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Abstract: Global Satellite Mapping of Precipitation (GSMaP) products, as important satellite-based
precipitation products (SPPs) of Global Precipitation Measurement (GPM) mission, have provided
hydrologists with critical precipitation data sources for hydrological applications in gauge-sparse or
ungauged basins. This study statistically and hydrologically evaluated the latest GPM-era GSMaP
SPPs in real-, near-real- and post-real-time versions at daily and hourly temporal scales in the
sparsely gauged Yellow River source region (YRSR) in China. It includes the five latest GSMaP
SPPs, namely, gauge-adjusted product (GSMaP-Gauge), microwave-infrared reanalyzed product
(GSMaP-MVK), near-real-time product (GSMaP-NRT), near-real-time product with gauge-based
adjustment (GSMaP-NRT-Gauge), and real-time product (GSMaP-Now). The statistical assessment
showed that among all five GSMaP SPPs, GSMaP-Gauge presented the best overall performance in
daily and hourly precipitation detections in YRSR, followed by GSMaP-Now. GSMaP-NRT-Gauge
was ranked the third, whereas GSMaP-MVK and GSMaP-NRT had relatively inferior performance.
Given that GSMaP-Gauge demonstrated the best quality among all evaluated GSMaP SPPs, GSMaP-
Gauge displayed the best hydrological feasibility in daily streamflow simulation. Both GSMaP-MVK
and GSMaP-NRT presented inferior hydrological capability, with a considerable overestimation
of the total streamflow. In contrast, GSMaP-Now and GSMaP-NRT-Gauge displayed basically
acceptable hydrological performance in daily discharge simulations. In terms of hourly flood
simulations, the performance of GSMaP-Gauge slightly worsened but was comparable to the rain-
gauge-based precipitation data set. Following GSMaP-Gauge, GSMaP-Now and GSMaP-NRT-Gauge
obtained certain predictability of flood events. In general, GSMaP-MVK and GSMaP-NRT barely had
hydrological utility for flood-event simulations.

Keywords: GPM; GSMaP; satellite precipitation; hydrological modeling; streamflow simulations

1. Introduction

Precipitation is one of the critical factors controlling terrestrial hydrological processes,
and the accuracy of precipitation data, to a large extent, affects the performance of water-
shed hydrological simulations and the effectiveness of flood forecasts. Currently, there
are three methods to measure precipitation, namely, rain gauges, weather radar, and
satellite-based sensors [1], of which rain gauge networks are most accurate and intuitive
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precipitation observations. Owing to the complex terrain and high cost, rain gauge net-
works in many remote and mountainous regions are usually sparse. As a result, the
conventional ground precipitation observations cannot fully capture the spatiotemporal
variation of precipitation, which restricts their hydrometeorological applications. The
surface weather radar can detect cloud and precipitation processes in the atmosphere in
real time with high spatiotemporal resolution, which has irreplaceable advantages in the
observation of small and medium-sized precipitation. However, the radar is limited by
various sources of errors and the density of radar networks is insufficient over most parts
of the world. In contrast, satellite-based precipitation products (SPPs) are able to provide
quasi-global precipitation estimates on high spatiotemporal resolutions, which can be an
alternative precipitation data source for hydrological simulations and forecasts in remote
regions or ungauged basins.

As the first dedicated global satellite-based precipitation measurement mission, the
Tropical Rainfall Measuring Mission (TRMM) was launched in 1997 by the US National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration
Agency (JAXA) [2], from which the first generation of SPPs was produced. The TRMM-
era SPPs include the TRMM Multi-satellite Precipitation Analysis (TMPA) [2], Climate
Precipitation Center morphing method (CMORPH) [3], Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Network (PERSIANN) [4], and the
Global Satellite Mapping of Precipitation (GSMaP) [5], etc. In February 2014, the Global
Precipitation Measurement (GPM) satellite was officially launched to ensure the continuity
of the TRMM mission, signifying that satellite-based precipitation retrieving techniques
have developed from the TRMM era to the GPM era [6]. The GPM-based SPPs includes the
Integrated Multi-satellite Retrievals for GPM (IMERG) [7] developed by NASA and a new
version of GSMaP developed by JAXA [5].

Many previous studies have been conducted to statistically evaluate the accuracy of
IMERG in comparison with TMPA in many regions of the world, such as the conterminous
USA [8,9], North Pakistan [10], the Mekong River basin [11,12], Mainland China [13,14], the
Qinghai–Tibet Plateau [15], the Mishui basin [16], and the Yellow River source region [17]
of China. These studies indicated that the IMERG SPPs generally outperforms the TMPA
SPPs. Meanwhile, several previous studies [11,13,18–20] have assessed the performance
of IMERG SPPs in hydrological simulations at the basin scale. Most of these studies
demonstrated that IMERG has enhanced hydrological utilities over the TMPA standard
products in basins or regions such as the Mishui basin [16], the Yellow River source
region [17], the upper Mekong River basin [11], and the Peruvian−Ecuadorian Amazon
basin [19], owing to its improved precipitation retrieving techniques. This indicates that
the GPM-era IMERG are a reliable replacement for the TRMM-era TMPA SPPs.

Since the beginning of the GPM-era, the JAXA Precipitation Measuring Mission science
team has updated the GSMaP algorithm by merging passive microwave (PMW) radiometer
data from GPM-Core GPM microwave imager (GMI) to produce global precipitation
products [5]. As the latest GPM-era SPPs, GSMaP version 7 (V7) was released to the public
in January 2017 and provides a series of precipitation estimates on high resolution (0.1◦ ×
0.1◦, 1-hourly time interval) over the 60◦N–60◦S domain with different latencies, such as
the post-real-time product with microwave-infrared reanalysis (GSMaP-MVK), the gauge-
corrected post-real-time product (GSMaP-Gauge), the near-real-time product (GSMaP-
NRT), and the gauge-corrected near-real-time product (GSMaP-NRT-gauge). Additionally,
as the first real-time version of GSMaP, GSMaP-Now was released on 29 March 2017,
which provides real-time global precipitation maps every half hour on 0.1◦ × 0.1◦ spatial
resolution. Several previous studies have evaluated the performance of the GPM-era
GSMaP SPPs in several regions of the world. In Mainland China, Ning et al. [21] found
that GSMaP-Gauge version 6 (V6) performs better and has more stable quality results than
IMERG final run (IMERG-F) version 4 (V4) on daily and monthly scales. Zhao et al. [22]
demonstrated that IMERG-F V4 slightly outperforms GSMaP-Gauge V6 in most regions
of China but tends to provide overestimated precipitation estimates in four regions of
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China in the case of rainfall intensity exceeding 20 mm/d. Tang et al. [23] found that
GSMaP-NRT and IMERG late run (IMERG-L) SPPs provide more accurate near-real-time
precipitation estimates than PERSIANN and TMPA version 7 (V7) near-real-time product
(3B42RT) in South China. Tan et al. [24] found that GSMaP-Gauge shows much better
error stability than GSMaP-MVK and GSMaP-NRT in nine major basins of China, and
GSMaP-MVK effectively detects most rainfall events. Over diverse topographic and
meteorological regions of Pakistan, Satgé et al. [25] concluded that GSMaP-Gauge V7
precipitation estimates are more accurate than the previous version, GSMaP-Gauge V6.

The TRMM-era GSMaP SPPs (versions 4 and 5) have been widely employed for
hydrological applications, such as flash flood modeling in the Karpuz River basin in
Turkey [26], the Huong River basin in Vietnam [27], the Nile River basin in Egypt [28], and
the Chenab, Jhelum, and upper Indus River basins in Pakistan [29,30]; flood inundation
simulations in the Thua Thien Hue Province in Vietnam [31]; daily discharge simulations
in the Tocantins–Araguaia basin in Brazil [32], the Upper Hanjiang River basin [33], the
Huaihe River basin [34], and the Biliu basin in China [35]. These studies proved that the
earlier versions of GSMaP SPPs have acceptable or even satisfactory hydrological utilities
in many regions of the world. However, only several previous studies [20,36,37] have
evaluated the hydrological performance of the GPM-era GSMaP SPPs, in particular for
the state-of-the-art GSMaP version (V7), because they were released three years ago. For
instance, Lu et al. [36] evaluated the hydrological performance of GSMaP-MVK V7, GSMaP-
Gauge V7, and uncalibrated and gauge-calibrated IMERG final run V5 SPPs (IMERG-UC
and IMERG-C, respectively) over the Tibetan Plateau. They indicated that GSMaP-Gauge
shows comparable performance with gauge reference data, whereas IMERG-UC and
GSMaP-MVK demonstrate unsatisfactory hydrological feasibility. In the Lake Titicaca
region of Bolivia, Satgé et al. [37] found that GSMaP-Gauge V6 largely underestimates
precipitation by 25%, and it is not suitable for hydrological simulations. In the Chindwin
River basin of Myanmar, Yuan et al. [20] assessed the feasibility of IMERG V5 and GSMaP
V7 SPPs in both post- and near-real-time versions in three-hourly flood simulations and
demonstrated that GSMaP-Gauge, GSMaP-MVK, and GSMaP-NRT show relatively poorer
hydrological performance than IMERG and TMPA V7 SPPs. These relevant studies [36,37]
mainly investigated the GPM-era GSMaP SPPs at daily scales, whereas assessments at
sub-daily scales are rare [38]. Among the several real-time SPPs released to the public,
GSMaP-Now is expected to be an alternative precipitation data source for real-time flash
flood forecasting in ungauged regions. However, according to our knowledge, hydrological
evaluations of GSMaP-NRT-Gauge V7 and GSMaP-Now have not been reported. Therefore,
it is necessary to quantitatively evaluate the hydrological utility of the latest GPM-era
GSMaP SPPs in all real-time, near-real-time, and post-real-time versions at shorter-than-
daily time scales.

