
remote sensing  

Article

SGA-Net: Self-Constructing Graph Attention Neural Network
for Semantic Segmentation of Remote Sensing Images

Wenjie Zi †, Wei Xiong †, Hao Chen *,† , Jun Li and Ning Jing

����������
�������

Citation: Zi, W.; Xiong, W.; Chen, H.;

Li, J.; Jing, N. SGA-Net:

Self-Constructing Graph Attention

Neural Network for Semantic

Segmentation of Remote Sensing

Images. Remote Sens. 2021, 13, 4201.

https://doi.org/10.3390/rs13214201

Academic Editor: Filiberto Pla

Received: 5 September 2021

Accepted: 15 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Cognitive Communication, College of Electronic Science and Technology,
National University of Defense Technology, Changsha 410000, China; ziwenjie@nudt.edu.cn (W.Z.);
xiongwei@nudt.edu.cn (W.X.); junli@nudt.edu.cn (J.L.); ningjing@nudt.edu.cn (N.J.)
* Correspondence: hchen@nudt.edu.cn
† These authors contributed equally to this work.

Abstract: Semantic segmentation of remote sensing images is always a critical and challenging task.
Graph neural networks, which can capture global contextual representations, can exploit long-range
pixel dependency, thereby improving semantic segmentation performance. In this paper, a novel
self-constructing graph attention neural network is proposed for such a purpose. Firstly, ResNet50
was employed as backbone of a feature extraction network to acquire feature maps of remote sensing
images. Secondly, pixel-wise dependency graphs were constructed from the feature maps of images,
and a graph attention network is designed to extract the correlations of pixels of the remote sensing
images. Thirdly, the channel linear attention mechanism obtained the channel dependency of images,
further improving the prediction of semantic segmentation. Lastly, we conducted comprehensive
experiments and found that the proposed model consistently outperformed state-of-the-art methods
on two widely used remote sensing image datasets.

Keywords: self-constructing graph; semantic segmentation; remote sensing

1. Introduction

Semantic segmentation of remote sensing images aims to assign each pixel in an
image with a definite object category [1], which is an urgent issue in ground object in-
terpretation [2]. It has become one of the most crucial methods for traffic monitoring [3],
environmental protection [4], vehicle detection [5], and land use assessment [6]. Remote
sensing images are usually composed of various objects, highly imbalanced ground, and
intricate variations in color texture, which bring challenges to the semantic segmentation of
remote sensing images. Before the time of deep learning to display the distribution of vege-
tation and land cover, the superpixel was often used as measure for drawing features from
multi-spectral images. However, hand-crafted descriptors are challenging tthe flexibility of
these indices.

The convolutional neural network (CNN) [7] is widely used for the semantic seg-
mentation of images. To achieve a better performance, CNN-based models regularly use
multi-scale and deep CNN architectures to acquire information from multi-scale receptive
fields and derive local patterns as much as possible. Owing to the restriction of the convo-
lutional kernel, CNN-based models can only capture the dependency of pixels from the
limited receptive field rather than the entire image.

CNN-based models have no ability to model the global dependency of each two pixels.
However, a graph includes the connection of two nodes, so a graph neural network-based
(GNN-based) model can capture the long-range global spatial correlation of pixels. There
is no doubt that the traditional form of an image can be converted to a graph structure [8].
In this way, the graph can model the spatial relationship of each two pixels. In contrast,
CNN can only obtain information from the limited receptive field. The adjacency matrix of
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GNNs can represent the global relationship of images, which can contain more information
than CNN-based models. Hence, we adopted a GNN to carry out semantic segmentation.

Nevertheless, a GNN does not ultimately demonstrate a strong point and is seldom
used for dense prediction tasks because of the lack of prior knowledge of the adjacency
matrix. Previous attempts [9–11] used prior knowledge-based manually generated static
graphs, which did not fit each image well. A graph obtained by a neural network, is called
”A self-constructing graph”. Compared with these methods, a self-constructing graph can
adjust itself and reflect the features of each remote sensing image.

Attention mechanisms [12] are added within the convolutional frameworks to improve
the semantic segmentation performance in remote sensing images. Every true color image
has RGB channels, and the RGB channels of objects have a potential correlation, which
can be used to get a better semantic segmentation. The convolutional block attention
module (CBAM) [13] adopts two kinds of non-local attention modules to the top of the
atrous convolutional neural network: channel attention and spatial attention, respectively.
CBAM achieves a competitive segmentation performance in the corresponding dataset. The
channel attention mechanism can acquire the correlation among channels, improving the
performance of semantic segmentation in remote sensing images. Every pixel has several
channels, and each has a different importance for different kinds of pixels. Our channel
attention mechanism could model the channels correlation to a large extent, inhibiting or
enhancing the corresponding channel in different tasks, respectively.

