios during the normalization, in addition to the misfit to the reference data. There-
fore, the resulting SBAFs avoid overfitting sunglint or waves and are constrained to pro-
duce physically plausible models in all cases.  

The MODIS reference dataset used for normalization is a darkest-pixel composite 
made from MODIS MOD09A1 surface reflectance data [41]. The MODIS data were com-
posited based on the 20th percentile of brightness in each band for cloud free pixels col-
lected between Jan 1, 2014 and Jan 31, 2019. MODIS was chosen over Landsat 8 or Sentinel-
2 as a reference dataset for several reasons: (a) the wide swath width of MODIS reduces 
systematic row/path artifacts compared to Landsat 8 and Sentinel-2; (b) the daily cadence 
of MODIS allows for fully cloud-free reference composite; and (c) Landsat 8 and Sentinel-
2 surface reflectance data produced with LaSRC have significant across-track artifacts 
over open water [42]. However, MOD09A1 allows negative reflectance as valid data val-
ues and often produces negative reflectance over open water due to slight over-correc-
tions. The MODIS reference composite tends to select over-corrected pixels, and as a re-
sult, has uniformly negative surface reflectance values in most bands over water. To com-
pensate for this, a constant shift of 0.01 reflectance was applied in each band to the MODIS 
reference composite such that the lowest possible value represented in MOD09A1 has a 
reflectance of 0 instead of –0.01. This preserves relative color information that is lost over 
all water pixels if reflectance values below zero are clipped to 0.  
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Figure 3. Example of corrections applied during image compositing in Île-à-Vache, Haiti: (a) Input surface reflectance data 
based on best quality scenes; (b) Normalization applied using MODIS reference data in addition to the physics-based 
atmospheric correction approach used in the PS surface reflectance scene product; (c) Seamline removal via a surface 
reconstruction method that smoothly shifts values near scene edges to match values at the boundary between scenes; (d) 
Manual quality control where the hand selection of scenes significantly reduced turbidity in near-coastal waters in the 
final composite. 

Normalization reduces major differences in scene-to-scene brightness, but small dif-
ferences between scenes may create scene edges (Figure 3b). Consequently, a seamline 
removal method was applied to reduce the effect of scene edges on the final composite 
(Figure 3c) [43]. Traditional blending or feathering methods operate on a spatially varying 
weighted average between multiple scenes. However, due to the rapidly varying nature 
of the ocean surface, as well as the ~10-m geolocation accuracy of PS imagery, blending 
different scenes often introduces more artifacts than it removes. Therefore, seamlines were 
removed via a surface reconstruction method that never blends or averages pixels from 
different scenes, but rather, it smoothly shifts values near scene edges such that the values 
are equal at the boundary between scenes. This is accomplished with a variant of Poisson 
surface reconstruction [44], where the gradient of the composite is set to 0 along scene 
boundaries, and the Poisson’s equation is solved for values that honor the modified gra-
dient, while preserving the original values at the edges of each composite tile. While this 
approach avoids blending multiple scenes, it can shift band ratios significantly in some 
scenarios. Seamline removal is applied after normalization; however, the changes are min-
imal, and therefore, major changes in band ratios are avoided. When differences between 
adjacent scenes are large (e.g., due to sunglint, clouds, or surf), seamline removal is only 
applied when the values along a scene edge differ by less than 0.1 in reflectance. If adjacent 
pixels along the edge vary by more than this amount, the original “hard” seamline at the 
scene boundary will be left intact. 



Remote Sens. 2021, 13, 4215 7 of 36 
 

 

Since automatically selecting clear and non-turbid scenes is not always accurate, an 
additional manual quality control step was added to identify cases where sub-optimal 
scenes were selected in key areas. This resulted in the manual identification and replace-
ment of 860 scenes out of the 38,642 used in the composite, mostly along the coast of Cuba 
and Jamaica. In most cases, the automated approach struggled to detect turbidity, so the 
hand selection of scenes significantly reduced turbidity in near-coastal waters (Figure 3d). 
The final composite resulted in ~300 GB of seamless, non-cloudy, four-band dataset cov-
ering one million square kilometers with a spectral response approximately similar to 
MODIS (Figure 4). This composite reduced the need for scene-level corrections and served 
as the input for all subsequent processing steps and classification.  

 
Figure 4. Final shallow area (<30 m depth) seamless, non-cloudy, four-band image composite of 38,642 PS Dove scenes for 
the Caribbean Basin that were acquired between 1 October 2017 and 15 September 2019 and normalized using a MODIS 
color target with seamlines removed. 

2.3. Extraction of Depth and Surface Reflectance 
Using the PS surface reflectance composite, a normalized difference water index 

(NDWI) was applied to mask out terrestrial regions (i.e., [45]): 𝑁𝐷𝑊𝐼 =  ρ(𝐺𝑟𝑒𝑒𝑛) − ρ(𝑁𝐼𝑅)ρ(𝐺𝑟𝑒𝑒𝑛) + ρ(𝑁𝐼𝑅) (1)

The NIR band was then used to remove sunglint effects in the visible bands (blue, 
green, and red) to estimate sea surface reflectance (𝜌௠(𝜆)) [30,46]:  𝜌௠(𝜆) = ρ(𝜆) −  ρ(𝑁𝐼𝑅) (2)

Below-surface remote sensing reflectance (𝑟௥௦(𝜆)) was derived from sea surface re-
flectance (𝜌௠(𝜆)) as [47]: 𝑟௥௦(𝜆) = 𝜌௠(𝜆)/𝜋0.52 + 1.7(𝜌௠(𝜆)/𝜋) (3)
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Finally, satellite-derived bathymetry (𝐻) was calculated from below-surface remote 
sensing reflectance (𝑟௥௦(𝜆)) using an adaptive bathymetry estimation algorithm developed 
for PS imagery [36]: 𝐻 =  𝑚଴ ln (1000 ∗ 𝑟௥௦𝑏𝑙𝑢𝑒)ln (1000 ∗ 𝑟௥௦𝑔𝑟𝑒𝑒𝑛) − 𝑚ଵ (4)

This algorithm measures water attenuation differences between green and blue 
bands to quantify the bathymetry. Both 𝑚଴ and 𝑚ଵ were determined based on water 
column conditions. Previous studies using this method to create satellite-derived bathym-
etry have reported accuracies of RMSE = 1.22−1.86 m [36]. 

2.4. Mapping of Geomorphic Zones 
Geomorphic zones correspond to biological and geomorphic structures and pro-

cesses which make up coral reefs and other benthic communities [48]. These zones were 
image interpreted and manually digitized using the PS image composite and comple-
mented with other high-resolution imagery databases from Esri, Google Earth, and Mi-
crosoft Bing, where increased detail was needed. Multiple image base maps were used to 
overcome issues in sunglint or limited visibility through the water column that facilitated 
accurate zone identification. The seven class geomorphic zones that were mapped include 
intertidal, lagoon, back reef (inner flat), reef crest, fore reef (outer flat), spur and groove, 
and bank/shelf. Reef crests were identified by recognizing breaking wave patterns in the 
imagery and the corresponding back (inner) and fore (outer) reef were mapped along each 
reef crest formation (Figure 5). Spur and groove zones were digitized based on image in-
terpretation and represent reef types with distinct high coral ridges and low sand channel 
patterns generally found perpendicular to the shore beyond the fore reef. Dredged areas 
and coastal inland lagoons were also identified and mapped for later integration into the 
final classification. These geomorphic zones provided important guidance for developing 
the rules used in the classification, for example, selection of seagrass beds within lagoon 
zones.  

 
Figure 5. Example of manually digitized geomorphic zones based on image interpretation of PS 
imagery in East end, Grand Cayman: (a) PlanetScope Dove imagery surface reflectance; (b) de-
rived geomorphic zones showing the shallow lagoon separated from the deeper shelf by the reef 
crest formation with the back (inner) and fore (outer) reefs. 
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2.5. Developing the Classification Scheme 
Effective maps follow clear and transparent rationale for developing thematic classes, 

employing meaningful and well-described classes that are beneficial to the people that 
utilize them [49]. A consultation with regional coral reef experts was conducted to deter-
mine the benthic habitat classification scheme that would be most useful to marine re-
source managers throughout the Caribbean [50]. Potential classes were filtered and ulti-
mately chosen based on a close examination of each classes’ spectral separability using 
available field reference data. While PS imagery has higher spatial resolution, one of the 
constraints of using SmallSat technology is a low signal-to-noise ratio and the limited 
number of broad spectral bands [51], which can make it more challenging to successfully 
separate detailed classes, which appear very similar in spectral response, especially un-
derwater features where the reflectance signal is greatly reduced. Consequently, a pre-
selected list of detailed classes was collapsed into a smaller number of more general ben-
thic classes, based on the likelihood that these classes would achieve greater mapping ac-
curacy. Based on an initial round of testing, the final classification scheme was reduced to 
thirteen benthic classes (Table 2). The reef crest, including the back and fore reef features, 
as digitized in the geomorphic zones, were added as individual benthic classes, since they 
are recognized as important reef types for focused management and monitoring actions. 
A description for each of these classes with corresponding field photo examples can be 
found in the Supplemental Materials.  

