
remote sensing

Article

YOLO-RTUAV: Towards Real-Time Vehicle Detection through
Aerial Images with Low-Cost Edge Devices

Hong Vin Koay 1 , Joon Huang Chuah 1,* , Chee-Onn Chow 1 , Yang-Lang Chang 2 and Keh Kok Yong 3

����������
�������

Citation: Koay, H.V.; Chuah, J.H.;

Chow, C.-O.; Chang, Y.-L.; Yong, K.K.

YOLO-RTUAV: Towards Real-Time

Vehicle Detection through Aerial

Images with Low-Cost Edge Devices.

Remote Sens. 2021, 13, 4196. https://

doi.org/10.3390/rs13214196

Academic Editor: Paolo Addesso

Received: 9 August 2021

Accepted: 11 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603,
Malaysia; hongvin@um.edu.my (H.V.K.); cochow@um.edu.my (C.-O.C.)

2 Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
ylchang@ntut.edu.tw

3 MIMOS Berhad, Technology Park Malaysia, Kuala Lumpur 57000, Malaysia; kk.yong@mimos.my
* Correspondence: jhchuah@um.edu.my

Abstract: Object detection in aerial images has been an active research area thanks to the vast
availability of unmanned aerial vehicles (UAVs). Along with the increase of computational power,
deep learning algorithms are commonly used for object detection tasks. However, aerial images have
large variations, and the object sizes are usually small, rendering lower detection accuracy. Besides,
real-time inferencing on low-cost edge devices remains an open-ended question. In this work, we
explored the usage of state-of-the-art deep learning object detection on low-cost edge hardware. We
propose YOLO-RTUAV, an improved version of YOLOv4-Tiny, as the solution. We benchmarked
our proposed models with various state-of-the-art models on the VAID and COWC datasets. Our
proposed model can achieve higher mean average precision (mAP) and frames per second (FPS)
than other state-of-the-art tiny YOLO models, especially on a low-cost edge device such as the Jetson
Nano 2 GB. It was observed that the Jetson Nano 2 GB can achieve up to 12.8 FPS with a model size
of only 5.5 MB.

Keywords: object detection; deep learning; aerial imaging; real-time detection

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are widely available
commercially at a low cost. UAVs can provide aerial views of almost everywhere with-
out any elaborate planning and geographical constraints. This has led to the usage of
UAVs in various fields, including search and rescue missions [1,2], agriculture [3], vehicle
tracking [4–6], and environment monitoring [7,8]. In particular, UAVs have seen their
applications in intelligent transportation systems (ITSs). As the transportation system is
becoming more complex, vehicle detection from aerial images are increasingly important.
This helps in traffic flow management, identifying vehicles, and parking lot management,
to name a few. Vehicle detection is the first step in many traffic surveillance tasks. Therefore,
it is viewed as the future trend in transportation and vehicle-related applications.

Generally, vehicle detection in aerial images can be classified into two categories,
the traditional machine learning methods and the deep learning approaches. Traditional
machine learning methods usually collect hand-crafted features such as edges and corners
to classify the object in an image. Other traditional methods include the histogram of
oriented gradients, frame difference, and optical flow. These techniques have competitive
inference speed due to their comparatively simple computation, but usually have low
accuracy as they are trained on selected features. These techniques do not perform well if
the image is not seen before training.

Recently, deep learning methods have achieved a significant breakthrough in various
fields in computer vision. In terms of object detection, many detection algorithms have
shown great performance in image detection tasks, such as region-based convolutional

Remote Sens. 2021, 13, 4196. https://doi.org/10.3390/rs13214196 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8428-093X
https://orcid.org/0000-0001-9058-3497
https://orcid.org/0000-0001-6044-2650
https://orcid.org/0000-0002-5834-1057
https://doi.org/10.3390/rs13214196
https://doi.org/10.3390/rs13214196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214196
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214196?type=check_update&version=1

Remote Sens. 2021, 13, 4196 2 of 26

neural networks (R-CNNs) [9–11], you only look once (YOLO) [12–15], and the single-
shot detector (SSD) [16,17]. However, those algorithms are usually trained and tested
on large-scale natural images, such as MSCOCO [18] and PASCAL VOC [19], which are
different compared to aerial images. Aerial images tend to have a high variation due to
the altitude and smaller object sizes. Varied flying altitudes cause captured images to
have different sizes of objects with different resolutions, therefore creating many different
visual appearances. Ultimately, several classes could share the same appearance if images
are captured at higher altitudes. Besides, the lighting condition changes as the image is
captured at different times, causing a big variation in the captured images. Furthermore,
aerial images tend to have many objects in a single image. Vehicles may be partially
occluded by trees and other constructions. Thus, using the pretrained state-of-the-art
models would yield lower accuracy.

Many methods and algorithms are proposed to solve the issue of detecting small
objects in aerial images [20–22]. However, there is less focus on developing a real-time
detector on low-cost edge hardware, such as the Jetson Nano 2 GB. The tradeoff between
detection accuracy and inference time has not been well addressed. Encouraged by the
previously stated problems, in this work, we propose an object detection method based on
YOLO, focusing on small object detection that could achieve near-real-time detection on
low-cost hardware, coined YOLO-RTUAV. To achieve that, we modify the existing YOLOv4-
Tiny, a one-stage object detector with relatively high accuracy and speed in detecting small
objects in aerial images. We used two public datasets, namely the Vehicle Aerial Imaging
from Drone (VAID) [23] and Cars Overhead With Context (COWC) datasets [24], to validate
our proposed model. We performed extensive experiments, to achieve a fair comparison
with the state-of-the-art models.

The rest of this paper is organized as follows. Section 2 provides a brief overview of
previous works. Section 3 revisits the object detection algorithms and explains our proposed
model. Section 4 describes the experimental settings used for this work, including the
dataset and model parameters used. The results and discussion are given in Section 5, and
Section 6 concludes this paper and provides suggestions for further works.

2. Related Works

Various techniques have been proposed to detect vehicles in aerial images. The main
challenges of this field are summarized as below.

• The vehicle in the image is small in size. For example, a 5k× 3k px image may contain
multiple vehicles of size less than 50× 50 px;

• A large number of objects in a single view. A single image could contain up to
hundreds of vehicles in a parking lot;

• High variation. Images taken with different altitudes will present objects of the same
class with different features. For example, when the altitude is high, a vehicle will be
viewed as a single rectangular object and is difficult to differentiate;

• Highly affected by the illumination condition and occlusions. Reflection due to
sunlight and background noise such as trees and buildings would render the object
unobserved.

Before the popularity of the deep learning approach, many traditional machine learn-
ing methods were proposed. These techniques heavily rely on hand-crafted feature extrac-
tion for image classification. This usually requires two steps to detect and classify an object.
Firstly, a feature extractor is used to extract features that are important to differentiate
from one another. Generally, shape, color, texture, and corners are some of the common
collected features used to differentiate between classes. More sophisticated techniques
that look into the image gradient, such as the histogram of oriented gradients (HOG) and
scale-invariant feature transform (SIFT), are used to collect low-level features. Then, the
collected features are combined with classifiers such as support vector machine (SVM),
AdaBoost, bag-of-words (BoW), and random forest (RF) to detect and recognize different
classes of objects [25–29].

Remote Sens. 2021, 13, 4196 3 of 26

Even though deep learning methods have been proven to perform better in object
detection tasks, several recent studies have used traditional machine learning approaches.
They are designed to use in a specific task because of the low complexity and computa-
tion. Among them, Xu et al. [30] proposed an enhanced Viola–Jones detector for vehicle
identification from aerial imagery. Chen et al. [31] extracted texture, color, and high-order
context features through a multi-order descriptor. Then, superpixel segmentation and
patch orientation were used to detect the vehicle in high-resolution images. Cao et al. [32]
proposed an affine function transformation-based object-matching framework for vehicle
detection. Similar to the previous work, superpixel segmentation was adopted to generate
nonredundant patches, then detection and localization were performed with a threshold
matching cost. Liu et al. [4] developed a fast oriented region search algorithm to obtain
the orientation and size of an object. A modified vector of locally aggregated descriptors
(VLAD) was applied to differentiate between object and background from the proposals
generated. Cao et al. [33] proposed a weakly supervised, multi-instance learning algorithm
to learn the weak labels without explicitly labeling every object in an image. SVM was then
trained to classify from the density map derived from the positive regions.