In this paper, we propose a self-constructing graph attention neural network (SGA-
Net) to implement the semantic segmentation of remote sensing images to model global
dependency and meticulous spatial relationships between long-range pixels. The main
contributions of this paper are as follows:

• Incorporating GATs into self-constructing graphs enhances long-range dependencies
between pixels.

• A channel linear attention mechanism to catch th correlation among channel outputs
of the graph neural network and further improve performance of the proposed GNN-
based model.

• Comprehensive experiments on two widely used datasets in which our framework
outperformed the state-of-the-art approaches on the F1 score and mean IoU .

The rest of this paper is organized as follows, the related work is showed in Section 2.
Section 3 presents that the details of our architecture SGA-Net. The experiments and
corresponding analyses are showed in Section 4, and Section 5 presents the conclusion.

2. Related Work
2.1. Semantic Segmentation

The rise of convolutional neural networks (CNNs) marks a significant improvement
in semantic segmentation. The fully convolutional network (FCN), which widely consists
of the encoder–decoder module has dominated pixel-to-pixel semantic segmentation [14].
The FCN dominates semantic segmentation, and one with an encoder-decoder module can
segment images at the pixel level by deconvolutional and upsampling layers, promoting
the development of semantic segmentation. Compared with the FCN, the U-Net [15]
applies multi-scale strategies to withdraw contextual patterns and perform semantic seg-
mentation better. Owing to the use of multi-scale context patterns, U-Net can derive a
better prediction result than the FCN. Segnet [16] proposes max-pooling indices to enhance
location information, which can improve segmentation performance. Deeplab V1 [17]
proposes atrous convolutions, which can enlarge the receptive field without increasing
the number of parameters. Compared with Deeplab V1, Deeplab V2 [18] presents atrous
spatial pyramid pooling (ASPP) modules that consist of atrous convolutions with different
sampling rates. Because it uses information from a multi-scale rates receptive field, Deeplab
V2 has better prediction than Deeplab V1. The above methods are all supervised models.
FESTA [19] is a semi-supervised learning CNN-based model that encodes and regularizes
image features and spatial relations. Compared to FESTA, our proposed method extracts
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long-range spatial dependency and channels correlation to perform segmentation, and
our proposed method is a GNN-based model. There are also models of non-grid convo-
lutions for semantic segmentation. Deformable convolution [20] adds 2D offsets to the
regular grid sampling locations in the standard convolution, which enhances the geometric
transformation modeling capability of CNN. Deformable convolution is still limited in
capturing long-range structured relationships. DGMN [21] obtains long-range structured
relationships by constructing a dynamic graph. Our proposed model also adopts the
idea of a dynamic graph to obtain global long-range correction of remote sensing images.
HG-CNNs [22] is a heterogeneous grid convolutional neural network that constructs a data-
adaptive graph structure from the convolutional layer by microclustering and assembling
features into the graph. Our proposed model also constructs a data-adaptive graph, but the
graph structure is extracted by convolutional operation from the high-level feature map.

2.2. Graph Neural Network

Recently, the GNN has become popular due to its success in many fields, such as
natural language processing [23], social networks [24], reinforcement learning [25], com-
puter vision [26]. There are lots of natural datasets of graph structures, recommender
systems [27], protein networks [28] and knowledge graphs [29]. More and more GNN
variants are produced and applied to various fields. In the beginning, only datasets in
the form of graphs [10,30] were entered into graph neural networks. However, in a GNN
neatly arranged matrix forms like remote sensing images can be extracted and transformed
into diffferent kinds of graph structures [8]: convolutional networks, auto-encoders, atten-
tion networks (GATs) and isomorphism networks [31]. A GAT [32] and GCN are crucial
branches of a GNN. Gao et al. [33] performed action recognition by using structured
prior knowledge in the form of knowledge graphs. Yan et al. [34] completed skeleton-
based action recognition with spatial-temporal graph convolutional networks (STGCNs)
that auto-learn spatial and temporal patterns. Wang et al. [35] proposed a graph-based,
language-guided attention mechanism that can clearly reveal inter-object properties and
relationships with flexibility. GNN-based models (ASTGCN) [36] are used to predict traffic
flow. Liu et al. [8] adopted a GCN to conduct experiences of semantic segmentation in
remote sensing images, and the GCN adjacency matrix is built by neural networks. A GCN
can simultaneously perform end-to-end learning of node feature information and struc-
ture information. In comparison, a GAT proposes a weighted summation of neighboring
node features using an attention mechanism. The weights of neighboring node features
entirely depend on the node features and are independent of the graph structure. Graph-
SAGE [37] solves the GCN and GAT memory explosion problem by neighbori sampling
for the large-scale graph. GNN-based models are used in a variety of applications.