Table 2. Final thirteen-class benthic habitat classification scheme selected for use in the Caribbean-wide mapping. Classi-
fications and accuracy assessments were performed on both Level 1 and 2. 

Structure Benthic Cover 
Type Level 1 Level 2 

Hardbottom Reef Reef Coral/Algae (Fringing and Patch) 
    Reef Crest 
    Reef Back (Inner flat) 
    Reef Fore (Outer flat) 
    Spur and Groove 
    Boulders and Rocks 

Hardbottom (Non-reef) Hardbottom Hardbottom with Dense Algae 
    Hardbottom with Sparse Algae 

Unconsolidated sediment Seagrass Dense Seagrass 
    Sparse Seagrass 
  Sand Sand 
  Muddy bottom Muddy Bottom/Estuarine 
    Dredged 

2.6. In Situ Data 
In order to train the classification algorithm, a variety of in situ field reference data 

were used within selected test areas. The primary information came from a database of 
1653 GPS-referenced underwater video surveys collected in the Dominican Republic and 
Saint Croix, USVI (Figure 6) between 2017–2019, corresponding to the date range of the 
PS image composite. Each of these field transects was collected as part of a local scale 
mapping project in collaboration with the Global Airborne Observatory (GAO) and de-
signed to assess a diverse array of benthic compositions. Transect locations were selected 
based on a strategic image interpretation sample of each benthic class and a SeaViewer 
Sea-Drop 6000 HD (Tampa, FL, USA) underwater video camera with 30 m vertical cable 
was used to collect the video. Corresponding bathymetric field measurements were sim-
ultaneously collected using a Lowrance Elite7Ti ® (Tulsa, OK, USA) system with a xSonic 
P319 (50/200 kHz) transducer and 10 Hz GPS receiver that collected continuous depth 
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readings at 3 pts/sec along each transect. These measurements were previously used to 
develop a new adaptive bathymetry estimation algorithm for PS imagery and adaptively 
tunes a depth estimator according to water column attenuation conditions with reported 
accuracies of RMSE = 1.22–1.86 m [36]. For each field transect, the benthic habitat type was 
interpreted from the videos and matched to the habitat class used in the regional classifi-
cation scheme (boulders and rocks, coral/algae, hardbottom with dense algae, hardbottom 
with sparse algae, muddy bottom, sand, dense seagrass, sparse seagrass, and spur and 
groove). These survey point data were also used to train and validate respective develop-
ment steps within the classification method. For example, when developing the classifica-
tion approach for the different reef types, half of the georeferenced survey points were 
used in the classification, while the other half were used for post-classification validation. 
In addition to the video transects, supplemental field data, including high resolution 
drone data, snorkel surveys, and local knowledge were used to refine the classification 
results within the test areas of the Dominican Republic and Saint Croix, USVI.  

 
Figure 6. A total of 1653 GPS-referenced field data points representing locations of underwater video transects were used 
to train the algorithm within (a) eastern Dominican Republic (281 points); and (b) Saint Croix, USVI (1372 points). 

2.7. Classification Method 
The Caribbean benthic habitat classification was conducted using Trimble eCogni-

tion v9.5 software [52], which is composed of a front-end development environment called 
eCognition Developer and a background processing environment, eCognition Server, 
which allows for batch and parallel processing of data. The RuleSet for classifying the 
benthic habitat classes was developed and tested in eCognition Developer using the in-
trinsic Object-based Image Analysis (OBIA) approach. RuleSets are developed as the 
means to transfer the way a human interprets and understands an image into a machine-
interpretable language called Cognition Network Language (CNL). Objects represent pix-
els of similar value ranges and are created through image segmentation, which treats ob-
jects as entities, providing topological relationships and access to the underlying pixel 
values [53,54]. With multiple object scales and different levels of segmentations contained 
under one hierarchy, the OBIA model can consistently and accurately represent real-
world objects [55]. Ye et al. [56] suggested OBIA minimizes within-class spectral variabil-
ity by assigning all pixels in the object to the same class, makes better use of spatial infor-
mation such as size, shape, and texture of objects, and facilitates integration of contextual 
and semantic relationships among geographic objects. 
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The RuleSet was designed in blocks, with each block responsible for a certain step in 
the analysis. When creating a RuleSet, especially for projects with large amounts of data 
and considerable development time, an orderly and clean workflow is important to back-
trace any routines. The extraction of each class and its analyses steps were hierarchically 
placed under descriptive parent processes, which allowed for toggling blocks on and off 
as well as running single blocks separately, which facilitated the detection of back-tracing 
errors. The image adaptive RuleSet items were implemented using variables which hold 
calculated values from local operations. When compared to a global threshold that would 
not take into account fine-scale local variations, local operations ensure that local varia-
tions of the image data as well as from derived layers are considered.  

The first step, a vector-based segmentation and classification, was implemented to 
create a land-sea-mask using the digitized geomorphic zones, which separated land, shal-
low water (<30 m), and deep ocean areas (Figure 7a,b). This provided the geographic 
boundaries upon which any further step of the classification ruleset acted. To take ad-
vantage of the depth information and spatial relationship of benthic communities, the sec-
ond step was to create a depth classification, dividing up the bathymetry into 1-m incre-
ments for depths between 0–10 m, and 2-m increments for areas >10 m depth (up to 20 m 
depth) (Figure 7c,d). The depth classification was done using a raster-value segmentation 
that aggregates areas of similar depth values into single objects. The third step was to 
identify the deeper areas in the imagery that were beyond the bathymetry model range 
but were still included in the extent of the geomorphic zones layer. These areas did not 
use depth to classify the objects but relied solely on the RGB (red, green, blue) spectral 
values to assign the benthic habitat class. 

Figure 8 shows an overview of the classification workflow, which implements two 
parallel tracks of classifying (a) RGB values and depth (blue path) in areas where under-
lying depth information was available (<20 m depth); and (b) only RGB values (green 
path) where depth information was absent (~20–30 m depth). Although depth and RGB 
values workflow increased the likelihood of correctly classifying the objects, the RGB-only 
approach was used to distinguish deeper habitats such as sandy bottom and distinguish-
ing between dense and sparse algae hardbottom areas. Spur and groove corals were man-
ually identified and mapped in the imagery, since these areas were easily distinguished 
with their distinct coral ridges and sand channel patterns. When intersected with the ge-
omorphic zone layer, objects beyond depths greater than 30 m were removed and the re-
sulting outline provided a shelf boundary line.  
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Figure 7. (a) True color surface reflectance image composite of Turks and Caicos Islands. Red rectangle shows the location 
of Grace Bay in Figure 3d; (b) masking of land, shallow (<30 m), and deep ocean (>30 m) areas using the geomorphic zone 
polygons; (c) Shallow bathymetry model (<20 m depth) based on PS surface reflectance; (d) Detailed view of the depth 
classification using 1-m increments for depths between 0–10 m and 2-m increments for areas >10 m depth, highlighting 
the shallow lagoons, reef crest, and steep slope beyond the fore reef leading to the deep ocean. 

 
Figure 8. The eCognition classification workflow that integrates RGB spectral data, bathymetry, and geomorphic zone 
vector data. This method employs two parallel tracks for mapping areas with and without bathymetric data. 

The majority of reef habitat classes were mapped using both RGB and depth, where 
the depth classification was used in combination with the geomorphic zones to identify 
and refine the different reef types (i.e., reef crest, fore reef, back reef, and other patch and 
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fringing reefs that were assigned to the “Coral/Algae” class) (Figure 9a,b). An innovative 
spatial approximation routine in eCognition was developed that takes advantage of the 
image object hierarchy and data fusion abilities. The routine used the geomorphic zone 
polygons to provide spectral ‘parental guidance’ restraints in the classification, focusing 
the identification of objects within the polygon boundaries based on spectral value thresh-
olds. Using this parental guidance routine within the polygon outline, the predominant 
spectral response was calculated, and an object was formed around it. This new segment 
was then allowed to expand beyond the polygon extent, essentially seeding new areas as 
long as the spectral response remains within the defined narrow range of the predominant 
values (Figure 9c). Additionally, the objects within the polygon that were outside the de-
fined rules of the spectral response range were merged using a best-fitting technique (Fig-
ure 9d), allowing outside objects to intrude inside the polygon, refining the original object 
boundary. Hence, the method for coral reef classification took advantage of existing 
knowledge from the geomorphic zones, using this information for seeding areas and ex-
panding throughout these boundaries. Smaller reef patches were detected using the depth 
classification, scanning the model with a kernel to identify distinct elevated humps within 
a certain elevation threshold based on neighborhood values. Narrow fringing reefs were 
detected using the same spectral parental guidance approach, searching for specified 
range thresholds of the red-blue ratio within objects that were identified within the geo-
morphic zones.  