Many advancements have been made in object detection algorithms, especially on
small object detection, since aerial images usually contain many small objects. Deep-
learning-based object detection techniques that use convolutional neural networks (CNNs)
have been regarded as the best object detectors. Generally, the current object detection
techniques can be divided into two categories, namely one-stage detectors and two-stage
detectors. Two-stage detectors are usually accurate, but lack speed, while one-stage detec-
tors are fast with relatively high accuracy. We refer the readers to two very recent surveys
on small object detectors based on deep learning [34] and techniques for vehicle detection
from UAV images [35]. In [34], the authors highlighted some well-performing models
to detect generic small objects, including improved Faster R-CNN [36–38], the semantic
context-aware network (SCAN) [39], SSD [40,41], RefineDet [42], etc. The authors in [35]
discussed three main pillars to improve the models through optimizing accuracy, achieving
optimizing objectives, and reducing computational overhead.

The key ideas of improving detection on small objects in aerial images include fusion
and leveraging size information. Several proposed techniques fused the features of the
shallow layers with deep layers [43,44] to differentiate between objects and background
noise. Besides, some works generated vehicle regions from multiple feature maps of scales
and hierarchies to locate small target objects [45,46]. Skip connections were used in [43] to
reduce the loss of information in deep layers, while passthrough layers were used in [47] to
combine features from various resolutions. More commonly, the deep layers are stripped
off to detect small objects, which helps in increasing the number of feature points per
object [45,48–50]. Some works suggested removing large anchor boxes [51,52] or removing
small blobs to avoid false positives [53].

Undoubtedly, one-stage detectors are the best in terms of accuracy and speed tradeoff.
Among them, the famous detectors are the YOLO family [12–15]. Many works further
reduced the size of the YOLO models, allowing real-time detection [54–57]. There are
several compressed models based on SSD [58] and MobileNet [59]. Mandal et al. proposed
AVDNet [60] with a smaller size compared to RetinaNet and Faster R-CNN. We would
like to further improve the YOLO models for real-time detection on low-cost embedded
hardware in this work. Similar works have produced great performance, but are still far
from real time [58,61].

3. Methodology
3.1. Object Detection Algorithm

Object detection is one of the important tasks in image processing. Prior to 2012, object
detection was usually performed with classical machine learning approaches. As discussed
in Section 2, the object detection algorithms based on deep learning are classified into two

Remote Sens. 2021, 13, 4196 4 of 26

large branches: one-stage detectors and two-stage detectors. The architecture of both object
detection algorithms is shown in Figure 1.

Input Backbone Neck Dense Prediction Sparse Prediction

One-stage detector
Two-stage detector

Figure 1. One-stage and two-stage object detection algorithm.

We selected the best-performing one-stage and two-stage detectors to benchmark
against our proposed model in this work. We selected Faster R-CNN [11] for two-stage
detector, while YOLOv2, YOLOv2-Tiny, YOLOv3, YOLOv3-Tiny, YOLOv4, and YOLOv4-
Tiny [13–15] for the one-stage detector.

3.1.1. Two-Stage Detector: Faster R-CNN

R-CNN [9] uses region proposals for object detection in an image. The region proposal
is a rough guess of the object location. A fixed number of regions are extracted through a
selective search. For every region proposal, a feature vector is extracted. Similar regions
are merged together through the greedy algorithm, and candidate regions are obtained.
Fast R-CNN [10] improves the approach by using a shared convolutional feature map gen-
erated directly from the input image to form a region of interest (RoI). Faster R-CNN [11]
introduces a region proposal network (RPN) to predict the object bounding boxes and
objectness score with little effect on the computational time. The architecture is shown in
Figure 2.

In
pu

t I
m

ag
e

res2
res3

res4
res5

H/4,W/4 H/8,W/8 H/16,W/16 H/32,W/32

objectness

anchor deltas

Box proposals

NMS

NMS
boxes

P2 P3 P4 P5

P6
H/64,W/64

upsampler

ResNet50

Feature Pyramid Network

RPN Output

Region Proposal Network

ROI Heads

class logits

bbox predictions

head output

head

output

Figure 2. Faster R-CNN architecture.

Conceptually, Faster R-CNN comprises three components, namely the feature network,
RPN, and detection network. The feature network is usually a state-of-the-art pretrained
image classification model, such as VGG or ResNet, with stripped classification layers. It is
used to collect features from the image. In this work, we used a feature pyramid network

Remote Sens. 2021, 13, 4196 5 of 26

(FPN) with ResNet50. FPN combines low-resolution and semantically powerful features
with high-resolution, but semantically weak features via a top-down pathway and lateral
connections. The output of the FPN is then used for the RPN and ROI pooling. The RPN
is a simple network with three convolutional layers. One common convolutional layer
is fed into two layers for classification and bounding box regression. The RPN will then
generate several bounding box proposals that have a high probability of containing objects.
The detection network or the ROI head then considers the input from the FPN and RPN to
generate the final class and bounding boxes.

3.1.2. One-Stage Detector: You Only Look Once

YOLO [12] predicts and classifies bounding boxes of objects in a single pass. Compared
to Faster R-CNN, there is no region proposal phase. YOLO first splits an image into S× S
nonoverlapping grids. YOLO predicts the probability of a present object, the coordinates of
the predicted box, and the object’s class for each cell in the grids. The network predicts B
bounding boxes in each cell and the confidence scores of these boxes. Each bounding box
carries five parameters, (x, y, w, h, sc), where x, y are the center of the predicted box, w, h is
the width and height of the box, and sc is the confidence score. Then, the network calculates
the probabilities of the classes for each cell. The output of YOLO is (S, S, B× 5 + C), where
C is the number of classes. The framework is shown in Figure 3. The first version of YOLO,
coined YOLOv1, reportedly achieves a faster inference time, but lower accuracy compared
to a single-shot detector (SSD) [16].

Input Image Image divided into
 grids

Bounding boxes + confidence

Class probability map

Vehicle detection

Figure 3. YOLO model detection framework.

YOLO9000, or more commonly known as YOLOv2 [13], was proposed to improve the
accuracy and detection speed. YOLOv2 uses convolutional layers without fully connected
layers (Darknet-19) and introduces anchor boxes. Anchor boxes are predefined boxes
of certain shapes to capture objects of different scales and aspects. The class probabili-
ties are calculated at every anchor box instead of a cell, as in YOLOv1. YOLOv2 uses
batch normalization (BN) and a high-resolution classifier, further boosting the accuracy of
the network.

YOLOv3 [14] uses three detection levels rather than the one in YOLOv1 and YOLOv2.
YOLOv3 predicts three box anchors for each cell instead of the five in YOLOv2. At the
same time, the detection is performed on three levels of the searching grid (S× S, 2S× 2S,
4S× 4S) instead of one (S× S), inspired by the feature pyramid network [62]. YOLOv3
introduces a deeper backbone network (Darknet-53) for extracting feature maps. Thus, the
prediction is slower compared to YOLOv2 since more layers are introduced.

YOLOv4 [15] was introduced two years after YOLOv3. Many technical improvements
were made in YOLOv4, while maintaining its computational efficiency. The improvements
are grouped into bag of freebies (BoF) and bag of specials (BoS). In BoF, all improvements
introduced did not affect the inference time. The authors implemented CutMix and mosaic
data augmentation, DropBlock regularization, class label smoothing, complete IoU (CIoU)

Remote Sens. 2021, 13, 4196 6 of 26

loss, cross mini-batch normalization (CmBN), self adversarial training (SAT), the cosine
annealing scheduler, optimal hyperparameters through genetic algorithms, and multiple
anchors for a single ground truth. On the other hand, BoS represents improvements that
will affect the inference time slightly, but have a significant increase in accuracy. They
include the Mish activation function, cross-stage partial (CSP) connections, the multi-
input weighted residual connection (MiWRC), spatial pyramid pooling (SPP), the spatial
attention module (SAM), the path aggregation network (PAN), and distance IoU loss
(DIoU) in nonmaximum suppression (NMS). We refer the reader to the original article for
more information.

This work considered six different YOLO models, which were YOLOv2, YOLOv2-Tiny,
YOLOv3, YOLOv3-Tiny, YOLOv4, and YOLOv4-Tiny.

3.2. Proposed Model: YOLO-RTUAV

YOLOv4-Tiny was developed to simplify the YOLOv4 network, allowing the net-
work to run on low-end hardware. The model only contains a two-layer output network.
Therefore, YOLOv4-Tiny has ten-times fewer parameters than YOLOv4. However, it is not
able to detect a multiscale object and missing detection with overlapped objects. As for
aerial images, objects are usually small in size, yet occluded by surrounding items such as
trees and buildings. Therefore, an improved YOLOv4-Tiny in terms of detection accuracy,
inference speed, and model size is required.