This study statistically and hydrologically evaluates the latest GPM-era GSMaP SPPs
in the sparsely gauged Yellow River source region in China. Given that previous studies
seldom focused on the statistical and hydrological evaluations of GSMaP SPPs in real-time,
near-real-time and post-real-time versions at sub-daily time scales, the main objectives of
the present work are as follows: (1) statistically evaluate the quality of the five latest GSMaP
(GSMaP-Gauge, GSMaP-MVK, GSMaP-NRT, GSMaP-NRT-Gauge, and GSMaP-Now) SPPs
against the ground precipitation measurements at daily and hourly time scales in the
study area; and (2) quantitatively assess the hydrological performance of the real-time,
near-real-time, and post-real-time versions of GSMaP SPPs in simulating historical daily
streamflow processes and hourly flood events. We expect that the findings reported in this
manuscript could provide SPP researchers and users with useful feedbacks on hydrological
feasibility of the latest GPM-era GSMaP in the study area and promote to improve the
GSMaP algorithms in future versions.
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2. Study Area and Data Processing
2.1. Study Area

In this study, the Yellow River source region (YRSR) was selected as the study area,
which is located on northeast Qinghai–Tibet Plateau of China (Figure 1). YRSR has a
drainage area of 1.22 × 105 km2 upstream the Tangnaihai hydrological station, representing
15% of the entire Yellow River basin. Topography of YRSR is complicated with high
elevation, and the altitude is in an overall descending trend from southwest to northeast
(Figure 1). The study area is featured by the typical Qinghai–Tibet Plateau climate system,
with the southwest monsoon and East Asian monsoon influenced by subtropical high
pressure in the summer and westerlies in the winter. Influenced by complex topography,
the monsoon-induced precipitation varies remarkably in space with a distinct decreasing
trend from southeast to northwest, and annual mean precipitation ranges from over
800 mm to less than 200 mm [39]. In summer, the southwest monsoon from the Bay of
Bengal brings heavy precipitation, in particular, in the southeastern part of YRSR, and in
winter the westerly winds produce snow throughout YRSR. Snowfall accounts for about
20% of total precipitation in YRSR. The study area is low in mean annual air temperature,
ranging between –4 and 2 ◦C, and July is the warmest month. YRSR is the “water tower”
of the Yellow River. Its annual mean runoff is 168 mm, occupying 35% of the total runoff of
the Yellow River basin [40]. Thus, obtaining accurate precipitation data sets is essential for
hydrological and ecological research and sustainable water resources management in this
region. The spatiotemporal distribution of runoff is similar to that of precipitation, and in
the wet season (June–October), runoff accounts for 70% of the annual total runoff [40]. The
local predominant land covers are temperate and Alpine grasslands and meadows, and
there are permanent snowpack and glaciers in the western mountainous regions. YRSR was
selected for hydrological evaluations of SPPs because of less impacts of human activities
with a low population density and no large reservoirs and irrigation projects [17,39].
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2.2. Ground Weather Data

Meteorological data at 13 ground weather stations (Figure 1) in YRSR were acquired
from China Meteorological Administration. These data consist of hourly records of pre-
cipitation, air temperature, and wind speed for the period of 1 January 2014–31 December
2018. They also include daily precipitation, maximum and minimum air temperature,
and wind speed for the period of 1 January 2000–31 December 2018. All the gauge-based
precipitation data were automatically recorded by siphoning or tipping-bucket rain gauges
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and underwent a strict quality control procedure [41]. Among these 13 weather stations,
11 stations are not included in the Climate Prediction Center (CPC) Unified Gauge-based
Analysis of Global Daily Precipitation data set, except for the Dari and Maduo stations.
These ground precipitation data were used as the benchmark for statistical evaluations
of GSMaP SPPs. The inverse-distance weighting method was adopted to produce the
atmospheric forcing data set for distributed hydrological modeling, which interpolated the
gauge-based precipitation, air temperature, and wind speed data to the 0.1◦ resolution. We
used 13 ground weather stations in YRSR for interpolation, excluding those outside the
study area.

Satellite Precipitation Products

Five GSMaP SPPs were selected for assessment in this study (Table 1). Among them,
GSMaP-MVK, GSMaP-Gauge, GSMaP-NRT, and GSMaP-NRT-Gauge are the GSMaP ver-
sion 07 (V07) products using the latest algorithm for GPM. The GSMaP V07 algorithm first
retrieves the instantaneous precipitation intensity estimates based on the PMW radiometers
from various satellite platforms such as GMI, TRMM Microwave Imager (TMI), advanced
microwave scanning radiometer 2 (AMSR2), special sensor microwave imager/sounder
(SSMIS), microwave humidity sounder (MHS), and advanced microwave sounding unit-
A (AMSU-A). Subsequently, the cloud motion vectors derived from geo-IR images are
adopted to propagate the gaps between PMW-based estimates, and a Kalman filter method
is used to adjust the precipitation rate. After that, the GSMaP-MVK SPP is generated
by weighting and combining the forward and backward propagated precipitation esti-
mates, and the GSMaP-Gauge SPP is produced by refining the GSMaP-MVK precipitation
estimates based on CPC data set provided by the National Oceanic and Atmospheric
Administration [42].

Table 1. Basic information of the GSMaP SPPs used in this study.

SPPs Coverage Spatiotemporal
Resolution Latency Start Time Gauge-Based

Correction

GSMaP-MVK 60◦N–60◦S 1 h, 0.1◦ 3 days 1 March 2014 No
GSMaP-Gauge 60◦N–60◦S 1 h, 0.1◦ 3 days 1 March 2014 Yes
GSMaP-NRT 60◦N–60◦S 1 h, 0.1◦ 4 h 17 January 2017 No

GSMaP-NRT-Gauge 60◦N–60◦S 1 h, 0.1◦ 4 h 17 January 2017 No
GSMaP-Now 60◦N–60◦S 30 min, 0.1◦ 0 h 29 March 2017 No

Both GSMaP-MVK and GSMaP-Gauge belong to the post-real-time SPPs and have
a data latency of 3 days. Different from GSMaP-MVK, the near-real-time SPP (GSMaP-
NRT) is generated via a simplified algorithm that merely considers temporary forward
cloud movement to maintain data latency in near real time (4 h) [36]. GSMaP-NRT-
Gauge is a near-real-time version of GSMaP-Gauge. However, it does not use gauge
measurement directly because the gauge data are not available in near real time. Therefore,
GSMaP-NRT-Gauge only adopts the error parameters derived from GSMaP-Gauge to
adjust the GSMaP-NRT precipitation estimates. Furthermore, GSMaP-Now is a real-time
SPP. It uses passive microwave observations that are available within a half-hour after
observation (GMI, AMSR2 near Japan, and AMSU direct receiving data) and applies a
half-hour extrapolation of rainfall map toward future direction by using cloud moving
vector from the geostationary satellite. All the five GSMaP SPPs provide precipitation
estimates on a spatial resolution of 0.1◦ covering the latitude belt of 60◦N–60◦S. GSMaP-
MVK, GSMaP-Gauge, GSMaP-NRT, and GSMaP-NRT-Gauge are in an hourly time interval
and GSMaP-Now in a half-hour time step. These data can be downloaded from the JAXA
Global Rainfall Watch website (https://sharaku.eorc.jaxa.jp/GSMaP (accessed on 15 March
2019)). In this study, GSMaP-MVK and GSMaP-Gauge were evaluated for the period of 1
March 2014–31 December 2018, and GSMaP-NRT and GSMaP-NRT-Gauge were assessed
from 17 January 2017 to 31 December 2018. The evaluation period for GSMaP-Now is 29

https://sharaku.eorc.jaxa.jp/GSMaP
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March 2017–31 December 2018. This study set the resolution of satellite-based precipitation
to that of ground rain gauges (0.1 mm). Additionally, this study defined 0.1 mm/d as the
threshold to distinguish the precipitation and no-rain events because that the local ground
rain gauges could only measure precipitation above 0.1 mm/d. Thus, satellite-derived
precipitation below 0.1 mm/d was set to zero to eliminate the effect of drizzles.

2.3. Discharge Data

In this study, the observed discharge data at the Tangnaihai hydrological station
(Figure 1) were provided by the Yellow River Conservancy Commission of China. These
discharge data include daily streamflow observations from 1 January 2000 to 31 December
2018 and the discharge records of eight major flood events in 2014–2018. The time interval
of the flood data varies from 6 min to 12 h and were linearly transformed into hourly
temporal intervals. These observed discharge data were used for model calibration and
hydrological evaluation of SPPs.