Within lagoon areas, the classifier separated sand and seagrass beds by investigating 
the full spectral response of the respective lagoon zone to calculate an object-specific range 
and subsequent threshold between bright sand and the darker seagrass objects. Objects 
identified as seagrass were then split into dense and sparse seagrass areas using the same 
object-specific approach and threshold within selected objects. Seagrass beds are typically 
not found at depths exceeding 12 m and this was used as a rule to further guide the clas-
sification. When considering inland coastal lagoons, these features were identified, since 
they are cut off from open water. Estuaries and inland bays were classified between sand, 
seagrass, or muddy bottom based on a spectral threshold of the object. Objects created 
over deeper areas of the shelf (>12 m depth), often located beyond the fore reef, were the 
last to be classified. Benthic communities found at these depths include coral, hardbottom 
with algae, and sandy bottoms. Since the spectral response is greatly diminished in deep 
water, the classification within those areas had to be highly fine-tuned. This is especially 
true for detecting the deep ocean edge boundary (areas >30 m depth), where bottom re-
flectance from the seafloor is no longer recorded by the sensor. At these depths, the object-
specific range and subsequent threshold method was less accurate when trying to distin-
guish between coral/algae and hardbottom. The automated results often required exten-
sive manual corrections based on image interpretation using other high-resolution satel-
lite image databases such as Esri, Google Earth, and Microsoft Bing. Table 3 presents sev-
eral of the issues and problems that were encountered during the testing of the classifica-
tion and the corresponding solutions that were employed. 

Once all objects were classified, the last step was to remove any objects that were less 
than an adaptively set minimum mapping unit. This was done using an area threshold 
that varied depending on the respective class with broad-scale classes (e.g., sand, seagrass, 
hardbottom), having a larger minimum mapping area compared to fine-scale classes (e.g., 
reef classes) in order to better preserve these smaller class occurrences. Objects with less 
or equal to the area were dissolved by majority length of the common border of the neigh-
boring objects. This process ensured a clean dissolve of any object that was too small and 
considerably reduced the overall number of objects. 
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Figure 9. Mapping of the reef crest and back and fore reefs: (a) PS imagery showing the lagoon area 
and reef crest separating the deep ocean boundary; (b) Polygon boundary of the geomorphic zone 
overlaid onto the imagery that identifies the reef crest area and is used in the parental guidance 
technique to refine the reef type boundaries; (c) Classification of reef crest (red), fore reef (brown), 
and back reef (orange) using the parental guidance approach; (d) Comparison to the polygon 
boundary differences indicating the improvement of reef type mapping using the parental guidance 
technique. Yellow circles highlight areas where the back reef has expanded and where sandy areas 
have contracted. 

Due to the large amount of data, eCognition Server was used to process all image 
tiles, which were structured into workspaces, based on geographically defined areas. An 
import routine was defined to create an automatic workflow which imported and pro-
cessed each dataset within a specified folder structure. A custom import routine was used 
to ensure the spectral images, depth data, and auxiliary vector layers had the same data 
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structure and alias names used throughout the workflow. The PS image composite was 
divided into 314 individual tiles from which the eCognition Server engine created 602 
projects. Based on an average processing time of 15-min per project, the regular processing 
time on one engine would have taken 150 h (~6 days and 6 h). To speed up the time of 
processing, a total of three eCognition Server engines were run in parallel, reducing the 
real production time to approximately 2 days and 2 h. 

Table 3. Issues/problems encountered during the development of the eCognition classification approach and correspond-
ing solutions employed. 

Issue/Problem Solution 
Areas > 20 m depth did not have accurate 

bathymetry data, only RGB spectral 
values. 

Employ a classification approach using only RGB values and subsequent 
manual editing where needed. 

Shallow reef features around the reef crest 
needed more detail and accuracy. 

Use geomorphic zones as “parental guidance” and object-specific range 
and thresholding to refine and improve the boundaries for reef crest, fore 

reef, and back reef features. 
Seagrass features classified into dense and 

sparse beds. 
Use object-specific range and thresholding of RGB values within lagoon 

areas to separate sparse and dense seagrass beds. 
Hardbottom features in deeper areas 

needed more detail and accuracy. 
Use object-specific range and thresholding of RGB values to separate 

sparse and dense algae hardbottom. 
Removing objects that were less than the 

minimum mapping unit. 
Objects with less or equal to area threshold were dissolved by majority 

length of the common border of the neighboring objects. 

Missing reef areas. 
Search for missing reefs using an object-specific range and thresholding 

detection method to refine and improve reef boundaries. 

After the automated classification was completed, a quality control review identified 
several issues that were manually corrected. These errors included: (1) straight line 
boundaries caused by remnant seamlines between scenes; (2) overestimation of coral reef 
area, particularly in nearshore fringing reefs; (3) coral reefs that had been missed in the 
classification; (4) seagrass beds classified in areas that were too deep or exposed; (5) data 
gaps along the shoreline; and (6) incorrectly classified areas caused by cloud interference. 
The manual correction process focused on improving the location of coral reefs, using 
available global reef maps, such as the UNEP-WCMC Global Distribution of Coral Reefs 
v.4 [57–59] and existing national coral reef maps where available as guiding references. 
High resolution satellite imagery base maps from Esri, Google Earth, and Microsoft Bing 
also served as important references when fine-tuning and correcting these data. Seagrass 
beds were also reviewed, and incorrect boundaries were adjusted based on expert feed-
back and image interpretation. An example of the final PS image-derived benthic habitat 
classification for the Turks and Caicos Islands can be seen in Figure 10. 
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Figure 10. (a) An example area of the final PS image-derived benthic habitat classification for the Turks and Caicos Islands; 
(b) Zoomed-in area on the west side of Grace Bay in the northwest corner of Caicos Island showing the detail of the PS 
imagery; (c) Subsequent benthic habitat classification of the same area. 

3. Results 
The total area (km2) for each benthic habitat class within the shallow marine zone 

(<30 m depth) of the Insular Caribbean and corresponding area and percentage within 
declared marine protected or managed areas can be found in Table 4. A custom Lambert 
equal area projection centered on the Caribbean was used to calculate the area of each 
benthic habitat class. Seagrass (dense and sparse) has the greatest area coverage in the 
region (88,170 km2), followed by sand (74,274 km2), hardbottom (dense and sparse algae) 
(29,869 km2), and coral (all classes) (10,373 km2). Of the coral subclasses, the coral/algae 
class has the greatest area coverage (9,075 km2), followed by spur and groove reef (667 
km2), fore reef (295 km2), back reef (265 km2), and finally reef crest (70 km2). Based on the 
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203,676 km2 of shallow marine habitat mapped, 5% is coral reef, 43% seagrass, 15% hard-
bottom, and 37% other benthic habitats. When considering percentage of each habitat class 
within the current declared marine protected or managed areas from The Nature Con-
servancy’s database, 20% of coral, 13% of seagrass, 22% of hardbottom, and 15% other 
benthic classes exist within marine protected or managed boundaries.  

Table 4. Total area (km2) for each benthic habitat class within the shallow marine zone (<30 m depth) of the Insular Carib-
bean and corresponding area and percentage within declared marine protected or managed areas. 

 Benthic Habitat Class Total Area (km2) 
Within 

Protected/Managed Area 
(km2) 

Coral Reefs 

Reef Crest 70.23 23.86 (34%) 
Fore Reef 295.27 102.93 (35%) 
Back Reef 265.18 103.35 (39%) 

Coral/Algae 9075.27 1,662.10 (18%) 
Spur and Groove Reef 666.88 146.66 (22%) 

Total Coral 10,372.82 (5%) 2,038.89 (20%) 

Seagrass 
Dense Seagrass 24,673.02 3,593.69 (15%) 
Sparse Seagrass 63,497.27 7,853.34 (12%) 
Total Seagrass 88,170.29 (43%) 11,447.03 (13%) 

Hardbottom 
Hardbottom Dense Algae 13,670.71 3,222.88 (24%) 
Hardbottom Sparse Algae 16,198.26 3,436.14 (21%) 

Total Hardbottom 29,868.97 (15%) 6,659.02 (22%) 

Other 

Sand 74,273.75 10,807.40 (15%) 
Muddy Bottom 930.90 353.85 (38%) 

Boulders and Rocks 13.06 0.99 (8%) 
Dredged 46.43 4.53 (10%) 

Total Other 75,264.13 (37%) 11,116.78 (15%) 

Area totals for coral, seagrass, hardbottom, and other benthic habitat classes within 
each jurisdiction’s Exclusive Economic Zone (EEZ) boundary (based on the 2018 VLIZ 
layer [60]) and corresponding percentage within marine protected or managed areas are 
listed in Tables 5–8. When interpreting the tables, it is important to recognize that the 
marine protected or managed area database used in the analysis includes all types of le-
gally declared marine protected or managed areas collected by The Nature Conservancy’s 
Caribbean Division (updated as of May 2021), regardless of management objective or level 
of protection or enforcement. For example, the Agoa Sanctuary is a marine managed area 
under French sovereignty declared in 2010, with the specific objective to improve the man-
agement and protection of marine mammals. Since this management declaration is across 
all French EEZ jurisdictions, the islands of Guadeloupe, Martinique, Saint Martin, and 
Saint Barthelemy have 100% management status of all benthic habitats. Similarly, the Car-
ibbean Netherland islands of Saba and Bonaire’s Yarari Sanctuary is a marine mammal 
and shark sanctuary encompassing both EEZs. Additional research is needed to deter-
mine if this type of management objective has a positive influence on the health of coral 
reefs or seagrass beds. However, a large area of Saba’s waters is also managed within the 
Saba Bank, an Ecologically or Biologically Significant Area (EBSA) established in 2010, 
designed to protect biodiversity and limit shipping and anchoring. Saint Kitts and Nevis 
had a Marine Spatial Plan (MSP) declared in 2016 out to the 200 m depth contour [61], 
achieving management levels of coral at 96%, seagrass at 57%, and hardbottom at 57%. In 
March 2021, the Cayman Islands finalized an expanded marine protected area network 
that includes a no-take regulation for 50% of the shelf, boosting management levels to 65% 
coral, 43% seagrass, and 52% hardbottom. Other countries with notably high protection 
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of coral, seagrass, and hardbottom include Sint Eustatius (89%; N/A; 84%), the U.S. Virgin 
Islands (66%; 75%; 52%), and the Dominican Republic (57%; 63%; 52%). Jurisdictions with 
high levels of coral and seagrass protection include Saint Vincent and the Grenadines 
(50%; 41%) and Antigua and Barbuda (48%; 66%), though they have lower protection of 
hardbottom. Jamaica and Haiti have high protection levels for seagrass (60% and 52%, 
respectively), but lower protection levels of coral and hardbottom.  