To solve the problems raised above, an improved YOLOv4-Tiny is proposed, coined
YOLO-RTUAV. Our proposed model is shown in Figure 4. The proposed YOLO-RTUAV
network should achieve three objectives:

• Detect small objects in aerial images;
• Efficient, yet accurate for real-time detection in low-end hardware;
• Small in size and reduced in parameters.

Conv Conv CSP Maxpool CSP Maxpool CSP

Conv Upsample

Concat

Conv

Conv Conv=
Subsampled convolutional layer

Conv Conv BatchNorm Leaky ReLU=

Convolutional layer

Conv Conv Conv

C
oncat

Conv

C
oncat

CSP =

Cross Stage Partial (CSP) Block

Conv

Conv

Conv

Conv

Figure 4. The YOLO-RTUAV model architecture. n is calculated such that (number of classes+ 5)× 3.

The main improvements of our proposed model are summarized below:

1. Changing the output network to a larger size, allowing smaller objects to be detected;
2. Usage of Leaky ReLU over the Mish activation function [63] in the convolutional

layers to reduce the inference time. The backbone remains the same as the original
YOLOv4-Tiny, which is CSPDarknet-19;

3. Usage of several 1× 1 convolutional layers to reduce the complexity of the models;
4. DIoU-NMS is used to reduce suppression error and lower the occurrence of missed

detection;
5. Complete IoU loss is used to accelerate the training of the model and improve the

detection accuracy;
6. Mosaic data augmentation is used to reduce overfitting and allows the model to

identify smaller-scale objects better.

Firstly, the detection layer size is changed to detect smaller objects. The detection
layer remains two layers, with the output size of 13× 13× n replaced with 52× 52× n.

Remote Sens. 2021, 13, 4196 7 of 26

YOLOv4-Tiny can detect objects in a wide range of natural image objects, but cannot
detect small objects in aerial images. Therefore, the highly subsampled layers are not
necessary, whereby we removed the coarse detection level layer of size 13× 13× 36 and
replaced it with a finer detection level layer of size 52× 52× 36. Given an input image
of size 416× 416× 3, the 26× 26× n detection layer is suitable for medium-scale object
detection, and the 52× 52× n detection layer is suitable for small-scale object detection.
Therefore, the proposed YOLO-RTUAV can realize smaller object detection, which is critical
for aerial images.

The backbone of our proposed model is CSPDarknet-19. In contrast to YOLOv4’s
CSPDarknet-53, CSPDarknet-19 has gradually reduced the number of parameters while
not hurting the accuracy significantly. The cross-stage partial (CSP) module divides the
feature map into two parts and combines the two parts by the cross-stage residual edge, as
illustrated in Figure 4. The CSP module allows gradient flow to propagate in two different
paths, increasing the correlation difference of gradient information. Therefore, the network
can learn significantly better than residual blocks. To further reduce the inference time,
the Mish activation layer is not used in our proposed model. Instead, Leaky ReLU is used
since the calculation was not complex, requiring less computational time.

Since the second YOLO output layer is calculated from the second and third CSP
layer, which has a mismatch in channel size and output shape, naively, one would use
convolutional layers to match the channel size. Therefore, the agreed channel size is then
512. This, however, requires large computation when the last convolutional layer is dealing
with a large channel size. To solve this issue, we first used two 1× 1 convolutional layers
before concatenation, agreeing on the channel size to be 256. Thus, the computation needed
is smaller, with no effect on detection accuracy. A further explanation is available in
Appendix A.

The most commonly used nonmaximum suppression (NMS) technique is Greedy
NMS, a greedy iterative procedure. Although Greedy NMS is relatively fast, it comes with
several pitfalls. It suppresses everything within the neighborhood with lower confidence,
keeps only the detection with the highest confidence, and returns all the bounding boxes
that are not suppressed. Therefore, Greedy NMS is not optimal in this work since the
objects in the dataset are usually small and overlapped objects tend to be filtered out. To
address the issue, DIoU-NMS [64] was used. DIoU-NMS considers both the overlapping
areas and the distance between the center points between the two borders. Thus, it can
effectively optimize the process of suppressing redundant bounding boxes and reducing
missed detections. The definition of DIoU-NMS is shown in Equation (1).

Si =

{
Si, IoU −RDIoU(M, Bi) < ε

0, IoU −RDIoU(M, Bi) ≥ ε
(1)

whereRDIoU denotes the distance of the center points of the two boxes, Si is the classifica-
tion score, and ε is the NMS threshold. Equation (1) compares the distance of the prediction
boxM of the highest score with the i-th box, Bi. If the differences between IoU andRDIoU
exceeds ε, the score Si remains, otherwise it is filtered out.

The complete intersection over union (CIoU) loss function is deployed for bounding
box regression. CIoU has proven to improve accuracy and accelerate the training process.
Usually, the objective loss function for YOLO models is the sum of bounding box loss,
confidence loss, and classification loss. The bounding box regression loss function is
applied to calculate the difference between the predicted and ground truth bounding boxes.
The common metric to calculate the bounding box regression is the intersection over union
(IoU). The IoU is used to measure the overlapping ratio between the detected bounding
box, Bp, and the ground truth bounding box, Bgt, as shown in Equation (2).

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(2)

Remote Sens. 2021, 13, 4196 8 of 26

The IoU loss is then calculated as shown in Equation (3).

LIoU = − ln IoU = − ln
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(3)

IoU loss suffers from a lower decrease rate during training. When there is no inter-
section between the ground truth and predicted box, the IoU is zero. Therefore, IoU loss
does not exist. This renders the inability of the loss function to reflect the distance between
the ground truth and the predicted box. Therefore, CIoU loss is used to overcome the
stated issue. The CIoU uses the distance between the predicted and ground truth bounding
box center point and compares the aspect ratio between the ground truth and predicted
bounding box. The formula is shown in Equation (4). Figure 5 illustrates the calculation of
the CIoU.

Lreg = LCIoU = 1− IoU +
ρ2(B, Bgt)

c2 + αv (4)

where ρ(·) is the Euclidean distance, c is the diagonal length of the smallest enclosing box
covering the two boxes, and α is a positive tradeoff parameter, denoted as α = v

(1−IoU)+v . v

measures the consistency of aspect ratio, v = 4
π2

(
arctan wgt

hgt
− arctan w

h

)2
, where w and h

represent the width and height of the box, respectively.

Figure 5. CIoU calculation conceptualized.

The classification function, Lcls, only penalizes if the object is present in the grid cell.
It also penalizes the bounding box coordinate if that box is responsible for the ground box
(highest IOU). It is calculated as shown in Equation (5),

Lcls = −
S2

∑
i=0

B

∑
j=0

Iobj
ij
[
Ĉi log(Ci) + (1− Ĉi) log(1− Ci)

]
(5)

The confidence loss, Lcon f , is calculate such that,

Lcon f = −λnoobj

S2

∑
i=0

B

∑
j=0

Inoobj
ij

[
Ĉi log(Ci) + (1− Ĉi) log(1− Ci)

]
−

S2

∑
i=0

Iobj
ij ∑

c∈classes
[p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))]

(6)

The total loss function in our proposed model is the same as YOLOv4. The loss func-
tion comprises three parts: classification loss (Lcls), regression loss (Lreg), and confidence
loss (Lcon f). The loss is therefore calculated as shown in Equation (7).

Remote Sens. 2021, 13, 4196 9 of 26

L = Lreg + Lcls + Lcon f

= 1− IoU +
ρ2(B, Bgt)

c2 + αv−
S2

∑
i=0

B

∑
j=0

Iobj
ij
[
Ĉi log(Ci) + (1− Ĉi) log(1− Ci)

]
− λnoobj

S2

∑
i=0

B

∑
j=0

Inoobj
ij

[
Ĉi log(Ci) + (1− Ĉi) log(1− Ci)

]
−

S2

∑
i=0

Iobj
ij ∑

c∈classes
[p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))]

(7)

where S2 is the grids generating B candidate boxes. Each candidate box will obtain the
corresponding bounding boxes through the network and form S× S× B bounding boxes.
If no objects are detected in the box (noobj), only the confidence loss of the box is calculated.
Cross-entropy error is used to calculate the confidence loss and is divided into obj (object)
and noobj (no object). The weight coefficient, λ, is used to reduce the weight of the noobj
loss function. As for classification loss, cross-entropy error is used. The j-th anchor box of
the i-th grid is responsible for the given ground truth, then the bounding box generated by
this anchor box will calculate the classification loss function.