2.3. Attention Mechanisms

With the publication of the paper in [12], attention mechanisms became more and
more popular and attractive. Fu et al. [38] propose a dual attention network (DANet)
that can adaptively learn local and global dependency to conduct semantic segmentation.
Huang et al. [39] propose channelized axial attention (CAA) to integrate channel and axial
attention seamlessly. CAA is similar to DANet in double-attention mechanisms, and these
models have a competitive result in the corresponding dataset. CAA pays attention to
channel and axial attention, DANet focuses on local and global attention. Compared with
multi-attention mechanism, Tao et al. [40] propose a multi-scale attention mechanism that
improves the accuracy of semantic segmentation. Transformer [12] is used to solve natural
language processing, which is entirely based on the multi-head self-attention mechanism.
Dosovitskiy et al. [41] adopt a transformer into the task of image classification, achieving
excellent prediction results in many small- and medium-image recognition benchmarks.
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3. Methods

In this section, we introduce the details of the model SGA-Net. An overview of the
framework is presented in Figure 1 and consists of a feature maps extraction network,
self-constructing graph attention network and a channel linear attention mechanism. The
four SGA-Nets are shared weights. First, ResNet50 was employed as the backbone of
the feature extraction network to acquire feature maps of remote sensing images, and
X was denoted as the feature maps. Second, to ensure geometric consistency, feature
maps were rotated by several degrees—90, 180 and 270. In addition, X90, X180 and X270
indicated the feature maps multi-views, where the index was the degree rotation. Third,
multi-view feature maps were used to obtain self-constructing graphs A0, A1, A2 and A3 by
a convolution neural network, separately. Fourth, these self-constructing graphs were fed
into a neural network based on a GAT to extract the long-range dependency of pixels. Fifth,
This network is called the self-constructing graph attention network and the outputs were
used for inputs into channel linear attention, the ouputs of which were added to predict
the final results. The adjacency matrix A is a high-level feature map of the corresponding
remote sensing image feature map, and the projected remote sensing features maps in a
specific dimension are defined as nodes. Therefore, the features maps X are defined as the
features of nodes. Aij indicating the weight of the edge between node i and node j. We
focused on the SGA-Net below.

3.1. Self-Constructing Graph Attention Network

The self-constructing graph is an undirected graph that shows the spatial similarity
relationship of feature maps in remote images. The self-constructing graph is extracted by
a neural network, instead of prior knowledge. Every image is unique; thus, models based
on a self-constructing graph can be fitted for each remote sensing image very well.

The input image is denoted as I, where I ∈ RC×H×W , H and W present the hight and
width of corresponding image respectively, and C denotes the number of channels. The

high-level feature maps is used as X, where X ∈ RH
′×W

′×C
′
, H

′
, W

′
and C

′
indicate that

the number of height, width and channels, respectively. Next, we applied a convolutional
neural network and dropout layer to extract the latent embedding space S of every remote
sensing image, where S ∈ RN×E, N = H

′ ×W
′
, where E is the number of the classification.

As we can see from Figure 2, which shows the latent embedding space S of buildings,
cars, roads, trees and grass, respectively. S of buildings indicated that they are brighter
than other objects: the higher the gray value, the greater the spatial similarity. In general,
the same kind of features have the greatest spatial similarity relationship. The adjacency
matrix was defined as A = ReLU(matmul(S, ST)), which highlighted and enhanced the
differences between the target class and other categories. Since it does not arise from
prior knowledge, but directly from the output of neural network the adjacency matrix is
called the ”self-constructing adjacency matrix ”, which captures the distributions of the
features in remote sensing images. Our model followed the convention of the variational
auto-encoder [42] to learn the mean matrix M and the standard deviation matrix D, where
M ∈ RN×E and D ∈ RN×E, and E denotes the number of the classification. The details of
the mean matrix M and logarithm of the standard deviation matrix D are as follows:

M′ = Flatten
(

Conv3×3, padding =1(X)
)

M = Dropout(p = 0.2)(M′)
(1)

D′ = Flatten (Conv1×1)(X)

log(D) = Dropout(p = 0.2)(D′)
(2)