Figure 11 is a color-coded version that shows the percent of each benthic habitat class 
protected or managed by jurisdiction, and Figure 12 shows the percentage grouped by 
major benthic habitat class (coral reef, seagrass, and hardbottom). Figure 13 is a different 
way to visualize the data, showing the percent of seagrass protected against the percent-
age of reef protected per jurisdiction. The size of the circle is relative to the total area of 
seagrass and coral within each jurisdiction. Figure 14 shows the average percentage of 
coral reef and seagrass within the shallow zone (<30 m) under protection or management 
regardless of management objectives by jurisdiction. The shaded areas represent the Ex-
clusive Economic Zone (EEZ), and percentages are calculated not on total marine space 
for each jurisdiction, but the total area of shallow coral reef and seagrass area within each 
jurisdiction’s declared protected or managed area boundaries. 

Table 5. Total area (km2) of coral reef benthic habitat classes within the shallow marine zone (<30 m depth) of the Insular 
Caribbean per EEZ and corresponding area and percentage within declared marine protected or managed areas (P/M %). 
The total coral reef protection percentages in bold indicate attainment of at least 30%. 

 Reef Crest Fore Reef Back Reef Coral/Algae Spur and Groove Coral Reef Totals 
Country/ 
Territory 

Total 
km2  

P/M % 
Total 
km2 

P/M % 
Total 
km2 

P/M % 
Total 
km2 

P/M % 
Total 
km2 

P/M % 
Total 
km2 

P/M % 

Anguilla 0.28 0.14 (49%) 1.44 
0.68 

(47%) 
1.31 

0.77 
(59%) 

10.28 
3.02 

(29%) 
1.54 

0.16 
(11%) 

14.85 
4.77 

(32%) 
Antigua and 

Barbuda 
0.75 0.70 (93%) 3.69 

3.47 
(94%) 

3.99 
3.78 

(95%) 
100.47 

42.65 
(42%) 

5.05 
3.74 

(74%) 
113.95 

54.34 
(48%) 

The Bahamas 27.26 5.14 (19%) 104.65 
22.61 
(22%) 

95.91 
23.40 
(24%) 

5035.50 
457.95 
(9%) 

267.90 
23.66 
(9%) 

5531.22 
532.76 
(10%) 

Barbados 1.24 0.00 (0%) 4.72 0.00 (0%) 4.50 0.00 (0%) 17.99 0.93 (5%) 1.43 
0.08 
(6%) 

29.88 1.00 (3%) 

British Virgin 
Islands 

0.95 0.10 (11%) 2.61 
0.34 

(13%) 
2.42 

0.31 
(13%) 

88.28 
12.44 
(14%) 

0.41 
0.17 

(42%) 
94.66 

13.36 
(14%) 

Cayman 
Islands 

1.38 0.93 (67%) 6.77 
4.50 

(66%) 
5.05 

3.20 
(63%) 

22.84 
16.68 
(73%) 

27.94 
16.47 
(59%) 

63.98 
41.77 
(65%) 

Cuba 13.43 4.83 (36%) 71.70 
24.41 
(34%) 

59.27 
22.09 
(37%) 

1890.02 
411.23 
(22%) 

191.89 
53.05 
(28%) 

2226.32 
515.62 
(23%) 

Dominica 0.01 0.00 (0%) 0.06 0.00 (0%) 0.05 0.00 (0%) 11.42 0.75 (7%) 0.00 N/A 11.54 0.75 (7%) 
Dominican 
Republic 

4.82 2.87 (60%) 19.93 
12.30 
(62%) 

17.58 
11.38 
(65%) 

308.76 
171.21 
(55%) 

10.43 
7.73 

(74%) 
361.52 

205.50 
(57%) 

Grenada 0.61 0.00 (0%) 2.70 0.00 (0%) 2.43 0.00 (0%) 38.11 
3.78 

(10%) 
0.00 

N/A 
 

43.85 3.78 (9%) 

Guadeloupe 1.68 
1.68 

(100%) 
7.80 

7.80 
(100%) 

6.74 
6.74 

(100%) 
85.75 

85.75 
(100%) 

16.21 
16.21 

(100%) 
118.18 

118.18 
(100%) 

Haiti * 5.05 2.49 (49%) 14.93 
6.01 

(40%) 
17.37 

10.26  
(59%) 

250.70 
85.08 
(34%) 

28.07 
11.74 
(42%) 

316.12 
115.59 
(37%) 

Jamaica 3.02 0.84 (28%) 13.62 
4.38 

(32%) 
10.85 

3.34 
(31%) 

277.95 
85.30 
(31%) 

56.91 
5.22 
(9%) 

362.35 
99.07 
(27%) 

Martinique 0.97 
0.97 

(100%) 
3.44 

3.44  
(100%) 

4.77 
4.77  

(100%) 
43.90 

43.90 
(100%) 

0.00 N/A 53.07 
53.07 

(100%) 
Montserrat 0.00 N/A 0.00 N/A 0.00 N/A 0.92 0.00 (0%) 0.00 N/A 0.92 0.00 (0%) 
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Puerto Rico 1.71 0.88 (51%) 6.65 
4.56 

(69%) 
5.54 

3.50 
(63%) 

247.50 
67.18 
(27%) 

7.26 
3.23 

(44%) 
268.67 

79.36 
(30%) 

Saba 0.00 N/A 0.00 N/A 0.00 N/A 31.90 
31.90 

(100%) 
0.00 N/A 31.90 

31.90 
(100%) 

Saint 
Barthelemy 

0.03 
0.03 

(100%) 
0.058 

0.06 
(100%) 

0.09 
0.09 

(100%) 
4.77 

4.77 
(100%) 

0.04 
0.04 

(100%) 
4.98 

4.98 
(100%) 

Saint Kitts and 
Nevis 

0.14 
0.14 

(100%) 
1.00 

1.00  
(100%) 

1.40 
1.40  

(100%) 
62.06 

59.57 
(96%) 

2.86 
2.85 

(100%) 
67.46 

64.96 
(96%) 

Saint Lucia 0.18 0.10 (55%) 0.47 
0.33 

(70%) 
0.53 

0.33 
(63%) 

11.98 
2.40 

(20%) 
0.00 N/A  13.16 

3.16 
(24%) 

Saint Martin 0.10 
0.10 

(100%) 
0.77 

0.77 
(100%) 

0.41 
0.41 

(100%) 
7.15 

7.15 
(100%) 

0.00 N/A  8.44 
8.44 

(100%) 
Saint Vincent  

and the 
Grenadines 

0.59 0.40 (68%) 2.94 
1.69 

(58%) 
3.35 

2.19 
(65%) 

29.89 
14.13 
(47%) 

0.064 
0.049 
(77%) 

36.84 
18.46 
(50%) 

Sint Eustatius 0.00 N/A  0.00 N/A  0.002 
0.002 

(100%) 
1.16 

1.03 
(89%) 

0.00 N/A  1.16 
1.03 

(89%) 

Sint Maarten 0.003 
0.0005 
(16%) 

0.003 0.00 (0%) 0.005 
0.003 
(63%) 

2.34 0.22 (9%) 0.00 N/A  2.35 0.22 (9%) 

Turks and 
Caicos 

5.24 0.82 (16%) 23.01 
2.44 

(11%) 
19.54 

3.54 
(18%) 

430.26 
11.97 
(3%) 

45.85 
0.55 
(1%) 

523.89 
19.32 
(4%) 

U.S. Virgin 
Islands 

0.78 0.71 (91%) 2.31 
2.13 

(92%) 
2.09 

1.84 
(88%) 

63.37 
41.13 
(65%) 

3.02 
1.69 

(56%) 
71.57 

47.49 
(66%) 

* Haiti statistics include Navassa Island, which is a disputed area between Haiti, the U.S., and Jamaica. 