Furthermore, we utilized mosaic data augmentation while training the model. This
combines four training images into one with certain ratios. This technique allows the model
to identify objects of a smaller scale. It also encourages the model to localize different types
of images in different portions of the frame. A sample of images that have undergone
mosaic data augmentation is shown in Figure 6.

Figure 6. Example of mosaic data augmentation images from the VAID dataset [23].

We compare our proposed models with the original YOLO models in Table 1. It is
observed that all the greatness of YOLOv4-Tiny remains while the number of layers is
reduced. Since some of the layers are removed, the model size is smaller as well.

Remote Sens. 2021, 13, 4196 10 of 26

Table 1. Characteristics of various YOLO models.

Parameters
Models

YOLOv2 YOLOv2-Tiny YOLOv3 YOLOv3-Tiny YOLOv4 YOLOv4-Tiny Ours

Number of layers 31 15 106 23 161 37 35
Anchors 5 5 9 6 9 6 6

Multilevel prediction - - 3 2 3 2 2

Backbone Darknet-19 9 Conv Layers Darknet-53 Darknet-19 CSPDarknet-53 CSPDarknet-19 CSPDarknet-19
FPN 7 7 X X X X X
SPP 7 7 7 7 X X X
PAN 7 7 7 7 X X X

Augmentation
Saturation X X X X X X X
Exposure X X X X X X X

Hue X X X X X X X
Mosaic 7 7 7 7 X X X

Model Size 194 MB 43 MB 236 MB 34 MB 245 MB 23 MB 5.5 MB

4. Experiment Settings
4.1. Dataset Description

This paper utilized two datasets, namely the Vehicle Aerial Imaging from Drone
(VAID) dataset [23] and the Cars Overhead With Context (COWC) dataset [24].

4.1.1. VAID Dataset

This dataset contains 5985 images with varied illumination conditions and viewing
angles, collected at different places in Taiwan. It contains seven classes, and the ratio of the
training, validation, and testing datasets was set as 70:20:10. The number of objects in each
class is shown in Table 2. The images have a resolution of 1137× 640 px in JPG format.
Samples of the images are shown in Figure 7.

Table 2. Training, validation, and testing split for the VAID dataset.

Class Sedan Minivan Truck Pickup Truck Bus Cement Truck Trailer

Training 28,613 313 2192 2118 413 128 542
Validation 7930 129 684 610 111 48 158

Testing 3787 59 311 283 56 15 104

Figure 7. Sample images from the VAID dataset with annotated classes.

4.1.2. COWC Dataset

This dataset comprises several high-resolution RGB and grayscale images captured at
different locations (Columbus of size 4965× 3313, Potsdam of size 2220× 2220, Selwyn of
size 18,075 × 18,400). We used the updated dataset, named COWC-M, where the authors
further divided the dataset into four vehicle classes instead of only one main class. The
authors patched the images in the dataset with the size of 512× 512. For example, a single
image of size 2220× 2220 was divided into 49 patches. The images were then further

Remote Sens. 2021, 13, 4196 11 of 26

divided into training, validation, and testing with the ratio of 80:10:10. The number of
objects in each set is shown in Table 3. The patches of a single image were split into the
training, validation, and testing set randomly. Samples of the image patches are shown in
Figure 8.

Table 3. Training, validation, and testing split for the COWC dataset.

Class Sedan Pickup Other Unknown

Training 6240 486 4012 905
Validation 780 68 617 153

Testing 653 53 426 96

Figure 8. Illustration of obtaining image patches of size 512× 512 from a large image in the COWC
dataset.

Table 4 summarizes the datasets used in our experiments.

Table 4. Datasets used in this study.

Parameters
Dataset

VAID COWC

Number of images 5985 1829
in training dataset 4189 1467
in validation dataset 1197 183
in testing dataset 599 179

Number of classes 7 4
Number of objects 48,606 14,489

in training dataset 34,319 11,643
in validation dataset 9670 1618
in testing dataset 4615 1228

Spatial resolution 12.5 cm 15 cm
Vehicle size (pixels) 20× 40 24× 48

4.2. Experimental Setup

The framework used to train Faster R-CNN was Detectron 2 [65], with the configu-
ration file named faster_rcnn_R_50_FPN_3x.yaml. The model was trained with 15,000

Remote Sens. 2021, 13, 4196 12 of 26

epochs, with 1000 linear warmup iterations. The training rate was reduced at 12,000 and
13,500 epochs. The initial training rate was set to 0.001. The learning rate is shown in
Figure 9. The batch size was set to 4. We kept the default values for the momentum (0.9)
and weight decay (0.0001).

0 2500 5000 7500 10000 12500 15000
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
Le

ar
ni

ng
 R

ate

0.00005
2.5e-6

Faster R-CNN learning rate

Figure 9. The scheduled learning rate used to train the Faster R-CNN models.

As for YOLO and our proposed model, the framework used to train the models was
Darknet. The model was trained with 15,000 epochs, with 1000 exponential warmup itera-

tions according to lri = lr×
(

iter
1000

)4
. The training rate was reduced at 12,000 and 13,500

epochs. The initial training rate was set to 0.001, 0.0013, and 0.00261 for different YOLO
models and is shown in Figure 10. We kept the default values for the momentum (0.949)
and weight decay (0.0005) for YOLOv4, while all other models were set to a momentum of
0.9 and a weight decay of 0.0005.

0 5000 10000 15000
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Le
ar

ni
ng

 R
ate

0.0001

1e-5

YOLOv2, YOLOv2-Tiny, YOLOv3, YOLOv3-Tiny

0 5000 10000 15000
Step

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

Le
ar

ni
ng

 R
ate

0.00013

1.3e-05

YOLOv4

0 5000 10000 15000
Step

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Le
ar

ni
ng

 R
ate

0.000261

2.6e-05

YOLOv4-Tiny, Ours

Figure 10. The scheduled learning rate used to train the YOLO models.

The anchor boxes used in all the models are shown in Table 5. Our proposed model’s
anchor box sizes were the same as YOLOv4-Tiny, since our initial search for optimum
anchor box sizes had almost a similar set as YOLOv4-Tiny. Note that choosing a large
number of prior boxes will produce greater overlap between anchor boxes and bounding
boxes. However, as we increase the number of anchor boxes, the number of convolution
filters in prediction filters increase linearly, which will result in a large network size and

Remote Sens. 2021, 13, 4196 13 of 26

increased training time. For each models, three different input sizes (416× 416, 512× 512,
and 608× 608) were considered and trained.

Table 5. Anchor box sizes for different models.

Models Anchor Box Sizes

Faster R-CNN Size: (32,32), (64,64), (128,128), (256,256), (512,512)
Aspect Ratio: 0.5, 1.0, 2.0

YOLOv2 (0.57273,0.677385), (1.87446,2.06253), (3.33843,5.47434), (7.88282,3.52778), (9.77052,9.16828) †

YOLOv2-Tiny (0.57273,0.677385), (1.87446,2.06253), (3.33843,5.47434), (7.88282,3.52778), (9.77052,9.16828) †

YOLOv3 (10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)
YOLOv3-Tiny (10,14), (23,27), (37,58), (81,82), (135,169), (344,319)
YOLOv4 (12,16), (19,36), (40,28), (36,75), (76,55), (72,146), (142,110), (192,243), (459,401)
YOLOv4-Tiny (10,14), (23,27), (37,58), (81,82), (135,169), (344,319)
Ours (10,14), (23,27), (37,58), (81,82), (135,169), (344,319)

† YOLOv2 downsamples the image with a factor of 32. For example, a 416× 416 image is downsampled into multiple 13× 13 grids, and
each grid is now 32× 32. The actual anchor box size is now (0.57273× 32, 0.677385× 32), . . .

All of the models were trained with the Nvidia Tesla T4 or Nvidia Quadro P5000
GPUs. The trained models were then supplied to two powerful hardware, Nvidia Tesla T4
and Nvidia Quadro P5000, and one edge hardware, Nvidia Jetson Nano 2 GB, to calculate
the inference time.