Remote Sens. 2021, 13, 4201 5 of 19

Figure 1. In the flow chart of our model for semantic segmentation, ResNet50 was selected as the feature maps extraction
network of our model; Conv3×3 means the convolution operation with kernel size 3; SGA-Net denotes the self-constructing
graph attention network and channel linear attention mechanism; GAT is graph attention network, and Q, K, V of channel
linear attention mechanism indicate query, key and value, respectively. X denotes the feature input, X90, X180 and X270

indicate the feature maps multi-views, where the index is the rotation degree, and A0, A1, A2 and A3 present the adjacency
matrix of the self-constructing graph of corresponding feature maps. ~hi means initial feature vector of each node, where i ∈
[1, 3];~α represents the correlation coefficient; Concat denotes a concatenating operation; P indicates the number of channels,
and~h

′

i indicates the output of self-constructing graph attention neural network.

The latent embedding space S = M + log(D) · α, where α ∈ RN×E is an auxiliary
noise variable that obeys standard normal distribution (α ∼ NN×E(0, I)). The adjacency
matrix A was generated by an inner product operation between the transpose of the latent
space embedding ST and itself S, where A ∈ RN×N and Aij denotes the spatial similarity
relationship between node i and j.

A = ReLU(matmul(S, ST)) (3)

A therefore can indicate the spatial similarity relation of each two nodes of the latent
embedding space S. However, the CNN receptive field was restricted by the kernel size,
and the CNN did not have the ability to present a spatial similarity relation between each
two nodes. A in our model is not traditional binary but weighted and undirected.

The calculation of the SGA-Net was the same as for all kinds of attention mechanisms.
The first step was computing the attention coefficient, and the last was aggregating the sum
of weighted features [12]. For node i, the similarity coefficient between its neighbour nodes
j and itself was calculated, where i ∈ N and j ∈ N. The details of the similarity coefficient
are as follows:

eij = a([U ·~hi, U ·~hj]) (4)
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where U is the learnable weight matrix, ~hi indicates the node feature of node i, h =

(~h1,~h2, · · · ,~hN), ~hi ∈ RN×F, where F denotes the number of features in each node and
~h = X, and a indicates the operation of self-attention, which is inner product, and the self-
constructing adjacency matrix A is set as a mask. Thus, eij ∈ RN×N . Next, we computed
the attention coefficient~αij as follows:

~αij =
exp

(
LeakyReLU

(
eij
))

∑k∈N exp(LeakyReLU(eik))
(5)

We applied an 8-head graph attention network to enhance the predictive capability of
the model and make it more stable iduring training to improve the framework performance.

~h′i = ‖L
l=1σ

(
∑

j∈Ni

~αk
ijU

k~hj

)
(6)

where ‖ indicates the operation of concatenating, and L is the number of attention, sigma
is the activate function sigmoid, and Ni indicates some neighborhood nodes of the node
i in the graph, and~αk

ij is the normalized attention coefficients computed by the kth atten-

tion mechanism a(k), and the U(k) indicates the kth corresponding input weight matrix.
Specifically, L = 8 and we use an 8-head graph attention network in the work.

Figure 2. Latent embedding space of buildings, cars, roads, trees and low-vegetation present the
latent embedding space of these categories separately.

3.2. Channel Linear Attention

Each channel of the high level features could be regarded as the special response of
a category, and different responses have intrinsic independencies. The channels of each
category had their own distinctive feature and correlations. Exploiting the inter-correlations
among channels of images can improve the performance of specific semantic features.
Therefore, we adopted a channel attention module to explore correlations among channels.

Suppose the query matrix is Q, the key matrix is K and the value matrix is V. In
addition, all of Q, K and V ∈ RK×P, where P = H×W, and these are learnable parameters.
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In addition, suppose the output of SGA-Net is ~H, where ~H ∈ RK×P. The detail of the
channel linear attention is as follows:

D(Q, K, V) = ~H +

V +
(

Q
‖Q‖2

)((
K
‖K‖2

)T
V
)

N +
(

Q
‖Q‖2

)(
K
‖K‖2

)T (7)

where N denotes the number of nodes. D(Q, K, V) ∈ RK×P. The equation highlights the
input of a GAT, and emphasizes the importance of the K, Q and V at the same time. The
channel linear attention can model the importance of different channels in a different task.