Table 6. Total area (km2) of seagrass benthic habitat classes within the shallow marine zone (<30 m depth) of the Insular 
Caribbean per EEZ and corresponding area and percentage within declared marine protected and managed areas (P/M 
%). The total seagrass protection percentages in bold indicate attainment of at least 30%. 

 Dense Seagrass Sparse Seagrass Seagrass Totals 

Country/Territory 
Total 
km2 

P/M % 
Total 
km2 

P/M % 
Total 
km2 

P/M % 

Anguilla 3.33 0.74 (22%) 29.40 2.63 (9%) 32.73 3.37 (10%) 
Antigua and Barbuda 59.37 32.33 (54%) 78.45 58.73 (75%) 137.82 91.06 (66%) 

The Bahamas 13,976.29 938.68 (7%) 39,953.61 3228.70 (8%) 53,929.90 4,167.38 (8%) 
Barbados 0.006 0.00 (0%)  0.08 0.00 (0%)  0.09 0.00 (0%)  

British Virgin Islands 40.29 1.29 (3%) 20.87 0.97 (5%) 61.16 2.26 (4%) 
Cayman Islands 21.38 14.25 (67%) 64.04 22.31 (35%) 85.42 36.56 (43%) 

Cuba 8863.09 2089.41 (24%) 20,387.09 3479.97 (17%) 29,250.19 5,569.39 (19%) 
Dominica 10.06 0.48 (5%) 0.12 0.00 (0%)  10.18 0.48 (5%) 

Dominican Republic 128.30 91.92 (72%) 494.35 303.43 (61%) 622.65 395.35 (63%) 
Grenada 16.16 2.76 (17%) 16.99 3.26 (19%) 33.15 6.02 (18%) 

Guadeloupe 93.37 93.37 (100%) 66.20 66.20 (100%) 159.57 159.57 (100%) 
Haiti * 229.76 125.01 (54%) 575.15 291.60 (51%) 804.91 416.61 (52%) 

Jamaica 102.71 78.95 (77%) 322.76 175.35 (54%) 425.47 254.30 (60%) 
Martinique 8.90 8.90 (100%) 63.47 63.47 (100%) 72.37 72.37 (100%) 
Montserrat 0.31 0.00 (0%)  0.00 N/A 0.31 0.00 (0%)  
Puerto Rico 254.92 17.99 (7%) 139.85 32.18 (23%) 394.77 50.17 (13%) 

Saba 0.02 0.02 (100%) 0.00 N/A  0.02 0.02 (100%) 
Saint Barthelemy 0.45 0.45 (100%) 1.91 1.91 (100%) 2.36 2.36 (100%) 

Saint Kitts and Nevis 27.49 27.38 (100%) 2.91 2.91 (100%) 30.40 30.29 (100%) 
Saint Lucia 13.62 3.96 (29%) 0.00 N/A  13.62 3.96 (29%) 

Saint Martin 6.59 6.59 (100%) 11.08 11.08 (100%) 17.67 17.67 (100%) 
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Saint Vincent and the 
Grenadines 

14.64 3.56 (24%) 11.69 7.19 (62%) 26.33 10.75 (41%) 

Sint Eustatius 0.00 N/A  0.00 N/A  0.00 N/A  
Sint Maarten 2.36 0.01 (0.3%) 9.10 0.14 (2%) 11.46 0.15 (1%) 

Turks and Caicos 773.53 36.84 (5%) 1,204.34 67.96 (6%) 1,977.88 104.80 (5%) 
U.S. Virgin Islands 26.10 18.81 (72%) 43.78 33.34 (76%) 69.88 52.14 (75%) 

* Haiti statistics include Navassa Island, which is a disputed area between Haiti, the U.S., and Jamaica. 

Table 7. Total area (km2) of hardbottom benthic habitat classes within the shallow marine zone (<30 m depth) of the Insular 
Caribbean per EEZ and corresponding area and percentage within declared marine protected or managed areas (P/M %). 
The total hardbottom protection percentages in bold indicate attainment of at least 30%. 

 Hardbottom Dense Algae Hardbottom Sparse Algae Hardbottom Totals 

Country/Territory Total 
km2 

P/M % Total 
km2 

P/M % Total 
km2 

P/M % 

Anguilla 111.96 7.35 (7%) 75.34 9.30 (12%) 187.30 16.66 (9%) 
Antigua and Barbuda 414.16 43.18 (10%) 597.25 36.40 (6%) 1011.41 79.58 (8%) 

The Bahamas 6,192.81 841.05 (14%) 7754.22 927.84 (12%) 13,947.03 1768.88 (13%) 
Barbados 13.05 0.18 (1%) 21.94 0.84 (4%) 34.98 1.03 (3%) 

British Virgin Islands 237.43 7.37 (3%) 498.94 18.25 (4%) 736.37 25.63 (3%) 
Cayman Islands 4.89 2.46 (50%) 27.56 14.34 (52%) 32.45 16.80 (52%) 

Cuba 951.51 186.99 (20%) 1386.20 443.03 (32%) 2337.71 630.02 (27%) 
Dominica 10.52 0.11 (1%) 0.04 0.02 (54%) 10.56 0.13 (1%) 

Dominican Republic 923.72 547.95 (59%) 1146.58 529.27 (46%) 2070.30 1077.23 (52%) 
Grenada 16.55 2.75 (17%) 67.90 6.93 (10%) 84.45 9.68 (11%) 

Guadeloupe 144.83 144.83  
(100%) 

148.46 148.46 (100%) 293.29 293.29 (100%) 

Haiti * 667.91 176.18 (27%) 888.55 192.57 (22%) 1556.46 368.75 (24%) 
Jamaica 1950.42 313.08 (16%) 2068.46 477.35 (23%) 4018.88 790.43 (20%) 

Martinique 77.23 77.23 (100%) 68.55 68.55 (100%) 145.78 145.78 (100%) 
Montserrat 8.55 0.00 (0%)  10.47 0.00 (0%)  19.02 0.00 (0%)  
Puerto Rico 714.80 168.10 (24%) 440.12 159.83 (36%) 1154.92 327.94 (28%) 

Saba 449.02 449.02  
(100%) 

173.26 173.26  
(100%) 

622.28 622.28 (100%) 

Saint Barthelemy 53.21 53.21 (100%) 45.49 45.49 (100%) 98.71 98.71 (100%) 
Saint Kitts and Nevis 73.20 46.23 (63%) 95.14 50.36 (53%) 168.34 96.59 (57%) 

Saint Lucia 68.84 7.30 (11%) 8.73 0.06 (0.7%) 73.57 7.36 (10%) 
Saint Martin 39.37 39.37 (100%) 36.32 36.32 (100%) 75.68 75.68 (100%) 

Saint Vincent and the 
Grenadines 11.41 2.17 (19%) 139.75 21.15 (15%) 151.16 23.32 (15%) 

Sint Eustatius 6.45 6.00 (93%) 5.58 4.08 (73%) 12.03 10.08 (84%) 
Sint Maarten 31.30 7.91 (25%) 23.40 8.68 (37%) 54.71 16.58 (30%) 

Turks and Caicos 323.03 2.13 (0.7%) 352.96 0.83 (0.2%) 675.98 2.96 (0.4%) 
U.S. Virgin Islands 178.55 90.72 (51%) 117.06 62.91 (54%) 295.60 153.63 (52%) 

* Haiti statistics include Navassa Island, which is a disputed area between Haiti, the U.S., and Jamaica. 
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Table 8. Total area (km2) of other benthic habitat classes within the shallow marine zone (<30 m depth) of the Insular 
Caribbean per EEZ and corresponding area and percentage within declared marine protected or managed areas. The total 
protection percentages in bold indicate attainment of at least 30% of the area of the habitat. 

 Sand Muddy Bottom Boulders and Rocks 

Country/Territory Total 
km2 

P/M % Total 
km2 

P/M % Total 
km2 

P/M % 

Anguilla 211.83 7.50 (4%) 2.31 0.08 (3%) 0.006 0.00 (0%)  
Antigua and Barbuda 1001.03 105.89 (11%) 8.07 6.90 (85%) 0.24 0.00 (0%)  

The Bahamas 44,988.89 4465.90 (10%) 513.93 174.69 (34%) 0.00 N/A  
Barbados 57.33 0.83 (1%) 0.006 0.00 (0%)  0.00 N/A  

British Virgin Islands 965.34 11.85 (1%) 0.35 0.08 (24%) 0.00 N/A  
Cayman Islands 29.81 19.18 (64%) 0.89 0.0001 (0.01%) 0.00 N/A  

Cuba 19,190.40 3430.29 (18%) 193.99 57.96 (30%) 0.00 N/A  
Dominica 63.14 3.62 (6%) 0.00 N/A  4.54 0.23 (5%) 

Dominican Republic 870.34 618.25 (71%) 112.74 59.16 (52%) 0.00 N/A  
Grenada 61.10 3.86 (6%) 0.00 N/A  2.60 0.13 (5%) 

Guadeloupe 356.96 356.96 (100%) 0.78 0.78 (100%) 0.10 0.10 (100%) 
Haiti * 746.02 285.19 (38%) 24.25 23.44 (97%) 0.00 N/A  