4.3. Evaluation Criteria and Metrics

The following criteria were used to evaluate and compare the various models:

• The IoU measuring the overlap between the predicted and the ground truth bounding
boxes, as discussed in Equation (2);

• The main evaluation metric used in evaluating object detection models is mAP. mAP
provides a general overview of the performance of the trained model. A higher mAP
represents better detection performance. Equation (8) shows how mAP is calculated;

mAP =
1
C

C

∑
i=1

APi (8)

where APi is the average precision for the i-th class and C is the total number of
classes. AP corresponds to the area under the PR curve and is calculated as shown in
Equation (9):

AP =
n−1

∑
i=1

(ri+1 − ri)pinterp(ri+1) (9)

where r1, r2, ..., rn and pinterp is the recall ratio and precision ratio when the n-th
threshold is set. Usually, AP50 and AP75 represents the AP (single class) calculated
with the IoU set as 0.5 and 0.75, respectively. AP95

50 is the average value of AP with the
IoU ranging from 0.5 to 0.95 with a step of 0.05. mAP50, mAP75, and mAP95

50 , on the
other hand, represent the average APs of all classes at different settings of the IoU;

• Besides mean average precision (mAP), precision, recall, and the F1-score are also
common criteria for model evaluation. The computations are as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score =
2× Precision× Recall

Precision + Recall
(12)

Remote Sens. 2021, 13, 4196 14 of 26

where TP, FP, and FN represent true positive, false positive, and false negative,
respectively;

• The precision–recall curve (PR curve) plots the precision against the recall rate. As the
confidence index is set to a smaller value, the recall increases, signaling more objects
to be detected, while the precision decreases since false positive objects increase. The
PR curve is useful to visualize the performance of a trained model. A perfect score
would be at (1, 1), where both precision and recall is at 1. Therefore, if a curve bows
towards (1, 1), the model performs very well;

• Number of frames per second (FPS) and inference time (in milliseconds) to measure
the processing speed.

5. Results and Discussion

The detection performance for each dataset (VAID and COWC) is evaluated and
discussed in this section. We trained the datasets with three different input sizes (416× 416,
512× 512, and 608× 608) for all detectors. The results of each detector are tabulated, and
the precision–recall curve is plotted. Besides, we provide the inference time collected on
different hardware. Then, we provide a general discussion of the performances of both
datasets.

5.1. VAID Dataset

The detection results of the different models are shown in Table 6. We performed
experiments on three different input sizes (416× 416, 512× 512, and 608× 608), and the
individual classes performance was recorded. We remind that the vehicle size of the objects
in the images is usually 20× 40 px, as shown in Table 4.

Table 6. Detection result on the VAID dataset. The individual class results are their respective AP50. Numbers in red, blue,
and green represent the best results for the input sizes of 416× 416, 512× 512, and 608× 608, respectively.

Model Input Size mAP50 Precision Recall F1 Score Sedan Minivan Truck Pickup Truck Bus Cement Truck Trailer

Faster R-CNN 416× 416 0.8711 0.7859 0.8068 0.7962 0.5390 0.6668 0.4668 0.3838 0.7134 0.5178 0.5746
Faster R-CNN 512× 512 0.9020 0.8283 0.7813 0.8041 0.5891 0.7268 0.5209 0.4482 0.7441 0.5966 0.6199
Faster R-CNN 608× 608 0.9219 0.8578 0.7657 0.8091 0.6203 0.7289 0.5690 0.5154 0.7693 0.6629 0.6823

YOLOv2 416× 416 0.8017 0.7920 0.6971 0.7415 0.6874 0.9215 0.6733 0.6693 0.9462 0.8513 0.8630
YOLOv2 512× 512 0.8764 0.8396 0.8022 0.8205 0.7951 0.9619 0.8118 0.7942 0.9601 0.9144 0.8970
YOLOv2 608× 608 0.9139 0.8643 0.8626 0.8634 0.8592 0.9805 0.8723 0.8658 0.9721 0.9127 0.9350

YOLOv2-Tiny 416× 416 0.6147 0.4887 0.5686 0.5256 0.4373 0.7750 0.3992 0.4169 0.8643 0.6975 0.7128
YOLOv2-Tiny 512× 512 0.7269 0.5896 0.6926 0.6369 0.5927 0.8629 0.6110 0.5394 0.9465 0.6980 0.8375
YOLOv2-Tiny 608× 608 0.8187 0.6600 0.7822 0.7159 0.7154 0.9664 0.6810 0.6823 0.9669 0.8588 0.8601

YOLOv3 416× 416 0.9675 0.9374 0.9789 0.9577 0.9753 0.9819 0.9734 0.9634 0.9825 0.9446 0.9512
YOLOv3 512× 512 0.9650 0.9434 0.9828 0.9627 0.9857 0.9871 0.9727 0.9670 0.9737 0.9271 0.9419
YOLOv3 608× 608 0.9697 0.9495 0.9849 0.9669 0.9861 0.9849 0.9757 0.9697 0.9808 0.9370 0.9539

YOLOv3-Tiny 416× 416 0.8491 0.8192 0.8566 0.8375 0.8415 0.9752 0.8359 0.7634 0.9631 0.7038 0.8610
YOLOv3-Tiny 512× 512 0.8702 0.8579 0.8867 0.8721 0.9025 0.9663 0.8815 0.8028 0.9688 0.7174 0.8521
YOLOv3-Tiny 608× 608 0.9486 0.8975 0.9436 0.9200 0.9471 0.9891 0.9413 0.9230 0.9708 0.9165 0.9524

YOLOv4 416× 416 0.9702 0.9400 0.9843 0.9617 0.9854 0.9954 0.9760 0.9712 0.9762 0.9355 0.9519
YOLOv4 512× 512 0.9708 0.9418 0.9886 0.9646 0.9865 0.9871 0.9730 0.9796 0.9837 0.9283 0.9571
YOLOv4 608× 608 0.9743 0.9438 0.9883 0.9655 0.9860 0.9851 0.9785 0.9793 0.9911 0.9450 0.9555

YOLOv4-Tiny 416× 416 0.8715 0.9673 0.5651 0.7134 0.7047 0.9823 0.8233 0.7411 0.9821 0.9271 0.9403
YOLOv4-Tiny 512× 512 0.9370 0.9643 0.8655 0.9122 0.9041 0.9858 0.9281 0.9120 0.9801 0.9038 0.9452
YOLOv4-Tiny 608× 608 0.9605 0.9588 0.9415 0.9501 0.9551 0.9843 0.9687 0.9507 0.9848 0.9264 0.9533

Ours 416× 416 0.8715 0.9646 0.5686 0.7154 0.7160 0.9858 0.8332 0.7564 0.9761 0.9101 0.9230
Ours 512× 512 0.9398 0.9658 0.8714 0.9162 0.9233 0.9781 0.9385 0.9060 0.9862 0.9148 0.9314
Ours 608× 608 0.9605 0.9602 0.9433 0.9517 0.9642 0.9833 0.9668 0.9488 0.9898 0.9272 0.9414

From Table 6, it is observed that a larger input size would increase the detection
accuracy. YOLOv2 and YOLOv2-Tiny provided the lowest detection accuracy among all.
For the input size of 416× 416, the best result was given by YOLOv4 (mAP50 = 0.9702),
followed by YOLOv3 (mAP50 = 0.9675) and our proposed model (mAP50 = 0.8715). For the
input size of 512× 512, the best result was given by YOLOv4 (mAP50 = 0.9708), followed by

Remote Sens. 2021, 13, 4196 15 of 26

YOLOv3 (mAP50 = 0.9650) and our proposed model (mAP50 = 0.9398). For the input size
of 608× 608, the best result was given by YOLOv4 (mAP50 = 0.9743), followed by YOLOv3
(mAP50 = 0.9697) and our proposed model (mAP50 = 0.9605). When comparing with the
tiny versions of the YOLO models (YOLOv4-Tiny, YOLOv3-Tiny, and YOLOv2-Tiny), we
observed that our model led in terms of detection accuracy. Our proposed model achieved
similar or better results than YOLOv4-Tiny in all three input sizes. Our model always
achieved higher precision than the other models (except for the input size of 416× 416),
revealing that it can reduce the number of false positives. Regarding detection accuracy
on individual classes, we found that almost all classes had significant improvement over
YOLOv4-Tiny, with an increase in accuracy within 1–4%. This was due to the added finer
YOLO detection head, where it can effectively detect smaller objects. Interestingly, we
observed that our model performed better than YOLOv4 for the “bus” object with the
input size of 512× 512.

Figure 11 shows the precision–recall curve for all models of various input sizes. It was
confirmed that our model outperformed almost all models, except YOLOv4 and YOLOv3.
Our model provided a good behavior of the precision–recall balance, as illustrated in
Figure 11.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

Precision-Recall Curve (416×416)

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

Precision-Recall Curve (512×512)

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

Precision-Recall Curve (608×608)

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

Figure 11. Precision–recall curve for all models trained on the VAID dataset.