2.4. Geographical Data

The geographic data used in this study include topography, land cover, and soil tex-
ture, which are required by the variable infiltration capacity (VIC) hydrological model. The
Shuttle Radar Topographic Mission 90 m global digital elevation model data were down-
loaded from the US Geological Survey website (http://srtm.csi.cgiar.org/ (accessed on 10
July 2018)). The global land cover classification data were obtained from the University of
Maryland, which have 14 land use/cover classifications with a 1 km spatial resolution [43].
The adopted soil texture information is the Food and Agriculture Organization soil texture
dataset with a 5 min resolution [44].

3. Methodology

In this study, the five GSMaP SPPs (GSMaP-Gauge, GSMaP-MVK, GSMaP-NRT,
GSMaP-NRT-Gauge, and GSMaP-Now) were statistically evaluated versus ground pre-
cipitation observations at daily and hourly time scales. Afterward, these SPPs and the
gridded observed weather data set were used to drive the VIC hydrological model for
daily streamflow simulations and hourly flood-event simulations, and the hydrological
performance of SPPs were assessed by comparing the SPP-based simulated hydrographs
with the observations. This section briefly introduces the diagnostic indices for statistical
and hydrological evaluations of SPPs, the VIC hydrological model, and the hydrological
simulation schemes.

3.1. Diagnostic Indices

To quantify the quality of GSMaP SPPs versus ground precipitation measurements, the
relative bias of total precipitation (RBP), Pearson correlation coefficient (CC), relative root-
mean-squared error (RRMSE), probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI) were adopted (Table 2). RBP denotes the systematic deviation
rate between the satellite- and gauge-based precipitation data sets. CC represents the
agreement between the satellite precipitation estimates and gauge observations. Please
note that the calculation of CC values included zero precipitation events in both gauge
and GSMaP data. RRMSE measures the average relative error of the satellite precipitation.
POD denotes the proportion of precipitation events correctly identified by the satellites
among all real events. FAR represents the fraction of false precipitation events among all
events detected by the satellites. CSI denotes the overall fraction of precipitation events
correctly detected by the satellites.

http://srtm.csi.cgiar.org/
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Table 2. Diagnostic indices for statistical and hydrological evaluations of SPPs.

Categories Diagnostic Indices Formulas Unit Perfect Value

Indices for quantifying
the accuracy of GSMaP

SPPs versus ground
precipitation
observations

Relative bias of total precipitation (RBP) RBP = ∑n
i=1(Ps

i −Po
i )

∑n
i=1 Po

i
× 100% % 0

Pearson correlation coefficient (CC)
CC =

∑n
i=1

(
Po

i −P
o)(

Ps
i −P

s)√
∑n

i=1

(
Po

i −P
o)2
√

∑n
i=1

(
Ps

i −P
s)2

– 1

Relative root-mean-squared error
(RRMSE)

RRMSE =√
1
n ∑n

i=1(Ps
i −Po

i )
2

1
n ∑n

i=1 Po
i

× 100%
% 0

Probability of detection (POD) POD = H
H+M – 1

False alarm ratio (FAR) FAR = F
H+F – 0

Critical success index (CSI) CSI = H
H+M+F – 1

Indices for quantifying
the hydrological

performance of GSMaP
SPPs

Relative bias of total runoff (RBR) RBR = ∑n
i=1(Qs

i −Qo
i )

∑n
i=1 Qo

i
× 100% % 0

Nash-Sutcliffe model efficiency coefficient
(NSE) NSE = 1 − ∑n

i=1(Qs
i −Qo

i )
2

∑n
i=1

(
Qo

i −Qo
)2

– 1

Relative bias of flood peak flow (RBFP) RBFP = Qs
max−Qo

max
Qo

max
× 100% % 0

Error of flood peak time (EPT) EPT = Ts − To hours 0

Note: n, precipitation or discharge sample size; Ps
i , satellite-based precipitation; Po

i , gauge-based precipitation; P
s
, mean value of satellite-

based precipitation; P
o
, mean value of the gauge-based precipitation; H, number of observed precipitation events correctly detected by

satellites; M, number of observed precipitation events missed by satellites; F, number of precipitation events detected by satellites but not
observed; Qs

i , simulated discharge; Qo
i , observed discharge; Qo , mean value of observed discharge; Qs

max , simulated flood peak flow; Qo
max ,

observed flood peak flow; Ts, simulated flood peak time; To , observed flood peak time.

To evaluate the feasibility of SPPs in daily streamflow simulations and hourly flood-
event simulations, the relative bias of total runoff (RBR) and the Nash–Sutcliffe model
efficiency coefficient (NSE) were used (Table 2). In addition, two more indices were
adopted to evaluate the performance of SPPs in hourly flood-event simulations, which are
the relative bias of flood peak flow (RBFP) and the error of flood peak time (EPT) (Table 2).

3.2. Hydrological Model

In this study, the VIC model version 4.0.4 was employed for hydrological simulations,
which is a physically-based large-scale hydrological model [45,46]. It defines each land grid
cell as a single vertical column of vegetation, snow, and soil and simulates evapotranspira-
tion, sensible heat, radiative fluxes, and turbulent fluxes of momentum at each time step.
In the vertical soil column, the VIC model simulates the physical processes such as heat
diffusion, unsaturated liquid water transport, saturated gravitational drainage, overland
flow, bottom drainage, uptake of liquid water by plant roots for transpiration, and freezing
and thawing of frozen soil. The model simulates baseflow from the deepest soil layer using
the baseflow parameterization scheme of the ARNO model [47] and calculates surface
runoff via a conceptual surface runoff parameterization developed by [48,49] that combines
both the saturation excess runoff and infiltration excess runoff mechanisms. In terms of the
routing scheme, a gravitational water reservoir method is used to separate the calculated
total runoff at each grid cell into overland, interflow, and groundwater runoffs, and three
linear reservoirs are employed for hillslope concentration of these three runoff components
at each grid cell. Finally, the Muskingum routing method is adopted to simulate the routing
effect of the channel system connecting each grid cell.

The VIC model has three categories of parameters. The values of vegetation-related
parameters such as leaf area index, albedo, architectural resistance, minimum stomata
resistance, zero-plane displacement roughness length, and fraction of root depth at each
soil layer are defined according to the Global Land Data Assimilation Systems developed
by the National Aeronautics and Space Administration (https://ldas.gsfc.nasa.gov/gldas/
(accessed on 15 March 2019)). The parameters related to soil characteristics such as porosity,
saturated soil potential, saturated hydraulic conductivity, and the exponent of the unsat-

https://ldas.gsfc.nasa.gov/gldas/


Remote Sens. 2021, 13, 4199 8 of 26

urated hydraulic conductivity curve are estimated according to the work by [50,51]. The
third category is empirical parameters that are subject to calibration. These include the
infiltration curve exponent, the three soil-layer thicknesses, the three parameters in the base
flow scheme including the maximum velocity of base flow, the fraction of maximum base
flow, the fraction of maximum soil moisture content at the third layer at which a nonlinear
base flow response is initiated, and the parameters in the routing scheme such as the free
water storage, the two outflow coefficient for interflow and groundwater runoffs, the three
recession constants for surface, interflow, and groundwater runoffs, and the Muskingum
storage-time and proportionality constants.

3.3. Discharge Simulation Schemes

In this study, YRSR was decomposed into 1354 grid cells on a 0.1◦ spatial resolution.
Six precipitation data sets were evaluated with respects to their hydrological performance,
and they are the gauge-based gridded, GSMaP-MVK, GSMaP-Gauge, GSMaP-NRT, GSMaP-
NRT-Gauge, and GSMaP-Now data sets on a 0.1◦ spatial resolution. These six precipitation
data sets were used to drive the VIC model to perform historical daily discharge simulations
and hourly flood-event simulations at the Tangnaihai hydrological station.

As mentioned in Section 3.2, several empirical parameters in the VIC model and
routing scheme require calibration. In this study, these parameters were calibrated by fitting
the simulated hydrograph against the observed one with the gauge-based precipitation
data as the model input. For daily discharge simulations, the first two years (2000 and
2001) were selected as the warming-up period, and the calibration and validation periods
were defined as 1 January 2002–31 December 2010 and 1 January 2011–31 December
2013, respectively. For hourly flood-event simulations, the time periods of one flood
event in 2014, two events in 2015, and one event in 2016 were adopted as the calibration
period, and the time spans of two events in 2017 and two events in 2018 were selected
as the validation period. The model parameters were optimized by the shuffled complex
evolution automatic optimization method [52,53], and the maximum of NSE was selected
as the objective function for hydrological model optimization.

After model calibration, the VIC model was driven by the five GSMaP SPPs to per-
form daily streamflow and hourly flood-event simulations using the gauge-precipitation-
benchmarked model parameters. Notably, flood-event simulations are sensitive to certain
initial conditions such as initial soil water contents at three soil layers, free water storage
depth, surface runoff, interflow, and groundwater runoff in the three linear reservoirs. To
minimize the uncertainty of arbitrarily adjusting initial conditions on flood-event simu-
lations, we derived the VIC model state variables in daily streamflow simulations on the
date when the flood events began and used these values of state variables as the initial
conditions for flood-event simulations.

4. Results
4.1. Statistical Assessment of GSMaP SPPs VS. Ground Precipitation Observations

Before the hydrological utility of various GSMaP SPPs was evaluated, the qualities
of the GSMaP SPPs were assessed against the ground precipitation measurements. Such
investigations were performed with respect to the spatial distribution of precipitation and
SPP-based precipitation estimates at daily and hourly time scales.