Jamaica 1567.86 275.19 (18%) 19.75 6.03 (31%) 0.00 N/A  
Martinique 134.54 134.54 (100%) 1.44 1.44 (100%) 0.35 0.35 (100%) 
Montserrat 7.81 0.00 (0%)  0.00 N/A  0.91 0.00 (0%)  
Puerto Rico 1326.55 320.94 (24%) 16.14 6.45 (40%) 0.00 N/A  

Saba 246.35 246.35 (100%) 0.00 N/A  0.00 N/A  
Saint Barthelemy 43.25 43.25 (100%) 0.14 0.14 (100%) 0.00 N/A  

Saint Kitts and Nevis 137.70 120.52 (88%) 2.16 0.001 (0.06%) 0.00 N/A  
Saint Lucia 116.61 24.92 (21%) 0.00 N/A  0.35 0.12 (35%) 

Saint Martin 85.26 85.26 (100%) 6.43 6.43 (100%) 0.01 0.01 (100%) 
Saint Vincent and the 

Grenadines 
47.86 17.52 (37%) 0.05 0.05 (100%) 3.89 0.0006 (0.02%) 

Sint Eustatius 3.06 2.52 (82%) 0.00 N/A  0.06 0.04 (66%) 
Sint Maarten 42.44 11.91 (28%) 2.29 0.00 (0%)  0.00 N/A  

Turks and Caicos 2746.52 102.62 (4%) 23.06 8.18 (35%) 0.00 N/A  
U.S. Virgin Islands 225.74 110.63 (49%) 2.14 2.04 (95%) 0.00 N/A  

* Haiti statistics include Navassa Island, which is a disputed area between Haiti, the U.S., and Jamaica. 
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Figure 11. Percentage of benthic habitat class protected or managed by jurisdiction, based on The Nature Conservancy’s 
declared Caribbean marine protected or managed area database. 
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Figure 12. Percentage of major benthic habitat class (coral reef, seagrass, hardbottom) protected or managed by jurisdic-
tion, based on The Nature Conservancy’s declared Caribbean marine protected or managed area database.  

 
Figure 13. Percentage of seagrass protected against the percentage of coral reef protected per jurisdiction, based on The 
Nature Conservancy’s Caribbean’s declared marine protected or managed area database. The size of the circle is relative 
to the total area of seagrass and coral reef habitat within each jurisdiction (i.e., Exclusive Economic Zone (EEZ)). The 
French jurisdictions of Guadeloupe, Martinique, Saint Martin, and Saint Barthelemy all maintain 100% protection because 
the entire EEZ is declared as a marine mammal sanctuary. 
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Figure 14. Percentage of coral reef and seagrass within the shallow zone (<30 m) under protection or management regard-
less of management objectives by jurisdiction. The shaded areas represent the Exclusive Economic Zone (EEZ), and per-
centages are calculated not on total marine space for each jurisdiction, but the total area of shallow coral reef and seagrass 
area within each jurisdiction’s declared protected or managed area boundaries. 

3.1. Data Portal  
All regional datasets can be viewed and downloaded using a customized web appli-

cation found at http://caribbeanmarinemaps.tnc.org/ (accessed on 19 October 2021; Figure 
15). This Google Earth Engine app was developed as a tool for sharing the resulting map 
layers to non-technical stakeholders. Google Earth Engine (GEE) is an open-source remote 
sensing tool that provides free access to satellite imagery and analysis and allows geospa-
tial developers to run complex geoprocessing and remote sensing functions [62]. GEE 
apps provide users with the ability to query, filter, visualize, and download datasets with-
out technical expertise, software licenses, or extensive storage capacity. It also allows for 
exploration of habitat composition statistics developed from this map. For example, pie 
charts can be automatically generated that show the area totals for each benthic habitat 
class by selected geography. This app was embedded into the Caribbean Marine Maps 
site (CaribbeanMarineMaps.tnc.org, accessed on 19 October 2021), an ArcGIS Online Sto-
ryMap, that facilitates easy access to The Nature Conservancy’s suite of coral and marine 
data resources in the Caribbean. The site includes data visualization tools, access to data 
downloads, training videos, and scientific information explaining the development pro-
cess and utility as well as limitations of various datasets.  

Recognizing the need for additional refinement to the accuracy of these maps, an 
online tool was developed and can be accessed at the above site that permits expert feed-
back to be collected using both the ‘Public Data Collection’ feature in an ArcGIS Online 
web map and the Survey123 form. Experts can locate errors and suggested geolocated 
corrections to the habitat classes throughout the region. This feedback is critical to adjust 
and fine-tune the accuracy of the benthic habitat classes and is being shared with local 
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experts, such as marine park managers, coral reef researchers, and divers, to collect itera-
tive feedback on the accuracy of the map at specific locations. The collection of expert 
knowledge is an on-going effort, and all spatial feedback is compiled and used to manu-
ally adjust and improve future versions of the product. These datasets will also be used to 
train future benthic habitat class mapping algorithms.  

 
Figure 15. Final classification for 203,676 km2 of shallow benthic habitat across the Insular Caribbean. These data are hosted 
at an online data portal found at CaribbeanMarineMaps.tnc.org (accessed on 19 October 2021), where data can be viewed 
and downloaded for advancing conservation actions throughout the Caribbean. 

3.2. Accuracy Assessment 
An accuracy assessment was conducted on the thirteen-class benthic habitat product 

using 2686 field data points that were excluded from the training of the classification al-
gorithm (Figure 16). These points were collected in the same manner, at a variety of loca-
tions between 2010–2017 based on interpretation of GPS-referenced underwater video 
transects. Each of these points were cross-walked to the regional benthic habitat classifi-
cation scheme. Once cross-walked, these points represented 8 of the 13 classes, as coral 
subclasses (e.g., reef fore, reef crest, reef back, as well as spur and groove) could not be 
distinguished from video footage and were collapsed into the coral/algae class. Results 
yielded an overall accuracy of 72% with a standard error of 1.3%, yielding a 3% confidence 
interval of 69–75%. This overall accuracy is calculated as the stratified (area-weighted) 
percentage of correctly classified sites in each sample drawn from the classified map [63]. 
It is an estimate of the percent of the total mapped area that classified/mapped correctly 
based on the comparison of the final map with the field gathered reference data. Table 9 
shows the error matrix of the accuracy assessment. Producer’s accuracy (errors of omis-
sion) and user’s accuracy (errors of commission) are calculated and reported for each class. 
Producer’s accuracy is a measure of how well real-world cover types can be classified. We 
calculated the area weighted proportion of correctly classified reference locations divided 
by the estimated proportion of area for the reference class (derived from the classification) 
and multiplied by 100 to express as a percent. User’s accuracy reflects the reliability of the 
classification to the user and is the more relevant measure of the classification’s actual 
utility in the field [64]. We calculated the area weighted proportion of correctly classified 
reference locations divided by the area weighted proportion of reference locations deter-
mined to be in each class, multiplied by 100. 

Classes that exhibited the most confusion include sparse and dense seagrass as well 
as sparse and dense hardbottom algae. This confusion is not surprising as these classes 
can be very difficult to distinguish, particularly in deeper waters. Some classes, such as 
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boulders and rocks, coral/algae, and muddy bottom, were accurately classified when con-
sidering a user’s accuracy (i.e., objects were assigned to the correct class); however, these 
same classes reported a lower producer’s accuracy (i.e., objects were left out of the class 
being evaluated). The large time range between when the field data was collected and 
changed in the benthic habitat composition could account for failure to observe and note 
differences in density between field data collection and satellite imaging. Another accu-
racy assessment was created after combining these pairs of classes, yielding six remaining 
classes. The estimate of the overall accuracy of this second assessment was 80% with a 
standard error of less than 1% yielding 2% confidence interval of 78–82%. The user’s and 
producer’s accuracy for this six-class accuracy assessment are reported in Table 10. Ra-
doux and Bogaert [65] provided several best practices for OBIA accuracy assessments, 
which they argue can be more complex than pixel-based accuracy assessment and pro-
vides more information, such as area-dependent classification accuracy or class-specific 
boundary errors. They recommend serious consideration into (i) the type of sampling unit 
(pixel or polygon), (ii) the types of accuracy indices (count-based or area-based), and (iii) 
the relevance of geometric quality assessment. 

 
Figure 16. A total of 2686 GPS-referenced field data points collected between 2010–2017, representing locations of under-
water video transects, were excluded from the training of the classification algorithm and cross-walked to the regional 
benthic habitat classification scheme for use in the accuracy assessment. 
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Table 9. Accuracy assessment of the Caribbean benthic habitat product using 2686 field data points collected between 
2010–2017 with reef classes combined. The reported overall accuracy is 72% (not shown in the table). The numbers in the 
diagonal cells (depicted in bold) represent the proportion of total area correctly classified for each benthic class. Classes 
along the top of the table (columns) represent the observed (reference) data, and the classes on the left side (rows) represent 
the predicted (map) classes. All numbers reported in each table represent the proportion of the total area. 