The detection results of the various detectors are shown in Figure 12. We took two
sample frames from the test set and the inference on all detectors. We selected the frame
that had the most classes of objects. There are two small “sedans” on the top left corner
and top right corner in the first row of the figure. Besides, there is an occluded “pickup
truck” at the bottom right corner. These three objects are the key to differentiate the
effectiveness of different detectors. We observed that Faster R-CNN, YOLOv2-Tiny, and
YOLOv4 successfully located all the objects. However, Faster R-CNN and YOLOv2-Tiny
misclassified some objects, while YOLOv4 classified all the objects correctly with a high
level of confidence. Other detectors failed to locate one or two of the small objects, as
described before. As for our proposed model, it failed to identify the “sedan” on both the
top left corner and top right corner. A similar detection was observed in YOLOv4-Tiny,
except that our model produced a detection with a higher level of confidence. Compared
to Faster R-CNN, our model did not have multiple bounding boxes on a single object,
signaling that the NMS was working as intended. For the image in the second row, there
is much background noise, where trees and parks are the main noise that could confuse
the models. It was observed that Faster R-CNN was confused with “cement truck” and
“truck”. Compared to the first image, Faster R-CNN produced less classification error, and
no stacking of the bounding box was observed. As for our model, it did not classify the
minivan, while other objects were detected and classified correctly.

Remote Sens. 2021, 13, 4196 16 of 26

Ground Truth Faster R-CNN YOLOv2

YOLOv2-Tiny YOLOv3 YOLOv3-Tiny

YOLOv4 YOLOv4-Tiny Ours

Figure 12. Detection results of various detectors (input size of 512× 512) on the VAID dataset.

Table 7 shows an in-depth exploration of our models in terms of the computational
efficiency.

Remote Sens. 2021, 13, 4196 17 of 26

Table 7. Comparison in terms of the model size, computational requirements, and inference time on different hardware for
input size of 512× 512 for the VAID dataset. The number in bold denotes the best result.

Model Model Size
(MB) BFLOPs Number of

Parameters mAP50
Inference Time (ms) Frame Per Second (FPS)

Tesla T4 Quadro P5000 Jetson Nano Tesla T4 Quadro P5000 Jetson Nano

Faster R-CNN 330 134.40 41.8 0M 0.9020 40.08 56.23 779.98 25.0 17.8 1.3
YOLOv2 202 44.45 50.61 M 0.8764 14.84 10.85 412.70 67.4 92.2 2.4

YOLOv2-Tiny 44.2 8.10 11.05 M 0.7269 5.22 3.64 199.04 191.6 274.7 4.1
YOLOv3 246 98.99 61.61 M 0.9650 28.85 23.28 735.55 34.7 42.96 1.4

YOLOv3-Tiny 34.8 8.27 8.69 M 0.8702 5.23 3.65 199.20 191.2 274.0 5.0
YOLOv4 256 90.29 64.04 M 0.9708 29.08 26.48 861.87 34.4 37.8 1.2

YOLOv4-Tiny 23.6 10.30 5.89 M 0.9370 5.83 3.27 80.56 71.5 305.8 12.4
Ours 5.8 7.77 1.44 M 0.9398 5.67 4.67 80.98 176.4 214.1 12.3

As observed in Table 7, even though our proposed model took a little bit longer than
YOLOv2-Tiny, YOLOv3-Tiny, and YOLOv4-Tiny on the Tesla T4 and Quadro P5000 and
the model size and number of parameters were smaller, mAP was higher than them. In
terms of edge hardware inferencing, our model could achieve around an 81 ms inference
time on the Jetson Nano, thanks to its relatively small floating-point operations (FLOPs).

The mAP versus inference time plot is shown in Figure 13. It is observed that our
model used almost the same inference time, but achieved slightly higher detection accuracy
than YOLOv4-Tiny.

10 20 30 40
Inference Time (ms)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

m
AP

50

Performance on Nvidia Tesla T4

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

10 20 30 40
Inference Time (ms)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

m
AP

50

Performance on Nvidia Quadro P5000

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

500 1000
Inference Time (ms)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
m

AP
50

Performance on Nvidia Jetson Nano 2GB

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

Figure 13. Performance of various detectors on the Tesla T4, Quadro P5000, and Jetson Nano 2 GB. The graph is plotted
with the inference time collected from both input sizes of 416× 416 and 512× 512 for all detectors. Note that YOLOv4 with
the input size of 608× 608 failed to run on the Nvidia Jetson Nano 2 GB.

5.2. COWC Dataset

The second dataset used in our study was the COWC dataset. Table 8 provides the
detection results on various models trained on two different input sizes, namely 416× 416
and 512× 512.

From Table 8, it is observed that YOLOv4 topped the mAP50 for both input sizes of
416× 416 and 512× 512. YOLOv3 came in second, and our proposed model came in third
in terms of mAP50. In terms of precision, YOLOv3 achieved the highest precision among
all, followed by our model and YOLOv4. This is different from the VAID dataset, where
our proposed model topped in terms of precision. This was mainly due to the dataset used,
where COWC seems to have objects with a larger size (24× 48) than VAID (20× 40). Recall
that we replaced the YOLO output with a larger size to accommodate the finer detection
of smaller sizes; therefore, our model was not able to capture the slightly larger objects
well. When comparing the tiny version of YOLO, our model topped in terms of almost all
metrics. Our model achieved the highest mAP50, precision, and F1 score. Faster R-CNN

Remote Sens. 2021, 13, 4196 18 of 26

provided lower detection accuracy since it was not designed to detect small objects. Even
though the anchor size was adapted according to the training set, they were not built to
detect small objects and could not yield good detection results. As for individual class
mAP50, we observed that our model outperformed the others for the “sedan” class for the
input size of 512× 512, thus revealing that our model could detect smaller objects in the
image since the only class in the dataset with a consistently small object size was “sedan”.
Note that the size of the “sedan” in this dataset was smaller than the other classes. As
for other objects, YOLOv4 yielded the highest detection accuracy. When comparing with
YOLOv4-Tiny, our model outperformed it in almost all classes. In short, YOLOv4 strikes
for higher detection accuracy, YOLOv3 for precision detection, and our proposed model
for the balance between detection accuracy and inference time.

Table 8. Detection results on the COWC dataset. Numbers in blue and red represent the best result for input sizes of
512× 512 and 416× 416 respectively.

Model Input Size mAP50 Precision Recall F1 Score Sedan Pickup Other Unknown

Faster R-CNN 416× 416 0.8417 0.8339 0.6259 0.7150 0.7284 0.7008 0.6984 0.4942
Faster R-CNN 512× 512 0.8921 0.8902 0.6393 0.7442 0.7534 0.7689 0.7326 0.5868

YOLOv2 416× 416 0.6180 0.7202 0.6751 0.6969 0.7157 0.6975 0.6783 0.3804
YOLOv2 512× 512 0.6966 0.7644 0.7687 0.7665 0.8244 0.6462 0.7606 0.5551

YOLOv2-Tiny 416× 416 0.3963 0.4338 0.5684 0.4921 0.4971 0.4242 0.4372 0.2266
YOLOv2-Tiny 512× 512 0.5222 0.4979 0.6775 0.5740 0.6881 0.5854 0.5437 0.2717

YOLOv3 416× 416 0.9383 0.8953 0.9536 0.9235 0.9606 0.9347 0.9674 0.8905
YOLOv3 512× 512 0.9375 0.9116 0.9568 0.9337 0.9602 0.9093 0.9678 0.9127

YOLOv3-Tiny 416× 416 0.8197 0.7883 0.8795 0.8314 0.9111 0.7869 0.8758 0.7050
YOLOv3-Tiny 512× 512 0.8609 0.8006 0.9055 0.8498 0.9104 0.8699 0.9177 0.7456

YOLOv4 416× 416 0.9529 0.8757 0.9756 0.9230 0.9727 0.9208 0.9880 0.9299
YOLOv4 512× 512 0.9597 0.8832 0.9731 0.9260 0.9737 0.9585 0.9778 0.9286

YOLOv4-Tiny 416× 416 0.9068 0.8748 0.9389 0.9057 0.9566 0.8430 0.9622 0.8654
YOLOv4-Tiny 512× 512 0.9347 0.8787 0.9552 0.9153 0.9626 0.9153 0.9659 0.8951

Ours 416× 416 0.9299 0.8772 0.9422 0.9085 0.9589 0.9179 0.9670 0.8759
Ours 512× 512 0.9353 0.8853 0.9552 0.9189 0.9800 0.9155 0.9655 0.8804

We provide the precision–recall curve for all the models in Figure 14. We can once
again confirm that our model outperformed almost all models, except the huge YOLOv4
and YOLOv3.