4.1.1. Spatial Distribution

Given that the acquired five GSMaP SPPs in this study have different time periods, the
spatial distribution of mean daily precipitation depth derived from the five GSMaP SPPs
over the overlapped time span (29 March 2017–31 December 2018) was compared with
that of the gauge-based gridded precipitation data set (Figure 2). As shown in Figure 2,
the gauge-based gridded precipitation data demonstrate that precipitation in YRSR tends
to increase from the northwest to the southeast with the minimum precipitation rate of
1.0 mm/d and the maximum of 2.3 mm/d. All GSMaP SPPs present the precipitation
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distribution pattern that is similar to that of the gauge-based gridded precipitation data set
(Figure 2b–f). However, all SPPs generally estimate a drier condition in the northwestern
region and a wetter situation in the southeastern part than the gauge-based precipitation
data, and GSMaP-Gauge demonstrates the precipitation spatial pattern that is closest to
that of the gauge-based data. The basin-averaged precipitation rate from the gauge-based
data set is 1.9 mm/d, and all post- and near-real-time SPPs (GSMaP-MVK, GSMaP-Gauge,
GSMaP-NRT, and GSMaP-Gauge-NRT) overestimate the mean precipitation rate by 0.6, 0.2,
0.6, and 0.1 mm/d, respectively. The real-time SPP, GSMaP-Now, largely underestimates
the basin-averaged precipitation by 0.6 mm/d.
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4.1.2. Satellite Precipitation Estimates at Daily Scales

The daily precipitation estimates from the five GSMaP SPPs at the locations of the 13
rain gauges were statistically evaluated against the ground precipitation measurements
from 29 March 2017 to 31 December 2018. Figure 3a demonstrates that GSMaP-MVK largely
overestimates daily precipitation at 12 out of the 13 rain gauges with a mean RBP value
of 55.2%. Owing to bias-correction using the CPC gauge-analysis global daily precipi-
tation data set, GSMaP-Gauge effectively reduces the systematic errors of GSMaP-MVK
with an averaged RBP value of 3.0%. GSMaP-NRT is generally inclined to considerably
overestimate daily precipitation by 41.2%. In contrast, GSMaP-NRT-Gauge presents much
lower systematic errors (averaged RBP = 9.3%) than GSMaP-NRT, because GSMaP-NRT-
Gauge uses the error parameters derived from GSMaP-Gauge to adjust GSMaP-NRT
precipitation estimates. Different from the post- and near-real-time GSMaP SPPs, GSMaP-
Now gives an overall precipitation underestimation with an averaged RBP of –26.8%.
As shown in Figure 3b, GSMaP-Gauge achieves the highest CC among all five GSMaP
SPPs (averaged CC = 0.751), and GSMaP-MVK, GSMaP-NRT, GSMaP-NRT-Gauge, and
GSMaP-Now display similar magnitudes of CC (averaged CC = 0.545, 0.500, 0.535, and
0.522, respectively). Concerning RRMSE, GSMaP-Gauge has the lowest relative errors
(averaged RRMSE = 147.3%), followed by GSMaP-Now (217.3%) and GSMaP-NRT-Gauge
(273.5%), and GSMaP-MVK and GSMaP-NRT demonstrate much higher relative errors
(321.1% and 356.2%, respectively) (Figure 3c). In terms of the capability of SPPs in detecting
precipitation events, the two post-real-time SPPs have relatively higher PODs (averaged
POD = 0.778 and 0.817 for GSMaP-MVK and GSMaP-Gauge, respectively) than the near-
real-time and real-time SPPs (0.670, 0.670, and 0.582 for GSMaP-NRT, GSMaP-NRT-Gauge,
and GSMaP-Now, respectively), and GSMaP-Gauge obtains the highest PODs among
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all five GSMaP SPPs (Figure 3d). Figure 3e demonstrates that GSMaP-Gauge generally
provides the lowest FARs (averaged FAR = 0.192), and GSMaP-MVK obtains the highest
FARs (averaged FAR = 0.278). The three near-real-time and real-time SPPs have the similar
magnitudes of FARs with mean FAR values of 0.246, 0.242, and 0.246 for GSMaP-NRT,
GSMaP-NRT-Gauge, and GSMaP-Now, respectively. With respects to CSI, GSMaP-Gauge
has the best performance (averaged CSI = 0.682), followed by GSMaP-MVK (averaged
CSI = 0.598) (Figure 3f). The three near-real-time and real-time SPPs have inferior perfor-
mance. Both GSMaP-NRT and GSMaP-NRT-Gauge obtain an averaged CSI value of 0.550,
and GSMaP-Now has the lowest averaged CSI (0.486) but with much higher variability of
CSI than other SPPs (Figure 3f).

Remote Sens. 2021, 13, 4199 10 of 26 
 

 

0.522, respectively). Concerning RRMSE, GSMaP-Gauge has the lowest relative errors (av-
eraged RRMSE = 147.3%), followed by GSMaP-Now (217.3%) and GSMaP-NRT-Gauge 
(273.5%), and GSMaP-MVK and GSMaP-NRT demonstrate much higher relative errors 
(321.1% and 356.2%, respectively) (Figure 3c). In terms of the capability of SPPs in detect-
ing precipitation events, the two post-real-time SPPs have relatively higher PODs (aver-
aged POD = 0.778 and 0.817 for GSMaP-MVK and GSMaP-Gauge, respectively) than the 
near-real-time and real-time SPPs (0.670, 0.670, and 0.582 for GSMaP-NRT, GSMaP-NRT-
Gauge, and GSMaP-Now, respectively), and GSMaP-Gauge obtains the highest PODs 
among all five GSMaP SPPs (Figure 3d). Figure 3e demonstrates that GSMaP-Gauge gen-
erally provides the lowest FARs (averaged FAR = 0.192), and GSMaP-MVK obtains the 
highest FARs (averaged FAR = 0.278). The three near-real-time and real-time SPPs have 
the similar magnitudes of FARs with mean FAR values of 0.246, 0.242, and 0.246 for 
GSMaP-NRT, GSMaP-NRT-Gauge, and GSMaP-Now, respectively. With respects to CSI, 
GSMaP-Gauge has the best performance (averaged CSI = 0.682), followed by GSMaP-
MVK (averaged CSI = 0.598) (Figure 3f). The three near-real-time and real-time SPPs have 
inferior performance. Both GSMaP-NRT and GSMaP-NRT-Gauge obtain an averaged CSI 
value of 0.550, and GSMaP-Now has the lowest averaged CSI (0.486) but with much 
higher variability of CSI than other SPPs (Figure 3f). 

 
Figure 3. Box plot of the statistical indices of daily precipitation estimates from the five GSMaP SPPs at the 13 weather 
stations in YRSR (29 March 2017–31 December 2018). 

The frequency distributions of daily precipitation estimates from the five GSMaP 
SPPs at the locations of the 13 rain gauges were compared with that of the ground obser-
vations. Figure 4a displays that approximately 58.6% of the observed daily precipitation 
data samples are under 0.1 mm. GSMaP-Gauge and GSMaP-MVK SPPs underestimate 
this frequency by 2.7% and 5.7%, respectively. In contrast, the three near-real-time and 
real-time GSMaP SPPs tend to overestimate the occurrence of drizzle events by 2.4–7.2%. 
For daily precipitation ranging from 0.1 to 10 mm, GSMaP-Gauge and GSMaP-MVK 
mildly overestimate this frequency by 2.4% and 1.7%, respectively, and GSMaP-NRT, 
GSMaP-NRT-Gauge, and GSMaP-Now give an underestimation of 3.4–6.0%. GSMaP-
Gauge consistently underestimates the rainfall events with daily precipitation exceeding 

Figure 3. Box plot of the statistical indices of daily precipitation estimates from the five GSMaP SPPs at the 13 weather
stations in YRSR (29 March 2017–31 December 2018).

The frequency distributions of daily precipitation estimates from the five GSMaP SPPs
at the locations of the 13 rain gauges were compared with that of the ground observations.
Figure 4a displays that approximately 58.6% of the observed daily precipitation data
samples are under 0.1 mm. GSMaP-Gauge and GSMaP-MVK SPPs underestimate this
frequency by 2.7% and 5.7%, respectively. In contrast, the three near-real-time and real-
time GSMaP SPPs tend to overestimate the occurrence of drizzle events by 2.4–7.2%. For
daily precipitation ranging from 0.1 to 10 mm, GSMaP-Gauge and GSMaP-MVK mildly
overestimate this frequency by 2.4% and 1.7%, respectively, and GSMaP-NRT, GSMaP-NRT-
Gauge, and GSMaP-Now give an underestimation of 3.4–6.0%. GSMaP-Gauge consistently
underestimates the rainfall events with daily precipitation exceeding 20 mm, whereas
GSMaP-NRT, GSMaP-NRT-Gauge, and GSMaP-MVK give evident overestimations of these
events. GSMaP-Now presents a noticeable underestimation of daily rainfall events ranging
from 20 to 30 mm and a slight overestimation of events exceeding 40 mm/d.
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In this study, the Taylor diagrams were used to visualize the concise statistical sum-
mary on how well each GSMaP SPP agrees with the ground precipitation observations
in YRSR (Figure 5). Figure 5a indicates that among all five SPPs, GSMaP-Gauge demon-
strates the best overall performance in capturing daytime precipitation dynamics, followed
by GSMaP-Now and GSMaP-NRT-Gauge. GSMaP-MVK and GSMaP-NRT have inferior
performance. The better quality of GSMaP-Gauge and GSMaP-NRT-Gauge implies that
gauge-based bias-correction effectively reduces the precipitation errors in GSMaP-MVK
and GSMaP-NRT in YRSR. Meanwhile, as a real-time SPP, GSMaP-Now presents an accept-
able performance in daily precipitation detections in YRSR.
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4.1.3. Satellite Precipitation Estimates at Hourly Scales