  Observed Class (Reference) 

Pr
ed

ic
te

d 
C

la
ss

 (M
ap

) 

 
Boulders 

and Rocks 
Coral/ 
Algae 

Hard-
bottom 
Dense 
Algae 

Hard-
bottom 
Sparse 
Algae 

Muddy 
Bottom Sand 

Seagrass 
Dense 

Seagrass 
Sparse 

User’s 
Accuracy 

Boulders and 
Rocks 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 85.7% 

Coral/ 
Algae 0.02 5.75 1.13 0.33 0.00 0.16 0.27 0.17 73.5% 

Hardbottom 
Dense Algae 0.06 1.16 16.11 1.27 0.00 0.35 0.41 0.70 80.4% 

Hardbottom 
Sparse Algae 0.13 1.27 1.65 11.42 0.00 2.92 0.63 4.19 51.4% 

Muddy 
Bottom 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.09 87.5% 

Sand 0.17 1.62 0.46 0.40 0.29 26.94 1.04 0.75 85.0% 
Seagrass 

Dense 0.03 0.21 0.27 0.04 0.01 0.09 4.52 0.31 82.3% 

Seagrass 
Sparse 

0.00 1.13 0.35 0.91 0.35 0.61 1.95 6.67 55.8% 

Producer’s 
Accuracy 

9.2% 51.6% 80.7% 79.4% 50.1% 86.8% 51.3% 51.8%  

Table 10. Accuracy assessment results of the six-class major benthic habitat types after combining sparse and dense 
seagrass as well as sparse and dense hardbottom algae. The numbers in the diagonal cells (depicted in bold) represent the 
proportion of total area correctly classified for each benthic class. The reported overall accuracy for this analysis is 80% 
(not shown in the table). All numbers reported in each table represent the proportion of total area. 

 Boulders and 
Rocks 

Coral/Algae Hardbottom 
Algae 

Muddy 
Bottom 

Sand Seagrass User’s 
Accuracy 

Boulders and 
Rocks 

0.04 0.01 0.00 0.00 0.00 0.00 85.7% 

Coral/Algae 0.02 5.75 1.46 0.00 0.16 0.44 73.5% 
Hardbottom 

Algae 
0.16 2.43 32.69 0.00 2.35 4.62 77.4% 

Muddy Bottom 0.00 0.00 0.00 0.65 0.00 0.09 87.5% 
Sand 0.17 1.62 0.87 0.29 26.94 1.79 85.0% 

Seagrass 0.05 1.08 1.35 0.24 0.53 14.19 81.4% 
Producer’s 
Accuracy 9.2% 52.8% 90.0% 55.3% 89.9% 67.1%  

4. Discussion 
As increasing threats continue to degrade coastal habitats around the world, govern-

ments and conservationists greatly benefit from more accurate maps that can strategically 
guide decision making, such as adopting new policies, expanding protected areas, in-
creasing resilience, and restoring habitats at broad scales [66]. For years, many countries 
and territories across the Caribbean have relied on coarser global-scale marine datasets to 
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inform conservation and management decisions, which are often not appropriate for 
small-island scale planning. These regional-scale benthic maps fill a data void and provide 
the first seamless and consistently mapped high-resolution (4 m) spatial database of ben-
thic habitats for the shallow waters of the Insular Caribbean, a place identified as a high 
global biodiversity area and priority for coral reef protection [67]. This baseline will be 
fundamental to shaping policies on the sustainable use and protection of these critical 
habitats, enabling resource managers to have a much-improved characterization and un-
derstanding of their marine resources.  

When compared to existing global databases, these maps provide updated area num-
bers for each benthic habitat class. For example, current UNEP-WCMC Global Distribu-
tion of Coral Reefs (Version 4.1) [58,68] data estimate 7409 km2 of coral reef habitat 
throughout the Insular Caribbean compared to the 10,373 km2 total area calculated using 
the new regional maps (using a Lambert Azimuthal Equal Area projection). This repre-
sents a coral reef area difference of 2964 km2. The area discrepancies are variable by Ex-
clusive Economic Zone (EEZ). The difference in area were not consistent between geogra-
phies. The PS image-derived maps estimate an additional 3637 km2 of coral reef area 
across the Bahama and the Turks and Caicos Banks and 546 km2 fewer coral reef area 
across the Greater Antilles (Cuba, Jamaica, Cayman Islands, Haiti, Dominican Republic, 
and Puerto Rico). Cuba had 467 km2 less coral reef area, 115 km2 less in the Cayman Is-
lands, and 75 km2 less in Jamaica. When compared to the global datasets, the new maps 
estimate 11 km2 more coral reef area in the Dominican Republic, 12 km2 more in Haiti, and 
111 km2 more in Puerto Rico. Within the Virgin Islands and Eastern Caribbean, the maps 
estimate 127 km2 less coral reef area. The global data appear to largely overestimate coral 
reef area within the Greater Antilles and Eastern Caribbean. This may be due to the coarse 
pixel size and aggregation of reef areas. Based on the accuracy assessment, the 4 m PS 
imagery performs better at capturing the intricate detail of the coral reef extent. Con-
trastingly, in the Bahamian Bank, much of the reef areas along the edges of the shelf and 
sloping deeper areas (20–30 m depth); additionally, the patch reefs within the interior of 
the shallow banks in The Bahamas are missing in the global reef datasets. The finer reso-
lution of the PS imagery and classification RuleSet lends itself well to discriminating the 
smaller patch and narrow fringing reefs that are largely missed at the 30 m resolution. For 
a visual comparison, Figure 17 shows the coral reef extent using the current UNEP-
WCMC Global Distribution of Coral Reefs (Version 4.1) (left side) and the PS image-de-
rived coral reef maps (right side) for areas in Cuba, The Bahamas, and the Turks and Cai-
cos Islands. 



Remote Sens. 2021, 13, 4215 29 of 36 
 

 

 
Figure 17. Comparison of mapped coral reef extent using the current UNEP-WCMC Global Distribution of Coral Reefs 
(Version 4.1) data (left side) and the PS-derived coral reef maps for three areas in (a) Cuba; (b) The Bahamas; and (c) Turks 
and Caicos Islands. Reef area in Cuba is overrepresented in the global maps and underrepresented in The Bahamas and 
Turks and Caicos. 

A primary application of these maps will be to inform regional habitat protection 
gaps and to ensure benthic habitat classes are adequately represented across the current 
and expanding Marine Protected Area (MPA) and Marine Managed Area (MMA) net-
works. These regional maps indicate that 5% of the Insular Caribbean’s shallow marine 
area is composed of coral reef, of which 20% of that area is within some form of marine 
protected or managed area boundary. In terms of seagrass beds, this habitat covers ap-
proximately 43% of the shallow marine area and has 13% inclusion within the current 
marine protected or managed area. Hardbottom covers 15% of the area mapped, with 22% 
protection. In terms of the Caribbean’s marine ecoregions [69]—Bahamian (The Bahamas 
and Turks and Caicos Islands), the Greater Antilles (Cuba, Cayman Islands, Dominican 
Republic, Haiti, Jamaica, and Puerto Rico), and the Eastern Caribbean (Virgin Islands 
through Grenada)—the Eastern Caribbean ecoregion has the highest levels of protection 
or management, with 41% of the shallow area protected, followed by the Greater Antilles 
ecoregion at 23% and the Bahamian ecoregion at 9%. More specifically, the Eastern Carib-
bean, Greater Antilles, and Bahamian ecoregions have protected 60%, 29%, and 9% of 
coral, 67%, 21%, and 8% of seagrass, and 41%, 29%, and 12% of hardbottom, respectively.  
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Work to expand marine protection and management is currently underway in many 
jurisdictions identified at low percentages. Designation of new proposed areas as de-
scribed in the recent Bahamas Protected Plan [70] would advance The Bahamas to achieve 
protection of 24% coral, 19% seagrass, and 39% hardbottom habitats (current values are 
10%, 8%, and 13%). The Bahamian marine ecoregion would reach protection of 30% coral, 
21% seagrass, and 42% hardbottom. Within the Eastern Caribbean, Barbados, Dominica, 
Grenada, Montserrat, and Sint Maarten have low percentages of marine protected and 
managed areas. Barbados is currently engaged in a marine spatial planning (MSP) process 
that will identify and declare new MPAs across 30% of their territorial sea and EEZ. In 
2015, Montserrat launched a Blue Halo Initiative as a partnership to develop and imple-
ment solutions for sustainable ocean management through marine spatial planning, fish-
eries management, and community stewardship [71]. Grenada has drafted management 
plans for all declared marine managed areas (MMAs) and is in the process of designating 
new MMAs. Other jurisdictions that would benefit from increased protection include Brit-
ish Virgin Islands and Turks and Caicos.  