The detection results of the various detector are illustrated in Figure 15. We took three
sample frames from the test set and inference on all the trained detectors of input size
512× 512. As shown in the first row, the image is partially occluded with four objects that
are “hidden” in the shadow and contains multiple objects in the upper right corner. Our
model only detected three out of four occluded objects, while YOLOv4-Tiny successfully
detected all four occluded objects. As for the upper right corner section, it was observed
that Faster R-CNN generated many bounding boxes, but did not classify most of the boxes
correctly. The NMS in our model successfully suppressed many unwanted bounding
boxes and was able to classify most of the objects correctly. Compared to YOLOv4 and
YOLOv4-Tiny, our model could identify the classes more accurately. In the second and
third rows, almost all models could detect and classify the object correctly. It was observed
that Faster R-CNN, YOLOv3, YOLOv4, and our model correctly classified most of the
objects with high confidence.

Remote Sens. 2021, 13, 4196 19 of 26

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

Precision-Recall Curve (416×416)

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

Precision-Recall Curve (512×512)

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

Figure 14. Precision-recall curve for all models trained on the COWC dataset.

Our model was designed to strike a balance between detection accuracy and inference
speed. In Table 9, we report the comparison between our proposed model against all other
models of input size 512× 512 on the Tesla T4, Quadro P5000, and Jetson Nano in terms of
the model size, billion floating-point operations (BFLOPs), number of parameters, inference
time, and FPS. Our proposed model consumed the lowest disk space, with a model size
of only 5.5 MB, only 23% of YOLOv4-Tiny. Our model required the lowest computational
resource, coming in with only 7.73 BFLOPs and 1.43 M parameters. The detection accuracy
was ranked second after the huge YOLOv4. In terms of inference time, YOLOv2-Tiny
and YOLOv3-Tiny took a shorter time to perform inference on the Tesla T4 and Quadro
P5000. However, the critical study of this work was to run inference on low-cost embedded
hardware. We used the Jetson Nano 2 GB as our low-cost embedded hardware, whereby
we observed that our model took the lowest time to compute, which took only 78.33 ms,
equivalent to around 13 FPS. With 13 FPS, near-real-time results were obtained. We include
the detection accuracy vs. inference time graph for all three GPUs in Figure 16.

Table 9. Comparison in terms of the model size, computational requirements, and inference time on different hardware for
the input size of 512× 512 for the COWC dataset. The number in bold represents the best result.

Model Model Size
(MB) BFLOPs Number of

Parameters mAP50
Inference Time (ms) Frame Per Second (FPS)

Tesla T4 Quadro P5000 Jetson Nano Tesla T4 Quadro P5000 Jetson Nano

Faster R-CNN 330 134.40 41.80 M 0.8921 42.12 45.77 1123 23.7 21.8 0.9
YOLOv2 202 44.45 50.59 M 0.6966 12.98 12.78 440.21 77.0 78.2 2.3

YOLOv2-Tiny 44.2 8.10 11.04 M 0.5222 4.98 5.61 197.54 200.8 178.3 5.1
YOLOv3 256 98.96 61.59 M 0.9375 16.60 24.63 802.03 60.2 40.6 1.2

YOLOv3-Tiny 34.7 8.26 8.68 M 0.8609 5.06 5.66 199.90 197.6 176.7 5.0
YOLOv4 244 90.26 64.02 M 0.9597 20.24 26.71 846.78 49.4 37.4 1.2

YOLOv4-Tiny 23.5 10.29 5.89 M 0.9347 5.67 14.67 86.21 176.4 68.2 11.6

Ours 5.5 7.73 1.43 M 0.9353 5.33 13.89 78.33 187.6 72.0 12.8

From both of the experiments, we can conclude that our model struck a balance
between detection accuracy and inference speed. Our model outperformed YOLOv4-Tiny
on both of the datasets, despite requiring only 5.5 MB of storage to store the model. This is
particularly useful when deploying on edge devices, where storage and processing power
are usually the constraint. Apart from that, with the reduction of the FLOPs, we saw a
minimal affect on the detection accuracy. An in-depth ablation study and our design of the
proposed model is available in Appendix A.

Remote Sens. 2021, 13, 4196 20 of 26

Ground Truth Faster R-CNN YOLOv2 YOLOv2-Tiny YOLOv3

YOLOv3-Tiny YOLOv4 YOLOv4-Tiny Ours

Sedan

Pickup

Unknown

Other

Figure 15. Detection results of various detectors (input size of 512× 512) on the COWC dataset.

Remote Sens. 2021, 13, 4196 21 of 26

10 20 30 40
Inference Time (ms)

0.4

0.5

0.6

0.7

0.8

0.9

m
AP

50

Performance on Nvidia Tesla T4

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

10 20 30 40
Inference Time (ms)

0.4

0.5

0.6

0.7

0.8

0.9

m
AP

50

Performance on Nvidia Quadro P5000

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

200 400 600 800 1000
Inference Time (ms)

0.4

0.5

0.6

0.7

0.8

0.9

m
AP

50

Performance on Nvidia Jetson Nano 2GB

Faster R-CNN
YOLOv2
YOLOv2-Tiny
YOLOv3
YOLOv3-Tiny
YOLOv4
YOLOv4-Tiny
Ours

Figure 16. Performance of various detectors on the Tesla T4, Quadro P5000, and Jetson Nano 2 GB. The graph is plotted with the
inference time collected from both input sizes of 416× 416 and 512× 512 for all detectors.

We observed that for both datasets suffering from class imbalance (“minivan” and
“cement truck” in the VAID dataset and “pickup” in COWC), YOLOv4, YOLOv4-Tiny,
and our proposed model could still achieve competitive mAP50, while other models did
not perform any better. Even though we tried to include augmentation to increase the
number of objects for severely under-represented classes, their results stayed almost the
same, since augmentation increased the objects in the classes; however, there was still a
lack of representative features of the targeted classes. A possible way to solve this issue is
through a resampling process, oversampling infrequent classes from the minority classes
to match the quantity of the majority classes. However, we did not explore this as YOLOv4,
YOLOv4-Tiny, and our proposed model did not suffer from lower mAP50 on minority
classes’ prediction.

6. Conclusions

We proposed an improved version of a one-stage detector, coined YOLO-RTUAV,
to detect small objects in aerial images in this work. Our model was built based on
YOLOv4-Tiny, specifically aimed at near-real-time inference of small objects on edge
devices. Essentially, our model is lightweight with only 5.5 MB, and experiments on the
Jetson Nano 2 GB showed the ability to achieve up to 13 FPS for an input size of 512× 512.
Experiments conducted on two datasets, namely VAID and COWC, illustrated that our
proposed model outperformed YOLOv4-Tiny in terms of inference time and accuracy. Our
model did not perform better than the more complicated YOLOv4. However, we believe
that our model struck a balance between accuracy and inference time.

While YOLO-RTUAV provided promising results for the datasets used, some issues
still exist and call for further research. Firstly, YOLO-RTUAV only focuses on small objects
in aerial images. The performance on medium and large objects remains unknown since the
datasets used mainly contain small objects. YOLO-RTUAV is not suitable for objects with a
wide range of sizes. This bottleneck is solvable with the help of more YOLO layers with
various output sizes, but it comes with the cost of more computational power requirements.
Secondly, our experiment on the COWC dataset showed that our model can deal with RGB
and grayscale images, and objects occluded by shadows remained detectable. However,
such an assumption is limited to the COWC dataset, and more experiments are required to
validate our claim. Therefore, datasets with different occlusions and background noise in
the training and test datasets should be considered in future work. Thirdly, the reduction of
the parameters using a 1× 1 convolutional layer showed a slight decrease in the detection
accuracy. It would be interesting to explore other techniques, which reduce the model
complexity, but retain the same detection accuracy. Finally, YOLO models are highly
dependent on anchor boxes to produce predictions. This is a known problem whereby, to

Remote Sens. 2021, 13, 4196 22 of 26

achieve optimum detection accuracy, a clustering analysis is required to determine a set
of optimum anchors before model training. In addition, the usage of anchors increases
the complexity of the detection heads. We suggest exploring the possibility of anchor-free
prediction, such as YOLOX [66].