Figure 6 displays the box plot of the statistical indices of hourly precipitation estimates
from the five GSMaP SPPs in the period of 29 March 2017–31 December 2018. In each box
plot, the box corresponds to the interquartile range (25% and 75%, respectively) and the line
inside the box corresponds to the median value. One whisker connects the upper quartile
to the non-outlier maximum, and the other connects the lower quartile to the non-outlier
minimum. Figure 6a shows that the SPP-based hourly precipitation estimates are at the
same magnitudes of RBP as the daily precipitation estimates (Figure 3a), which overall
presents a mild overestimation by GSMaP-Gauge and GSMaP-NRT-Gauge, a significant
overestimation by GSMaP-MVK and GSMaP-NRT, and a considerable underestimation by
GSMaP-Now. The CC values at hourly scale are evidently lower than those at daily scale
(Figure 6b). GSMaP-Gauge provides the highest averaged CC (0.295) among all five SPPs,
followed by GSMaP-Now (0.243) and GSMaP-NRT-Gauge (0.207). The GSMaP-MVK- and
GSMaP-NRT-based hourly precipitation estimates are in the lowest correlation with the
ground observations. As time scale decreases, the SPP-based hourly precipitation estimates
give much higher RRMSE values than the daily precipitation estimates (Figure 6c). GSMaP-
Gauge and GSMaP-Now obtain an averaged RRMSE of 656.2% and 699.4%, respectively.
GSMaP-NRT-Gauge, GSMaP-MVK, and GSMaP-NRT contain much larger errors (averaged
RRMSE = 956.9%, 1069.8%, and 1214.2%, respectively). Moreover, compared with the SPP-
based daily precipitation estimates, the hourly satellite products demonstrate evidently
lower POD and CSI values and clearly higher FAR values (Figure 6e,f). This result indicates
that at hourly temporal scale, the precipitation detection capability of all the GSMaP SPPs is
reduced with considerably higher false alarm ratios. Among all five GSMaP SPPs, GSMaP-
Gauge has the highest detection capability and the three real-time and near-real-time
SPPs have inferior performances, which is similar to the situation of the SPP-based daily
precipitation estimates.
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Figure 4b shows that GSMaP-Gauge considerably underestimates the occurrence of
the hourly precipitation less than 0.1 mm by 8.9%, and GSMaP-MVK demonstrates a slight
underestimation by 0.6%. In contrast, GSMaP-NRT, GSMaP-NRT-Gauge, and GSMaP-Now
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present a mild overestimation of this rainfall event by 1.4%, 0.5%, and 0.3%, respectively.
For the precipitation level ranging from 0.1 to 5 mm/h, GSMaP-MVK shows a negligible
overestimation of 0.2%, and GSMaP-Gauge considerably overestimates this frequency by
9.1%. The three near-real-time and real-time SPPs give a minor underestimation of 0.7–1.7%.
Figure 4b also shows that GSMaP-MVK, GSMaP-NRT, and GSMaP-NRT-Gauge consistently
overestimate the frequency of the events with precipitation intensity exceeding 5 mm/h,
whereas GSMaP-Gauge and GSMaP-Now demonstrate a noticeable underestimation.

As shown in Figure 5b, GSMaP-Gauge presents the best performance, followed by
GSMaP-Now. GSMaP-NRT-Gauge is ranked third, and GSMaP-MVK and GSMaP-NRT
are unsatisfying due to their relatively long distance from “Gauge” point. Although the
pattern of overall performance of the five GSMaP SPPs in retrieving hourly precipitation is
similar to that of the SPP-based daily precipitation estimates (Figure 5a), the quality of the
SPP-based hourly precipitation estimates is much lower than that of the SPP-based daily
estimates. Given that precipitation tends to be more reliable at finer temporal scales, all
five GSMaP SPPs are poorer in retrieving hourly precipitation dynamics than in detecting
daily processes.

4.2. Hydrological Assessment of GSMaP SPPs

Fed with the gauge-based gridded precipitation and the five GSMaP SPPs, the VIC
model was used to conduct daily discharge simulations and to simulate the eight his-
torical flood events at hourly scale at the Tangnaihai streamflow station. The simulated
hydrographs using different precipitation inputs were compared with the observations to
investigate the hydrological feasibility of the five GSMaP SPPs in YRSR.

4.2.1. Daily Discharge Simulations

As shown in Figure 7, the simulated daily hydrograph at the Tangnaihai station
using the rain-gauge-based precipitation data agrees well with the measurements. In the
calibration period (1 January 2002–31 December 2010), a negligible RBR of −0.3% and a high
NSE of 0.845 were obtained. In the validation period (1 January 2011–31 December 2013),
the VIC model moderately underestimates total streamflow by 13.2%, with an NSE value
of 0.800. This finding indicates that the VIC-model with the rain-gauge-based precipitation
data as its input can accurately reproduce the historical daily streamflow processes in
YRSR.
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To evaluate the hydrological utility of GSMaP SPPs, the VIC model using the rain-
gauge-benchmarked model parameters was firstly driven by the rain-gauge-based data,
GSMaP-MVK, and GSMaP-Gauge SPPs for daily streamflow simulations for the period
of 1 March 2014–31 December 2018. Figure 8 and Table 3 show that, in this period, the
simulated hydrograph using the rain-gauge-based precipitation data is fairly in line with
the observed hydrograph, with the RBR and NSE values of 8.0% and 0.760, respectively.
Given that GSMaP-MVK largely overestimates the basin-averaged precipitation by 53.1%,
the GSMaP-MVK-forced simulation significantly overestimates the total streamflow by
169.1%, with a negative NSE (−6.316) (Table 3). This indicates that GSMaP-MVK has
inferior performance in daily streamflow simulation in YRSR. Owing to the better quality
of GSMaP-Gauge arising from the bias-correction using the CPC precipitation data set, the
GSMaP-Gauge-based model run demonstrates much better hydrological performance than
the GSMaP-MVK-based simulation, which is comparable to the rain-gauge-driven model
run. The GSMaP-Gauge-forced VIC model obtains an NSE of 0.613 but gives a considerable
streamflow overestimation of 24.0%, mostly due to the situation that GSMaP-Gauge slightly
overestimates the basin-averaged precipitation by 8.7% (Table 3 and Figure 8).
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Table 3. Statistical indices of daily discharge simulations at the Tangnaihai hydrological station using
the rain-gauge-based precipitation data and the five GSMaP SPPs.

Time Period Precipitation Input RBR (%) NSE

1 March 2014–31
December 2018

Gauge 8.0 0.760
GSMaP-Gauge 24.0 0.613
GSMaP-MVK 169.1 −6.316

29 March 2017–31
December 2018

Gauge 6.4 0.805
GSMaP-Gauge 25.9 0.630
GSMaP-MVK 153.5 −5.053
GSMaP-NRT 111.2 −3.307

GSMaP-NRT-Gauge 36.1 0.104
GSMaP-Now −21.5 0.380
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In addition, the rain-gauge-based precipitation data and the five GSMaP SPPs were
used to drive the rain-gauge-benchmarked VIC model to simulate daily streamflow pro-
cesses in the period of 29 March 2017–31 December 2018. As indicated in Figure 9 and
Table 3, among all GSMaP SPPs, GSMaP-Gauge displays the best hydrological feasibility
with the RBR and NSE values of 25.9% and 0.630, respectively, which is basically compara-
ble to rain-gauge-based data. GSMaP-Now demonstrates basically acceptable hydrological
performance (NSE = 0.380) but considerably underestimates total streamflow by 21.5%,
which is largely attributed to the underestimation of basin-averaged precipitation by 29.8%.
Although GSMaP-NRT-Gauge slightly overestimates the basin-averaged precipitation by
2.3%, the GSMaP-NRT-Gauge-forced model run provides a streamflow overestimation
(RBR = 36.1% and NSE = 0.104). This phenomenon might result from the situation where
GSMaP-NRT-Gauge tends to considerably overestimate the occurrence frequency of the pre-
cipitation events exceeding 20 mm/d (Figure 4a), thereby likely promoting more runoff to
be produced. Both GSMaP-MVK and GSMaP-NRT almost have no streamflow predictabil-
ity (NSE = −5.053 and −3.307, respectively), and the corresponding two model runs both
largely overestimate total streamflow (RBR = 153.5% and 111.2%, respectively) because
GSMaP-MVK and GSMaP-NRT apparently overestimate the basin-averaged precipitation.
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of 29 March 2017–31 December 2018 (Q_obs denotes the observed discharge; Q_Gauge represents the simulated discharge
using the rain-gauge-based precipitation data; Q_GSMaP-MVK, Q_GSMaP-Gauge, Q_GSMaP-NRT, Q_GSMaP-NRT-Gauge,
and Q_GSMaP-Now are the simulated streamflow using GSMaP-MVK, GSMaP-Gauge, GSMaP-NRT, GSMaP-NRT-Gauge,
and GSMaP-Now SPPs, respectively; P_Gauge denotes the rain-gauge-based basin-averaged precipitation; and P_GSMaP-
MVK, P_GSMaP-Gauge, P_GSMaP-NRT, P_GSMaP-NRT-Gauge, and P_GSMaP-Now represent the GSMaP-MVK-, GSMaP-
Gauge-, GSMaP-NRT-, GSMaP-NRT-Gauge-, and GSMaP-Now-based basin-averaged precipitation, respectively).