3.3. Loss Function

There is no doubt that Aii ought to be greater than 0 and close to 1; hence, we intro-
duced a diagonal log regularization term to improve the prediction which was defined as:

γ =

√
1 +

n
∑n

i=1 Aii + ε
(8)

Ldl = −
γ

n2

n

∑
i=1

log
(
|Aii|[0,1] + ε

)
(9)

where the subscript [0, 1] indicates that Aii is clamped to [0, 1], and ε is a fixed and small
positive tiny parameter and (ε = 10−5). We adopted the Kullback–Leibler divergence,
which measures the difference between the distribution of latent variables and the unit
Gaussian distribution [42] to be the part of loss function, and the details of Kullback–Leibler
divergence were as follows:

Lkl = −
1

2NK

N

∑
i=1

K

∑
j=1

(
1 + log

(
Dij
)2 −M2

ij −
(

Dij
)2
)

(10)

where D is the standard deviation matrix. In addition, we adopted an adaptive multi-class
weighting (ACW) loss function [26] to address the highly imbalanced distribution of the
classes. The detail of Lacw is as follows:

Lacw =
1
|Y| ∑

i∈Y
∑
j∈C

w̃ij · pij − log
(
MEAN

{
dj | j ∈ C

})
(11)

where Y includes all the labeled pixels and dj denotes the dice coefficient:

dj =
2 ∑i∈Y yijỹij

∑i∈Y yij + ∑i∈Y ỹij
(12)

where yi,j and ỹi,y denote the ijth ground truth and prediction of class j respectively. pij is
positive and negative balanced factor of node i and node j and its detail as follows:

p = (y− ỹ)2 − log(
1− ((y− ỹ)2)

1 + (y− ỹ)2 ) (13)

w̃ij is a weight about the frequency of all categories, and the detail of it as follows:

w̃ij =
wt

j

∑j∈C

(
wt

j

) · (1 + yij + ỹij
)

(14)
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wt
j =

MEDIAN
({

f t
j | j ∈ C

})
f t
j + ε

(15)

f t
j =

f̂ t
j + (t− 1) · f t−1

j

t
(16)

where ε is a fixed parameter and ε = 10−5; C indicates the number of class; t is the
iteration number; f t

j represents the pixel sum of class j at the tth training step, which can

be computed as
SUM(yj)

∑j∈C SUM(yj)
, and when t = 0, f t

j = 0.

For refining the final prediction result, we adopted the sum of three kinds of loss func-
tion as the final loss function in our framework, which are Lkl , Ldl , and Lacw respectively.
The loss function can be formulated as below:

Loss = Lkl + Ldl + Lacw (17)

4. Experiments
4.1. Datasets

We used two public benchmark the ISPRS 2D semantic labeling contest datasets as
our datasets. The ISPRS datasets consisted of aerial images in two German cities: Potsdam
and Vaihingen. They are labeled with six common land cover classes:impervious surfaces,
buildings, low vegetation, trees, cars and clutter.

• Potsdam: The Potsdam datasets (https://www2.isprs.org/commissions/comm2/wg4
/benchmark/2d-sem-label-potsdam/, accessed on 3 September 2021) comprised 38
tiles of a ground resolution of 5 cm with size 6000 × 6000 pixels. Moreover, these
tiles consisted of four channel images—Red-Green-Blue-Infrared (RGB-IR)—and the
dataset contained both digital surface model (DSM) and normalized digital surface
model (nDSM) data. Of these tiles, 14 were used as hold-out test images: 2 were used
as validation images, and 12 were used as training data. Furthermore, to compare
with other models fairly, we only used RGB images as experience data in this paper.

• Vaihingen: The Vaihingen dataset (https://www2.isprs.org/commissions/comm2
/wg4/benchmark/2d-sem-label-vaihingen/, accessed on 3 September 2021) consists
of 33 tiles of varying size with a ground resolution of 9cm, of which 17 tiles are used
as hold-out test images, 2 tiles are used as validation set, and the rest tiles are taken
as training set. In addition, these tiles contain Infrared-Red-Green (IRRG) 3-channel
images. In addition, the dataset includes DSM and nDSM. To compare other works
fairly, we only apply 3-channel IRRG data in these frameworks in this paper.

4.2. Evaluation Metrics

To acquire reasonable and impartial results, we adopted the mean Intersection over
Union (mIoU), the F1 score (F1) and accuracy (Acc) to evaluate performance, all of which
are widely applied in semantic segmentation. In addition, based on the accumulated
confusion matrix, these evaluation indicators were computed as:

mIoU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

, (18)

F1 = 2× precision × recall
precision + recall

, (19)

Acc =
∑N

k=1 TPk + TNk

∑N
k=1 TPk + FPk + TNk + FNk

(20)

https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
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where TPk, FPk, TNk, and FNk are the true positive, false positive, true negative, and false
negatives, respectively, and k indicates the number of object index. Acc was computed for
all categories except for clutter.