Recent conservation successes across the Caribbean include the Cayman Islands that 
finalized an expanded MPA network in March 2021 that includes a no-take regulation for 
50% of the marine shelf. In 2010, Saint Kitts and Nevis completed an MSP, which was the 
basis for the creation of a 2-mile radius Saint Kitts and Nevis Marine Management Area 
(SKNMMA) that was declared in 2016, being the first Caribbean country to design a na-
tional MSP [61,72]. The management plan for SKNMMA has been drafted and the country 
is currently pilot testing management actions in a few zones. The island of Barbuda began 
a comprehensive Blue Halo Initiative marine spatial planning process in 2012 and regula-
tions were adopted in 2014 [73]. A number of other Caribbean countries have engaged in 
the MSP process, such as Pedro Bank, Jamaica [74] and the Grenadine Islands [75]; how-
ever, adoption of recommendations or zoning plans is still pending. An MSP design con-
ducted in Samaná Bay, Dominican Republic [76], in 2012 has resulted in the declaration of 
six fish reserve (no take zones) and mangrove restoration efforts. In 2008, the Caribbean 
Challenge Initiative was launched, an ambitious and multi-country effort to declare 20% 
protection of marine space by 2020 and implement sustainable financing for maintaining 
revenue streams to carry out management activities. There are currently eleven countries 
and territories that have made the commitment, including The Bahamas, British Virgin 
Islands, Dominican Republic, Grenada, Haiti, Jamaica, Puerto Rico, Saint Lucia, Saint Kitts 
and Nevis, and Saint Vincent and the Grenadines. To date, five of the eleven members 
have reached the 20% goal and the remaining members continue make progress. The cur-
rent status of these protection goals can be explored at http://caribbeanchallenge.tnc.org 
(accessed on 19 October 2021). 

While declaration of marine protected and managed areas is a critical first step, the 
actual management objective activities that are carried out and enforcement implemented 
within these areas is what promotes and fosters ecological health and resilience of these 
habitats. While many jurisdictions have MPA declarations, the reality is that management 
actions across many of these areas may not be directed at specific habitat protection or 
may be completely absent while stresses to these habitats continue unabated. The area 
calculations presented are based on all types of protected and managed areas across the 
Caribbean, regardless of management objectives, enforcement, or effectiveness of man-
agement practices implemented. For this reason, these reported levels of benthic habitat 
protection are likely an overestimate of actual management conditions with low levels of 
implementation. For example, EEZ-wide declarations on marine mammal and shark sanc-
tuaries encompass very large areas to accounts for life-cycle requirements and trans-
boundary issues; however, the sanctuary objectives are often not focused on the manage-
ment and monitoring of marine habitats. Additionally, many MPA spatial boundaries are 
derived from lower resolution or older shoreline data, so these GIS boundaries may 
slightly impact calculated management percentages of shallow benthic habitats. Further-
more, many of these MPAs are ineffectively managed ‘paper parks’ [77], meaning that 
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although they are legally established, they are not well enforced. In addition to continued 
MPA expansion in strategic areas, management effectiveness surveys on a regular basis 
are needed to accurately track protection, health status, and management levels of specific 
habitats. These surveys provide critical input on required resources and steps needed to 
improve management actions. 

Despite these limitations, these recent and freely available datasets will catalyze more 
effective conservation actions and provide support to government decision makers seek-
ing to embark on a variety of marine and coastal projects, including MSP and site priori-
tization for coral reef restoration and climate change adaptation projects that utilize na-
ture-based solutions. These data serve to identify the extent and location of ecosystems 
that can be used in models to maximize climate resilience benefits. Benthic habitats, such 
as coral reefs, are highly important to local economies, and these data will facilitate more 
accurate ecosystem service models that highlight potential value and revenue attributed 
to these habitats in a spatial context. In addition, the new habitat baseline will provide an 
improved ability to monitor and evaluate management effectiveness and habitat degra-
dation, as well as to detect and quantify habitat changes that can guide the management 
of habitat resiliency for recovery and rehabilitation efforts following natural disasters, 
such as storms and hurricanes. In addition to protection assessments, another important 
use is to help. Users who have already downloaded these data have indicated their in-
tended use in a variety of applications including GIS trainings, printed atlas-style maps, 
environmental and climate change education, public engagement efforts, habitat area cal-
culations, diver awareness, dive research planning, and navigation planning. Others have 
proposed more complex modeling applications, including blue carbon storage analyses, 
calibration and validation of global benthic habitat products, natural capital assessments, 
prioritization of climate-resilient reefs, coastal protection modeling, research on shark 
ecology and habitat uses, and identification of critical habitats, species distribution mod-
eling, and connectivity assessments for fish and sea turtles. Finally, these data will facili-
tate management planning and produce more effect monitoring and evaluation frame-
works through a variety of avenues including watershed management planning, conser-
vation project plans, studies on the impacts of pollution on benthic habitats, environmen-
tal impact assessments for planned developments, national reef and sea surface tempera-
ture monitoring plans, development of humanitarian aid products, and national ecosys-
tem assessments. 

A critical part of data delivery is also ensuring easy access and building local tech-
nical capacity so conservation managers and practitioners can maximize full utility of the 
dataset. Trainings are being offered to instruct potential users in the methods used and 
understand data limitations. Furthermore, consultation meetings are being held with 
stakeholders and partners across the region to continue validating data and explore dif-
ferent ways in which these map products can potentially be used. Through specialized 
channels, such as the Reef Resilience Network (RRN), a global network of over 180,000 
reef managers, an online course has been developed to train marine managers, conserva-
tion practitioners, scientists, and decision makers on how to utilize these mapping prod-
ucts as a toolkit for guiding marine conservation and management decisions. In an effort 
to improve these maps over time, local experts, partners, and stakeholders are being 
trained to use an accompanying ArcGIS Online web map (accessible at CaribbeanMarine-
Maps.tnc.org), in which errors can be identified and accuracy improved through local 
knowledge where field data do not exist. These corrections will be implemented on a reg-
ular basis, so the product will become a dynamic database that improves with each ver-
sion. These data will also be housed in the Allen Coral Atlas (ACA) (https://allencorala-
tlas.org/, accessed on 19 October 2021), an online data portal that is working to map the 
world’s coral reefs. The ACA is also using PS imagery and is the first effort to provide a 
consistent automated approach to mapping coral reefs at the global scale. Considering 
automated global approaches have limitations at the local scale, the primary difference 
between the ACA global maps and these Caribbean regional maps is that a more manual 
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approach was taken to fine-tune and adjust the automated output at the local scale based 
on the integration of expert knowledge and image interpretation.  

The next decade of operational coastal mapping and monitoring will see improved 
image datasets (i.e., higher signal-to-noise ratios and more spectral bands in the visible 
wavelengths) and increased efficiencies [78]. The growing SuperDove constellation will 
provide access to higher and more stable radiometric quality imagery that will overcome 
the aforementioned technological limitations, providing progress towards a more accu-
rate and near real-time monitoring system for inland/coastal waters. When cloud cover 
and sea state conditions permit, systems will be developed to enable rapid mapping of 
benthic changes on a daily to weekly basis. The improvement in fidelity and spectral sen-
sitivity (eight multispectral bands) will enhance our ability to map and discriminate be-
tween features. With improved mapping ability, additional benthic habitat classes can be 
identified. For example, the coral/algae class can be further divided into different reef clas-
ses based on species composition, rugosity, or geomorphic zones (e.g., Acropora domi-
nated reef crests, patch reef and fringing reef composition, gorgonian/Orbicella, and mixed 
assemblages). Distinction between reef types could guide and improve management de-
cisions. Key challenges remain, including the development of more accurate satellite-de-
rived bathymetry (SDB) models and the ability to sense at greater depths, dealing with 
turbid water, improving the accuracy of training and validation data integration, and 
making change detection systems more stable and accurate [22,27,33,36]. Techniques for 
mapping benthic habitats will also continue to improve with more powerful machine 
learning classifiers, such as Support Vector Machines and Convolution Neural Networks 
(CNN) [79,80]. Recent advances that will enhance benthic mapping in the future include 
the development of a spectral database for corals [20] and the deployment of large-scale 
operational mapping of live coral [66]. New products, such as Reef Cover, will improve our 
ability to more accurately represent benthic types, blending what can be mapped remotely 
with the geo-ecological understanding of reef formation, growth, and functioning [49]. 
Future methods will more readily integrate field data and real-time ocean conditions, 
which will increase accuracy and improve feature discrimination between different types 
(e.g., shallow coral reef, coral rubble cover, seagrass beds) and more reliable bathymetric 
estimates.  

5. Conclusions 
The rich and diverse marine ecosystems of the Caribbean unite the countries and 

cultures in a binding common link of dependence in both an economic and ecological 
perspective. While marine health has declined over the years from a variety of pressures, 
these maps serve as powerful tool for directing conservation and management actions 
more effectively. They are intended to inform a diverse array of conservation and policy 
decisions to protect and restore these essential benthic habitats that people depend on. 
Decision makers across the Caribbean region now have free access to these data, which 
provide a common baseline to identify optimal sites for coral restoration activities, guide 
the selection of climate change adaptation projects, prioritize the protection and restora-
tion of ecosystem services, and determine the best locations for establishing marine pro-
tected areas that successfully balance protection and diverse uses. As future technologies 
unfold, such as the next generation SuperDove SmallSat constellation, new techniques 
will evolve that will continue to enhance our ability to monitor and measure environmen-
tal changes at far greater spatial and temporal resolutions. This will facilitate more effec-
tive and efficient adaptive management actions in a world where the threat of climate 
change continues to advance. In the meantime, these data will serve as a common data-
base to foster communication and coordination for the protection and management of 
shallow benthic habitats across the Caribbean region.  

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/rs13214215/s1. 
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