This study compared the simulated high and low flows at the Tangnaihai hydrological
station using the rain-gauge-based precipitation data and the five GSMaP SPPs with the
observations. As shown in Figure 10, the rain-gauge-forced model run accurately simulates
the 90% daily streamflow quantile (Q90), slightly underestimates the 95% quantile (Q95)
by 5.2%, and moderately overestimates the 80% quantile (Q80) by 14.7%. Figure 10 also
shows that the 20%, 10%, and 5% daily streamflow quantiles (Q20, Q10, and Q5) simulated
by the VIC model using the rain gauge data are in a mild underestimation of 11.5–13.9%.
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This finding implies that the rain-gauge-driven model run is able to capture both high
and low flows at the Tangnaihai station. In the case of GSMaP-Gauge, the VIC model
tends to consistently overestimate these high- and low-flow quantiles by 14.8–24.2% and
24.4–33.0%, respectively. The model runs using GSMaP-MVK, GSMaP-NRT, and GSMaP-
NRT-Gauge SPPs are inclined to systematically overestimate high and low flows as well,
but with much higher magnitudes than the GSMaP-Gauge-based model run. In particular,
a high-flow overestimation up to 106.5–154.6% and 98.0–114.2% is found in the GSMaP-
MVK- and GSMaP-NRT-forced simulations, and the low-flow overestimation reaches
200.9–114.2% and 89.9–135.1%, respectively. In contrast, the GSMaP-Now-based model
run systematically underestimates the Q95, Q90, and Q80 quantiles by 15.8–18.1% and
significantly underestimates Q20, Q10, and Q5 by 33.7–41.9%.
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Gauge achieve acceptable hydrological feasibility in daily streamflow simulations. The 
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Furthermore, the Taylor diagram was plotted to assess the overall performance of
the rain-gauge-based precipitation data set and the five GSMaP SPPs in daily streamflow
simulations from 29 March 2017 to 31 December 2018 at the Tangnaihai hydrological station
in contrast with the observed discharge data. As shown in Figure 11, the rain-gauge-
based model run demonstrates the best approximation to the observed daily discharge
time series. The GSMaP-Gauge-driven simulation run presents satisfactory performance,
which is comparable to the rain-gauge-based model run. GSMaP-Now and GSMaP-NRT-
Gauge achieve acceptable hydrological feasibility in daily streamflow simulations. The
GSMaP-MVK- and GSMaP-NRT-based model runs demonstrate inferior capability in daily
discharge simulations. The pattern of the overall hydrological performance of the five
GSMaP SPPs is similar to that in daily precipitation retrieving (Figure 5a). This indicates
that the quality of SPPs, to a great degree, determines the performance of hydrological
simulations because the errors of precipitation data are able to propagate in streamflow
simulations.
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4.2.2. Hourly Flood-Event Simulations

Forced by the rain-gauge-based precipitation data, the VIC model was calibrated
for the four flood events in 2014–2016 and was validated for the four events in 2017 and
2018 at hourly time intervals. Figure 12 and Table 4 show that the rain-gauge-driven VIC
model basically replicates three out of the four flood events (Events 20140907, 20150622,
and 20161011) in the calibration period with the NSE values ranging from 0.551 to 0.590,
but the performance for Event 20150921 is not satisfying with a negative NSE (−0.168).
For the validation period, the calibrated model only effectively simulates one out of the
four events (Event 20180625) with an NSE value of 0.607 but gives unqualified results
for the other three events (Events 20170527, 20170821, and 20180829) with negative NSEs
(Figure 13 and Table 4). All historical flood-event simulations using the rain-gauge-based
precipitation data contain considerable errors in total runoff and flood peak flow (Table 4).
This finding implies that the current sparse rain-gauge network in YRSR may not fully
capture the spatial variation of precipitation at hourly time scales, and the underlying
errors in the rain-gauge-based gridded precipitation data likely lead to non-negligible
biases in flood-event simulations. Additionally, the estimated initial conditions such as
initial soil moisture, to some degree, affect the performance of flood-event simulations.
Tuning initial soil moisture content may enhance the simulated hydrographs. However,
this arbitrary manner might further increase the uncertainty of flood simulations. To lessen
this uncertainty, this work defined the initial conditions for flood-event simulations as the
computed state variable values in daily discharge simulations at the starting date of a flood
event. Furthermore, the uncertainty of hydrological model structure and parameters might,
to a certain extent, impact flood simulations.
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Table 4. Performance of flood event simulations at the Tangnaihai streamflow station using the rain-gauge-based precipita-
tion data and the five GSMaP SPPs as model inputs.

Flood Events Precipitation Inputs Precipitation (mm) RBP (%) RBR (%) NSE RBFP (%) PTE (h)

20140907
Gauge 114.4 - −19.9 0.551 −23.3 1

GSMaP-Gauge 112.9 −1.4 −16.8 0.641 −21.9 1
GSMaP-MVK 162.8 42.3 73.1 −4.635 81.4 0

20150622
Gauge 117.4 - 16.9 0.585 −3.5 −13

GSMaP-Gauge 130.9 11.5 41.5 −0.912 19.0 −12
GSMaP-MVK 187.8 60 191.1 −38.78 149.9 −104

20150921
Gauge 36.2 - 2.6 −0.168 −1.6 −17

GSMaP-Gauge 40.5 12.1 30.6 −16.682 30.7 −18
GSMaP-MVK 92.9 156.8 260.9 −1076.51 348 −15

20161011
Gauge 16.6 - −0.7 0.590 −9.7 −81

GSMaP-Gauge 20.1 20.9 23.1 −0.848 13.3 −83
GSMaP-MVK 25.3 52.1 156.9 −70.094 140.6 −89

20170527

Gauge 160.6 - 27.9 −0.071 −5.2 −56
GSMaP-Gauge 172.3 7.2 43.2 −1.138 7.0 −47
GSMaP-MVK 156.1 −2.8 85.5 −7.393 33.2 −353
GSMaP-NRT 160.0 −0.4 65.8 −5.735 46.0 −385

GSMaP-NRT-Gauge 170.2 5.9 46.1 −2.166 6.3 −362
GSMaP-Now 81.9 −49.0 −30.0 −0.765 −48.0 −350

20170821

Gauge 220.7 / 6.7 −0.025 −2.6 −824
GSMaP-Gauge 258.1 16.9 36.3 −1.523 18.7 −620
GSMaP-MVK 358.1 62.2 198.2 −53.42 185.8 −68
GSMaP-NRT 362.5 64.2 208.4 −66.186 263.8 −29

GSMaP-NRT-Gauge 273.4 23.8 81.2 −12.52 112.3 −842
GSMaP-Now 155.9 −29.4 −14.3 −1.245 8.5 −860

20180625

Gauge 148.4 / 2.1 0.607 −18.3 −68
GSMaP-Gauge 157.6 6.2 31.3 −0.555 6.3 −12
GSMaP-MVK 190.8 28.5 65.8 −5.76 25.8 −8
GSMaP-NRT 197.5 33.0 45.8 −2.87 13.8 249

GSMaP-NRT-Gauge 171.3 15.4 −2.9 −0.171 −15.9 249
GSMaP-Now 118.6 −20.1 −18.9 −0.128 −34.2 −9
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Table 4. Cont.