4.3. Experimental Setting

We achieved the proposed SGA-Net as well as all baselines working with PyTorch on a
Linux cluster. Models were trained in a single Nvidia GeForce RTX 3090 with a batch size of
5. We applied AMSGrad [43] with adam as the optimizer with weight decay 2× 10−5. The
weight decay was used in all learnable parameters except batch-norm and bias parameters.

Polynomial learning rate (LR) decay was
(

1− cur−iter
max−iter

)0.9
with the maximum iterations of

108, and learning rate decay set to 0.9. The learning rate of the bias parameters is 2 × LR.
The initial learning rate was set to 1.5 × 10−4

√
3

. We sampled the patches of size 512× 512 as
input, and set the node size of graph to 1024× 1024.

4.4. Baselines and Comparison

Our model was compared with several works as follows:

• DDCM [44]: This is a CNN-based model that consists of dense dilated convolutions
merged with varying dilation rates. It can enlarge the receptive fields effectively.
Moreover, this model can obtain fused global and local context information to raise
the discriminative capability for the surroundings.

• MSCG-Net [26]: This method is a self-constructing graph convolutional network
that applies neural networks to build graphs from the input of high-level features
instead of prior knowledge. In addition, it is a GNN-based model. The feature maps
extraction network of our entire framework was similar to a MSCG-Net, but our
model used a self-constructing graph to input a GAT, and its outputs were input
channel linear attention.

• DANet [45]: This framework includes the position and the channel attention mecha-
nisms. The position attention mechanism can learn the spatial relationship of features,
and the channel attention mechanism can obtain the channel dependency of images.
It is an attention-based method.

• DUNet [46]: The model uses redundancy in the label space of semantic segmentation
and can recover the pixel-level prediction from low-resolution results of CNNs. It is a
CNN-based model.

• DeeplabV3 [47]: This method captures multi-scale backgrounds by multi-scale cas-
cading or parallel dilated convolution, which can improve the prediction of semantic
segmentation. In addition, it is a CNN-based framework.

4.4.1. Prediction on Potsdam Dataset

We compared our model with five baselines on the Potsdam dataset. Table 1 presents
the evaluation metrics of prediction in semantic segmentation. Obviously, Table 1 shows
that the proposed SGA-Net outperformed the other models.

The SGA-Net was 3.4% higher than the MSCG-Net in mean F1 score, because a self-
constructing graph attention network can acquire long-range global spatial dependency
of images and channel linear attention to obtain a correlation among all channels. In
addition, the proposed framework outperformed other model, which showed that the
self-constructing graph had the ability to extract the spatial dependency of images well. In
fact, we applied a self-constructing graph, obtained by neural network rather than prior
knowledge, to a GAT. Our model performed better than DANet for prediction in all cate-
gories, indicating that a self-constructing graph attention neural network can dig the global
long-range spatial correlation of nodes for the channel linear attention. Moreover, the
multiviews of feature maps in remote sensing images can ensure the geometric consistency
of spatial patterns. The reasons for the 3% improvement in average F1 score and 2.6%
improvement in mIoU of SGA-Net over Deeplab V3 were that the self-constructing graph
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neural network obtaied the spatial similarity of each two nodes, and the channel linear
attention mechanism captured the correlation among the channel outputs of the graph
neural network. The GAT modeled the dependencies between each two nodes, thereby
increasing information entropy about spatial correlation. The channel linear attention
mechanism enhanced or inhibited the corresponding channel in different tasks. Further-
more, multi-views also can get more information about initial images, which has the ability
to support predicting remote sensing images.

Table 1. The experimental results on the Potsdam dataset (bold: best; underline: runner-up).