Flood Events Precipitation Inputs Precipitation (mm) RBP (%) RBR (%) NSE RBFP (%) PTE (h)

20180829

Gauge 128.7 / −12.5 −0.038 −15.8 −282
GSMaP-Gauge 140.2 8.9 −14.7 0.04 −12.2 −11
GSMaP-MVK 180.8 40.4 74.7 −22.888 147.0 −151
GSMaP-NRT 169.5 31.7 58.4 −14.055 80.4 −276

GSMaP-NRT-Gauge 145.1 12.7 19.7 −2.387 45.0 −280
GSMaP-Now 69.3 −46.2 −59.4 −13.136 −45.7 −251

Notes: A negative PTE value in this table represents that the simulated peak flow appears ahead of the observed peak flow, and a positive
value denotes that the simulated peak flow is behind the observed.
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Driven by GSMaP-MVK and GSMaP-Gauge, the VIC model with the rain-gauge-
benchmarked parameters was used to perform hourly simulations of the eight historical
flood events at the Tangnaihai Hydrological stations. As shown in Figures 12 and 13 and
Table 4, the GSMaP-MVK-forced VIC model tremendously overestimates total runoff and
peak flows for all events (RBR = 65.8–260.9% and RBFP = 25.8–348.0%) mainly because
GSMaP-MVK tends to largely overestimates precipitation for seven out of the eight flood
events (RBP = 28.5–156.8%), except for Event 20170527, in which there is a slight precipita-
tion underestimation of 2.8%. The GSMaP-MVK-based model run obtains extremely low
and negative NSE values of for all events and large peak time errors for most of the events.
This finding suggests that GSMaP-MVK barely has hydrological feasibility in streamflow
simulations at sub-daily scales. In contrast, GSMaP-Gauge outperforms GSMaP-MVK in
hourly flood-event simulations with evidently improved RBR, NSE, and RBFP for all events.
In Events 20140907 and 20180829, the GSMaP-Gauge-forced model, in particular, gains
slightly higher values of NSE (0.641 and 0.04, respectively) than the rain-gauge-driven
model (NSE = 0.551 and −0.038, respectively). This indicates that GSMaP-Gauge has
plausible hydrological performance in simulating these flood events. However, the GSMaP-
Gauge-based model considerably overestimates the flood processes for the other five events
with positive RBR and RBFP values (23.1–43.2% and 6.3–30.7%, respectively), mainly result-
ing from the situation where GSMaP-Gauge tends to overestimate precipitation during
these flood events by 6.2–20.9% (Figures 12 and 13 and Table 4).
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Forced by the GSMaP-NRT, GSMaP-NRT-Gauge, and GSMaP-Now SPPs, the VIC
model was employed for hourly simulations of the four flood events in 2017 and 2018.
Figure 13 and Table 4 demonstrate that the GSMaP-NRT- and GSMaP-NRT-Gauge-driven
model runs significantly magnify the observed flood processes and flood peaks in most
of events, mainly because GSMaP-NRT and GSMaP-NRT-Gauge largely overestimate
precipitation by 31.7–64.2% and 12.7–23.8%, respectively, in Events 20170821, 20180625,
and 20180829. For Event 20170527, GSMaP-NRT gives a negligible precipitation under-
estimation (RBP = −0.4%), and GSMaP-NRT-Gauge provides a slight overestimation of
5.9%. However, the GSMaP-NRT- and GSMaP-NRT-Gauge-based model runs still largely
overestimate the total runoff volume by 65.8% and 46.1%, respectively (Table 4). This
runoff overestimation is likely attributed to the situation that the GSMaP-NRT- and GSMaP-
NRT-Gauge-forced VIC model might compute much wetter soil moisture content at the
beginning day of this flood event in daily streamflow simulations. Owing to the consider-
able precipitation underestimation (RBP = −49.0–−20.1%), the GSMaP-Now-forced model
run generally underestimates total run volumes and flood peak flows (RBR= −14.3–−59.4%
and RBFP= −48.0–−34.2%), except for Event 20170821 in which the simulated flood peak
flow is 8.5% exceeding the observed value. All the near-real-time and real-time SPPs
obtained unsatisfactory flood simulation performance with negative NSE values for all
four events. In particular, GSMaP-NRT demonstrates inferior hydrological utility for flood
simulations.

Figure 14 displays the overall performance of hourly simulations of the four flood
events in 2017 and 2018 at the Tangnaihai hydrological station using the rain-gauge-based
precipitation data set and the five GSMaP SPPs in comparison with the observed discharge
data. Similar to the overall performance of daily streamflow simulations (Figure 11), the
rain-gauge-based precipitation data set present the best hydrological feasibility in hourly
flood simulations, and the performance of the GSMaP-Gauge-driven simulation run slightly
worsens but is comparable to that of the rain-gauge-based model run. Following GSMaP-
Gauge, GSMaP-Now and GSMaP-NRT-Gauge obtain certain flood-event predictability.
GSMaP-MVK- and GSMaP-NRT-based barely have hydrological utility for flood-event
simulations.

Remote Sens. 2021, 13, 4199 20 of 26 
 

 

GSMaP-MVK 190.8 28.5 65.8 −5.76 25.8 −8 
GSMaP-NRT 197.5 33.0 45.8 −2.87 13.8 249 

GSMaP-NRT-Gauge 171.3 15.4 −2.9 −0.171 −15.9 249 
GSMaP-Now 118.6 −20.1 −18.9 −0.128 −34.2 −9 

20180829 

Gauge 128.7 / −12.5 −0.038 −15.8 −282 
GSMaP-Gauge 140.2 8.9 −14.7 0.04 −12.2 −11 
GSMaP-MVK 180.8 40.4 74.7 −22.888 147.0 −151 
GSMaP-NRT 169.5 31.7 58.4 −14.055 80.4 −276 

GSMaP-NRT-Gauge 145.1 12.7 19.7 −2.387 45.0 −280 
GSMaP-Now 69.3 −46.2 −59.4 −13.136 −45.7 −251 

Notes: A negative PTE value in this table represents that the simulated peak flow appears ahead of the observed peak 
flow, and a positive value denotes that the simulated peak flow is behind the observed. 

Figure 14 displays the overall performance of hourly simulations of the four flood 
events in 2017 and 2018 at the Tangnaihai hydrological station using the rain-gauge-based 
precipitation data set and the five GSMaP SPPs in comparison with the observed dis-
charge data. Similar to the overall performance of daily streamflow simulations (Figure 
11), the rain-gauge-based precipitation data set present the best hydrological feasibility in 
hourly flood simulations, and the performance of the GSMaP-Gauge-driven simulation 
run slightly worsens but is comparable to that of the rain-gauge-based model run. Follow-
ing GSMaP-Gauge, GSMaP-Now and GSMaP-NRT-Gauge obtain certain flood-event pre-
dictability. GSMaP-MVK- and GSMaP-NRT-based barely have hydrological utility for 
flood-event simulations. 

 
Figure 14. Taylor diagrams showing the overall performance of hourly simulations of the four flood 
events in 2017 and 2018 at the Tangnaihai hydrological station using the rain-gauge-based precipi-
tation data set and the five GSMaP SPPs based on the observed discharge data. 

5. Discussion 
As the co-partner of the GPM mission, JAXA is continuously updating the algorithms 

for GSMaP. This study evaluated the accuracy and hydrological utility of five state-of-the-
art GSMaP SPPs in near-real-time, post-real-time, and real-time versions at daily and 
hourly temporal scales in YRSR. Based on the statistical evaluation against ground pre-

Figure 14. Taylor diagrams showing the overall performance of hourly simulations of the four
flood events in 2017 and 2018 at the Tangnaihai hydrological station using the rain-gauge-based
precipitation data set and the five GSMaP SPPs based on the observed discharge data.



Remote Sens. 2021, 13, 4199 21 of 26

5. Discussion

As the co-partner of the GPM mission, JAXA is continuously updating the algorithms
for GSMaP. This study evaluated the accuracy and hydrological utility of five state-of-the-
art GSMaP SPPs in near-real-time, post-real-time, and real-time versions at daily and hourly
temporal scales in YRSR. Based on the statistical evaluation against ground precipitation
observations, this study found that GSMaP-Gauge presents the best performance, followed
by GSMaP-Now. GSMaP-NRT-Gauge is ranked third, and GSMaP-MVK and GSMaP-NRT
are unsatisfying. Although the pattern of overall performance of the five GSMaP SPPs
in retrieving hourly precipitation is similar to that of the SPP-based daily precipitation
estimates (Figure 5a), the quality of the SPP-based hourly precipitation estimates is much
lower than that of the SPP-based daily estimates. Given that precipitation tends to be
more variable at finer temporal scales, all five GSMaP SPPs are poorer in retrieving hourly
precipitation dynamics than detecting daily processes. Many previous studies have re-
vealed this phenomenon in many regions of the world, such as Myanmar [38], northeast of
Austria [54], Mainland China [55], the Upper Blue Nile basin [56], South Korea [57], the
western branch of the East African Rift [58], and the Guangdong Province of China [59].

Post-real-time SPPs generally show better performance than their near-time-time
versions because of the gauge-based adjustment in several regions of the world [16,60–63].
However, the post-real-time product GSMaP-MVK significantly overestimates precipitation
with higher overestimation magnitudes than the near-real-time product GSMaP-NRT-
Gauge (Figures 3 and 6), and GSMaP-MVK presents the lower overall score than GSMaP-
NRT-Gauge (Figure 6). Considering that few studies have been conducted on the evaluation
of GSMaP-NRT-Gauge that presents excellent accuracy in real- and near-real-time SPPs,
more efforts should be exerted to explore the quality of GSMaP-NRT-Gauge in different
parts of the world. Lu et al. [36] comprehensively assessed the performance of uncalibrated
IMERG V5, gauge-calibrated IMERG V5, GSMaP-MVK V7, GSMaP-Gauge V7, and their
hydrological utilities over the Tibetan Plateau where YRSR is located. The results indicate
that GSMaP-Gauge presented the best performance in almost all statistical indices with
higher correlation, lower bias, and better detection capability (POD, FAR, and CSI), while
GSMaP-MVK had the worst performance. Their findings are consistent with the results of
this study. GSMaP-Gauge demonstrates higher quality than GSMaP-MVK owing to the
gauge-based calibration with the CPC data set, but the quality of GSMaP-Gauge largely
depends on the rain gage density and data quality of CPC. Yuan et al. [38] proposed an
assessment framework to statistically and hydrologically evaluate three IMERG V5 SPPs
(IMERG-E, IMERG-L, and IMERG-F), three GSMaP V7 SPPs (GSMaP-NRT, GSMaP-MVK,
and GSMaP-Gauge), and two TRMM SPPs (3B42RT and 3B42V7) in the Chindwin River
basin in Myanmar and found that GSMaP-Gauge greatly underestimates precipitation and
has the lower overall score than GSMaP-MVK. By checking the CPC data set, Yuan et al. [38]
demonstrated that no gauges in the Chindwin River basin are included in the CPC data and,
the rainfall records at several gauges outside the basin are mainly used to infer the rainfall
situation in the investigated basin. These factors explained the low accuracy of the GSMaP-
Gauge precipitation estimates in the Chindwin River basin. These factors controlling the
errors of precipitation estimates require the attention from algorithm developers. GSMaP-
Now shows an acceptable performance in daily precipitation detections in YRSR. However,
Kubota et al. [64] found that GSMAP-Now V6 exhibits the highest RMSE value among the
four GSMaP SPPs (GSMaP-Now, GSMaP-NRT, GSMaP-MVK, and GSMaP-Gauge) and
pointed out that GSMAP-Now is estimated by extrapolating the cloud movement vector
for half an hour, which often leads to a decrease in the accuracy of GSMaP-Now. Therefore,
more efforts should be exerted to comprehensively evaluate the accuracy of GSMaP-Now in
different parts of the world. The SPP evaluation in this study was performed by comparing
the pixel precipitation values of SPPs with the point precipitation observations at rain
gauges.