Method Road Surf Buildings Low Veg. Trees Cars Mean F1 Acc mIoU

MSCG-Net (GNN-based) 0.907 0.926 0.851 0.872 0.911 0.893 0.959 0.807

DANet (Attention-based) 0.907 0.922 0.853 0.868 0.919 0.894 0.959 0.807

Deeplab V3 (CNN-based) 0.905 0.924 0.850 0.870 0.939 0.897 0.958 0.806

DUNet (CNN-based) 0.907 0.925 0.853 0.869 0.935 0.898 0.959 0.808

DDCM (CNN-based) 0.901 0.924 0.871 0.890 0.932 0.904 0.961 0.808

SGA-Net (GNN-based) 0.927 0.958 0.886 0.896 0.968 0.927 0.964 0.832

Figure 3 shows the ground truth and predictions of all methods in tile5_15, and
trhat the SGA-Net overmatched all baselines in the Potsdam dataset. The figure shows
the overall predicting capability of our method in remote sensing images. For example,
our model predicted surfaces better than that of MSCG-Net, while the proposed model
outperformed all baselines in predicting buildings. The above phenomena illustrated
that our framework modeled regularly shaped grounds well. Figure 4 is the result of
predicting details from all baselines and the SGA-Net. The black boxes highlight the
difference of results among ground truth, baselines and the SGA-Net. The first row shows
that the proposed framework did much better predicting buildings compared to the other
models, demonstrating that the SGA-Net can model global spatial dependency and channel
correlation of remote sensing images.

The second row shows that the SGA-Net outperformed all baselines in predicting
trees and buildings, which indicates that the SGA-Net can extract channel correlation in
images well. The third row shows that the SGA-Net surpassed the other frameworks in
predicting surfaces and low-vegetation. In addition, the last row shows that our model was
superior to the other models for predicting trees and low-vegetation. The above phenomena
illustrate that self-constructing graph attention network can capture long-range global
spatial dependency of images, and the channel linear attention mechanism can acquire a
correlation of images among channels. In addition, multiviews feature maps can ensure
geometric consistency, improving the performance of predicting semantic segmentation in
remote sensing images.

In conclusion, Figure 4 shows that the SGA-Net had a better performance predicting
buildings, trees, low-vegetation, cars and surfaces in detail, demonstrating SGA-Net has
powerful prediction in the semantic segmentation of remote sensing images.

4.4.2. Prediction on Vaihingen Dataset

We compared our framework with these five baselines on Vaihingen dataset, Table 2
presents the evaluation metrics of prediction in all models. The result showed that the
mean F1 score of the SGA-Net was higher than that of the other methods, indicating the
powerful ability of prediction in remote sensing images.

To be specific, the F1 score of our model for road surfaces, buildings and cars exceeded
all baselines, and accuracy was higher than in other models. Because the SGA-Net contains
a self-constructing graph attention neural network and a channel linear attention mecha-



Remote Sens. 2021, 13, 4201 11 of 19

nism, the framework can model the spatial dependency and channel correlation of remote
sensing images. Furthermore, because the self-constructing graph attention neural network
has the ability to obtain a long-range global spatial correlation of the regular grounds, the
predicting result of buildings and cars from the SGA-Net surpassed all baselines. The
reason for bad performance on low-vegetation and trees is that the two kinds of grounds
are surrounded by many others, leading to poor extraction of spatial dependency by the
self-constructing graph. The similarity of tree colors to low-vegetation and the fact that
the SGA-Net captures long-range dependencies results in a segmentation performance for
trees that is slightly worse than some other methods. The distribution of low-vegetation is
more scattered than other objects, and the proposed model cannot extract a very complex
spatial relationship of low-vegetation, leading to a poorer performance than DDCM in
semantic segmentation.

Table 2. The experimental results on the Vaihingen dataset (bold: best; underlined: runner-up).

Method Road Surf Buildings Low Veg. Trees Cars Mean F1 Acc mIoU

MSCG-Net (GNN-based) 0.906 0.924 0.816 0.887 0.820 0.870 0.955 0.796

DANet (Attention-based) 0.905 0.934 0.833 0.887 0.761 0.859 0.955 0.797

Deeplab V3 (CNN-based) 0.911 0.927 0.819 0.886 0.818 0.872 0.956 0.800

DUNet (CNN-based) 0.910 0.927 0.817 0.887 0.843 0.877 0.955 0.801

DDCM (CNN-based) 0.927 0.953 0.833 0.890 0.883 0.898 0.963 0.828

SGA-Net (GNN-based) 0.932 0.955 0.826 0.884 0.928 0.905 0.965 0.826

Figure 3. Visualization of tile5_15 in the Potsdam dataset.
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Figure 4. Visualization of prediction detail in the Potsdam dataset.
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In addition, Figure 5 shows that the proposed model had a good overall prediction
performance. In particular, this figure distinctly indicates that the predicting results of
buildings and cars from the SGA-Net surpassed all models, showing that multi-views
feature maps can enhance prediction capability, and a self-constructing graph can mine
long-range spatial dependency for each image. Additionally, Figure 6 shows the details
of the prediction results of the Vaihingen dataset. Because the self-constructing graph
attention network can acquire the spatial dependency of each two nodes, the top three
rows of Figure 6 indicate that the predictive buildings of the SGA-Net performed better
than all baselines, and the last row shows that the predicting trees of our model were much
better than other frameworks.

Figure 5. Visualization of tile35 in the Vaihingen dataset.

4.5. Ablation Studies

We conducted ample ablation experimentation to prove the effectiveness of the self-
constructing graph neural network and channel linear attention mechanism (SGA-Net) in
the proposed framework. Following the main experience as closely as possible, ResNet50
was selected as the baseline and feature extraction layers in our framework. To research
the effectiveness of each model component further, we compared the SGA-Net with its
variants as follows:

• ResNet50 [48]: a CNN-based neural network adopted as the feature extraction compo-
nent of the proposed model.

• SGA-Net-ncl: To validate the effectiveness of the self-constructing graph neural network,
we directly removed the channel linear attention mechanism from the framework.

• SGA-Net-one: To validate the effect of geometric consistency, we removed the branch
roads of X90, X180 and X270.

• SGA-Net: our whole SGA-Net framework .

As can be seen from Table 3, the performance of the SGA-Net-ncl significantly over-
matched the baseline of ResNet50, thereby showing how effectively a self-constructing graph
can model the long-range global spatial correlation of images and get a competitive result.
The SGA-Net outperformed ResNet50 and SGA-Net-ncl in two datasets, which shows that
channel linear attention has ability to derive a correlation among channel outputs of a graph
neural network, and further improve performance of the proposed model. The SGA-Net
surpassed SGA-Net-one in predicting remote sensing images, showing that the rotation of
images can keep geometric consistency, which improves image prediction performance.
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Figure 6. Visualization of prediction detail in the Vaihingen dataset.
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Table 3. The ablation study about SGA-Net.

Dataset Method Mean F1 Acc mIoU

ResNet50 0.826 0.944 0.753

Vaihingen
SGA-Net-ncl 0.849 0.946 0.761

SGA-Net-one 0.876 0.948 0.798

SGA-Net 0.905 0.965 0.826

ResNet50 0.873 0.934 0.783

Potsdam
SGA-Net-ncl 0.906 0.960 0.821

SGA-Net-one 0.912 0.957 0.825

SGA-Net 0.927 0.964 0.832

From Figures 7 and 8, we know that the performance of the SGA-Net-ncl surpassed
ResNet50 and that the SGA-Net outperformed the baselines of the ablation study in two
real-world datasets. Owing to long-range global spatial dependency extraction by a self-
constructing graph attention network, the SGA-Net-ncl had a better prediction result than
ResNet50. Moreover, channel linear attention acquired a correlation among the channel
outputs of the graph neural network, which is why the SGA-Net was superior to the
SGA-Net-ncl in semantic segmentation.

From Figure 9, we know the target object had a strong similarity with the same object.
On the right of Figure 9, the target object is a building, and the color of the building region is
red, meaning that the target pixel had a strong similarity with these pixeles of the building
region. On the left of Figure 9, the target objects are low-vegetation and road, and the
color of all cars is blue, indicating a low similarity. This picture shows that our attention
mechanism works.

Figure 7. Visualization in the ablation study of Potsdam dataset.
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Figure 8. Visualization in the ablation study of Vaihingen dataset.

Figure 9. Visualization of the attention mechanism. The black dot is the target pixel or object. The
red pixel color indicates that the target pixel is very similar to this pixel, and the blue color indicates
that the target pixel is strongly different to this pixel.

5. Conclusions

In this paper, we proposed a novel model, SGA-Net, which includes a self-constructing
graph attention network and a channel linear attention. The Self-constructing graph was
obtained from feature maps of images rather than prior knowledge or elaborately designed
manual static graphs. In this way, the global dependency of pixels can be extracted
efficiently from high-level feature maps and present pixel-wise relationships of the remote
sensing images. Then, a self-constructing graph attention network was proposed that
aligned with the actual situation by using current and neighboring nodes. After that,
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a channel linear attention mechanism was designed to obtain the channel dependency
of images and further improve the prediction performance of semantic segmentation.
Comprehensive experiments were conducted on the ISPRS Potsdam and Vaihingen datasets
to prove the effectiveness of our whole framework. Ablation studies demonstrated the
validity of the self-constructing graph attention network to extract the spatial dependency
of remote sensing images and the usefulness of channel linear attention mechanisms for
mining correlation among channels. The SGA-Net achieved competitive performance for
semantic segmentation in the ISPRS Potsdam and Vaihingen datasets.

In future research, we will re-evaluate the high-level feature map and the attention
mechanism to improve the segmentation accuracy. Furthermore, we would like to employ
our model to train other remote sensing images.
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