Several previous studies have been conducted to evaluate the hydrological utili-
ties of GSMaP products in several basins in the world. In the Qaraqash River basin
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in China, Wang et al. [65] conducted hydrological assessment of GSMaP-Gauge V7 and
TRMM 3B42V7 by the Soil and Water Assessment Tool hydrological model. The results
indicated that GSMaP-Gauge V7 fits well with the observed runoff in monthly simula-
tions and presents better ability to reproduce runoff changes than 3B42V7 does. Most of
previous studies demonstrated that GSMaP-Gauge presents a better hydrological ability
than GSMaP-MVK at daily and sub-daily time scales whether in the rain-gauge-based
benchmarked parameter scheme or the input-specific recalibration scheme [63,66]. Simi-
larly, this study found that GSMaP-Gauge demonstrates prominently better performance in
capturing daytime precipitation dynamics in YRSR than GSMaP-MVK does. Bui et al. [66]
evaluated the hydrological utilities of GSMaP-Gauge V5 and GSMaP-MVK V5 by selecting
basins under different climatic conditions in three different Asian countries (Japan, Viet-
nam, and South Korea). They found that GSMaP-Gauge V5 presents superior performance
in daily streamflow simulation in both temperate and subtropical basins but demonstrates
worse simulation results than GSMaP-MVK V5 in the Upper-Cau basin in Vietnam. This is
probably because that the unsatisfactory accuracy of GSMaP-Gauge precipitation estimates
results in the inferior performance of streamflow simulations. Therefore, SPP users need to
pay attention to the quality of the CPC data in their study domain and select the suitable
GSMaP products for daily and hourly discharge simulations. Only using YRSR as the
study area will cause certain uncertainty to the quality assessment of GSMaP SPPs. In
future works, the study area should be expanded to more comprehensively evaluate the
accuracy of GSMaP SPPs. Many previous studies have demonstrated that precipitation
errors significantly propagate in streamflow simulations [67–70]. Owing to the acceptable
quality of GSMaP-Gauge precipitation estimates, GSMaP-Gauge-based daily discharge sim-
ulation reveals comparable capability to the rain-gauge-driven model run in this study. In
contrast, GSMaP-MVK and GSMaP-NRT present noticeable overestimation of total runoff
and high flow in daily streamflow simulations (Figures 8 and 9). This is, to a large extent,
because of their significant overestimation of total precipitation and heavy precipitation
estimates (Figures 3 and 4). The interpolated precipitation data based on rain gauges still
have considerable errors, which might significantly impact the accuracy of flood simulation
(Figures 12 and 13). The possible reason is that the local sparse rain-gauge network that is
unevenly distributed with merely 13 national weather stations may not fully characterize
the spatial variation of precipitation at hourly time scales. A denser rainfall observation
network is recommended to be established in YRSR as soon as possible, and the density
and distribution pattern of rain gauges should be comprehensively considered.

The hydrological utility of SPPs is subject to large uncertainties from precipitation
input, parameter estimations, and model structures. In this study, the inverse-distance
weighting method was adopted to produce the spatial distribution of precipitation on a 0.1◦

resolution. There are considerable uncertainties in estimating the spatial distribution of pre-
cipitation that is represented by a limited number of rain gauges (13 stations) in such a large
basin (1.22 × 105 km2). Model parameters calibrated by biased input precipitation data may
not adequately characterize the hydrological features of a catchment [38,68,70]. However,
this study demonstrates the acceptable hydrological performance of SPPs. This is mainly
because hydrological models are, to some extent, tolerant of the errors of precipitation
inputs. In this study, the time period of the available GSMaP SPPs is short and not sufficient
for model calibration, and using biased precipitation inputs for model calibration might
lead to the biased parameter sets. Thus, the strategy of using the rain-gauge-based bench-
marked parameters was adopted for hydrological simulations. Xue et al. [71] analyzed the
parameter compensation effect in hydrological simulations and indicated that the recali-
brated model parameter values may not represent the actual features of the basin, which
further reduces the model’s predictive capability in ungauged basins. The uncertainty of
hydrological model structures and parameters should be thoroughly quantified when the
performance of SPPs is evaluated. Sun et al. [34] proposed a Bayesian uncertainty analysis
framework to evaluate satellite precipitation data with the consideration of the parameter
uncertainty and model structural uncertainty. In future works, these uncertainties should
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be accounted for in satellite precipitation assessment. Ma et al. [72] stressed that local
strong convectional weather and complex terrain seriously affect the accuracy of satellite
precipitation retrieval and result in unpredictable errors between satellite estimates and
gauge observations. The effect of convectional systems and topography on the accuracy of
SPPs was not analyzed in detail in this study owing to the limited number of rain gauges
in YRSR, and this issue will be investigated in the future.

To the best of our knowledge, this study is the earliest attempt to statistically and
hydrologically evaluate the performance of GSMaP-Now. This study shows that GSMaP-
Now demonstrates comparable precipitation monitoring capabilities to the evaluated near-
real-time SPPs (Figure 5) and basically acceptable hydrological performance (Figure 11) in
YRSR. This finding reflects that GSMaP-Now has the potential for flash flood monitoring
and real-time flood forecasting in remote regions where a sufficiently dense gauge network
is unavailable. It is recommended that the GSMaP developers and SPP users to conduct
the GSMaP-Now evaluation in more regions.

6. Conclusions

As the co-partner of the GPM mission, JAXA is continuously updating the precipita-
tion retrieving algorithms for GSMaP. This study statistically evaluated the quality of the
latest GPM-era GSMaP SPPs in real-, near-real-, and post-real-time versions at daily and
hourly temporal scales against the ground precipitation observations in the poorly gauged
YRSR of China. Afterward, the hydrological feasibility of these SPPs in daily streamflow
and hourly flood-event simulations was investigated through the VIC hydrological model.
Based on the above analyses, the main conclusions of this study are summarized as follows:

(1) The statistical evaluation of the five GSMaP SPPs against the ground precipitation
observations demonstrates that GSMaP-Gauge obtains the best overall performance
in capturing daily and hourly precipitation dynamics in YRSR, followed by GSMaP-
Now and GSMaP-NRT-Gauge, whereas GSMaP-MVK and GSMaP-NRT have inferior
performance. All five GSMaP SPPs are less accurate in retrieving hourly precipitation
dynamics than in detecting daily processes, indicating that the performance of GSMaP
to some extent depends on the accumulation interval of precipitation.

(2) GSMaP-Gauge displays the best hydrological feasibility, which is comparable to the
rain-gauge-based data. GSMaP-Now and GSMaP-NRT-Gauge demonstrate basically
acceptable hydrological performance in daily streamflow simulations. Both GSMaP-
MVK and GSMaP-NRT present inferior capability in daily discharge simulations,
with a considerable overestimation of the total streamflow.

(3) The rain-gauge-based precipitation data set presents the best hydrological feasibil-
ity in hourly flood simulations but contains considerable errors in total runoff and
flood peak flow. The performance of the GSMaP-Gauge-driven flood-event simula-
tion run slightly worsens but is comparable to that of the rain-gauge-based model
run. Following GSMaP-Gauge, GSMaP-Now and GSMaP-NRT-Gauge obtain certain
predictability of flood events. Overall, GSMaP-MVK and GSMaP-NRT barely have
hydrological utility for flood-event simulations.

The above findings are expected to provide SPP users with valuable guidelines for the
choices of GSMaP products in YRSR and offer users and researchers a better understanding
of the characteristics of the latest GSMaP SPPs. Overall, GSMaP-Gauge is recommended to
simulate historical daily streamflow processes and hourly flood events in YRSR. GSMaP-
Now, which is one of the limited real-time SPPs released to the public, presents a great
potential for applications in real-time flood forecasting. Moreover, this study is associ-
ated with large uncertainties from precipitation interpolation, parameter estimations, and
hydrological modeling. Future work should thoughtfully consider these uncertainties in
satellite precipitation assessment.
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