Author Contributions: Conceptualization, H.V.K. and J.H.C.; methodology, H.V.K. and Y.-L.C.;
software, H.V.K. and K.K.Y.; validation, H.V.K, J.H.C. and C.-O.C.; formal analysis, H.V.K. and
J.H.C.; investigation, H.V.K. and C.-O.C.; resources, H.V.K., J.H.C. and K.K.Y.; data curation, H.V.K.;
writing—original draft preparation, H.V.K.; writing—review and editing, H.V.K., J.H.C., C.-O.C. and
Y.-L.C.; visualization, H.V.K.; supervision, J.H.C. and C.-O.C.; project administration, J.H.C., C.-O.C.
and Y.-L.C.; funding acquisition, J.H.C., C.-O.C. and Y.-L.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the University of Malaya Partnership Grant (RK007-2020)
under National Tapiei University of Technology–University of Malaya Joint Research Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available in a publicly accessible repository that does not
issue DOIs. Publicly available datasets were analyzed in this study. These datasets can be found
at: http://vision.ee.ccu.edu.tw/aerialimage/ (VAID) (accessed on: 8 August 2021) and https://
gdo152.llnl.gov/cowc/download/cowc-m/datasets/DetectionPatches_512x512_ALL.zip (COWC)
(accessed on: 8 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. YOLO-RTUAV Design Process

Our model was hugely inspired by YOLOv4-Tiny, since it allows near-real-time detec-
tion with competitively high accuracy. However, the original receptive field size was set
according to the common benchmarking dataset, MS COCO. Therefore, it is not suitable
to detect small objects in UAV imagery. Naively, we increased the receptive field size to
capture smaller objects. We replaced the original 13× 13 YOLO output layer with 52× 52,
allowing finer detection, as shown in Figure A1. We obtained two detection branches, the
second CSP and the third CSP output, to compute the finer detector. In order to fit the
dimension, all the inputs needed to be kept the same, producing a large channel dimension,
where the input size to the YOLO layer was 52× 52× 512. This incurred large computa-
tional requirements, as shown in Table A1, where Layer 33 took 19.237 BFLOPs to compute.
Therefore, we sought to reduce the channel dimension. We used two 1× 1 convolutional
layers between the CSP output and concatenation output, effectively bringing down the
BFLOPs by almost 19 times, from 19.327 BFLOPs to 1.073 BFLOPs.

Conv Conv CSP Maxpool CSP Maxpool CSP

Conv Upsample

Concat

Conv

Conv Conv=
Subsampled convolutional layer

Conv Conv BatchNorm Leaky ReLU=

Convolutional layer

Conv Conv Conv

C
oncat

Conv

C
oncat

CSP =

Cross Stage Partial (CSP) Block

Conv

Conv

Figure A1. Naive approach of the YOLO-RTUAV model.

http://vision.ee.ccu.edu.tw/aerialimage/
https://gdo152.llnl.gov/cowc/download/cowc-m/datasets/DetectionPatches_512x512_ALL.zip
https://gdo152.llnl.gov/cowc/download/cowc-m/datasets/DetectionPatches_512x512_ALL.zip

Remote Sens. 2021, 13, 4196 23 of 26

Table A1. Network architecture of our model and naive approach.

Naive Solution Ours

Layer Type Filter Size/Stride Input Size Output Size BFLOPs Type Filter Size/Stride Input size Output Size BFLOPs

0 Convolutional 32 3× 3 / 2 512× 512× 3 256× 256× 32 0.113 Convolutional 32 3× 3 / 2 512× 512× 3 256× 256× 32 0.113
1 Convolutional 64 3× 3 / 2 256× 256× 32 128× 128× 64 0.604 Convolutional 64 3× 3 / 2 256× 256× 32 128× 128× 64 0.604
2 Convolutional 64 3× 3 / 1 128× 128× 64 128× 128× 64 1.208 Convolutional 64 3× 3 / 1 128× 128× 64 128× 128× 64 1.208
3 Route 2 Route 2
4 Convolutional 32 3× 3 / 1 128× 128× 32 128× 128× 32 0.302 Convolutional 32 3× 3 / 1 128× 128× 32 128× 128× 32 0.302
5 Convolutional 32 3× 3 / 1 128× 128× 32 128× 128× 32 0.302 Convolutional 32 3× 3 / 1 128× 128× 32 128× 128× 32 0.302
6 Route 5 4 Route 5 4
7 Convolutional 64 1× 1 / 1 128× 128× 64 128× 128× 64 0.134 Convolutional 64 1× 1 / 1 128× 128× 64 128× 128× 64 0.134
8 Route 2 7 Route 2 7
9 Maxpool 2× 2 / 2 128× 128× 128 64× 64× 128 0.002 Maxpool 2× 2 / 2 128× 128× 128 64× 64× 128 0.002

10 Convolutional 128 3× 3 / 1 64× 64× 128 64× 64× 128 1.208 Convolutional 128 3× 3 / 1 64× 64× 128 64× 64× 128 1.208
11 Route 10 Route 10
12 Convolutional 64 3× 3 / 1 64× 64× 64 64× 64× 64 0.302 Convolutional 64 3× 3 / 1 64× 64× 64 64× 64× 64 0.302
13 Convolutional 64 3× 3 / 1 64× 64× 64 64× 64× 64 0.302 Convolutional 64 3× 3 / 1 64× 64× 64 64× 64× 64 0.302
14 Route 13 12 Route 13 12
15 Convolutional 128 1× 1 / 1 64× 64× 128 64× 64× 128 0.134 Convolutional 128 1× 1 / 1 64× 64× 128 64× 64× 128 0.134
16 Route 10 15 Route 10 15
17 Maxpool 2× 2 / 2 64× 64× 256 32× 32× 256 0.001 Maxpool 2× 2 / 2 64× 64× 256 32× 32× 256 0.001
18 Convolutional 256 3× 3 / 1 32× 32× 256 32× 32× 256 1.208 Convolutional 256 3× 3 / 1 32× 32× 256 32× 32× 256 1.208
19 Route 18 Route 18
20 Convolutional 128 3× 3 / 1 32× 32× 128 32× 32× 128 0.302 Convolutional 128 3× 3 / 1 32× 32× 128 32× 32× 128 0.302
21 Convolutional 128 3× 3 / 1 32× 32× 128 32× 32× 128 0.302 Convolutional 128 3× 3 / 1 32× 32× 128 32× 32× 128 0.302
22 Route 21 20 Route 21 20
23 Convolutional 256 1× 1 / 1 32× 32× 256 32× 32× 256 0.134 Convolutional 256 1× 1 / 1 32× 32× 256 32× 32× 256 0.134
24 Route 18 23 Route 18 23
25 Convolutional 27 1× 1 / 1 32× 32× 512 32× 32× 36 0.038 Convolutional 36 1× 1 / 1 32× 32× 512 32× 32× 36 0.038
26 YOLO YOLO
27 Route 25 Route 25
28 Convolutional 256 1× 1 / 1 32× 32× 36 32× 32× 256 0.019 Convolutional 256 1× 1 / 1 32× 32× 36 32× 32× 256 0.019
29 Upsample 32× 32× 256 64× 64× 256 Upsample 32× 32× 256 64× 64× 256
30 Route 16
31 Convolutional 128 1× 1 / 1 64× 64× 256 64× 64× 128 0.268
32 Route 29 16 Route 31 29
33 Convolutional 512 3× 3 / 1 64× 64× 512 64× 64× 512 19.327 Convolutional 256 1× 1 / 1 64× 64× 384 64× 64× 256 0.805
34 Convolutional 36 1× 1 / 1 64× 64× 512 64× 64× 36 0.151 Convolutional 36 1× 1 / 1 64× 64× 256 64× 64× 36 0.075
35 YOLO YOLO

To validate if such a modification would impact the detection accuracy, we performed
experiments with both the naive and our proposed models. As shown in Table A2, the
model size was reduced to around 60%; the FLOPs were reduced to around 70%; the
number of parameters were reduced to around 50%. However, a small drop in accuracy
was observed. Given the tradeoff between inference time and accuracy, we believe our
proposed model struck a balance between them.

Table A2. COWC dataset.

Model Input Size Model Size BFLOPs # Param mAP50 Precision Recall F1 Score
Inference Time (ms)

Tesla T4 Quadro P5000 Jetson Nano

(a) VAID dataset

Naive 416× 416 14.7MB 17.23 3.68M 0.8754 0.9686 0.5770 0.7232 5.37 4.48 80.02
Naive 512× 512 14.7MB 26.09 3.68M 0.9463 0.9699 0.8795 0.9225 6.88 5.17 99.31
Naive 608× 608 14.7MB 36.80 3.68M 0.9612 0.9637 0.9465 0.9550 9.36 7.57 128.32

Ours 416× 416 5.8MB 5.13 1.44M 0.8715 0.9646 0.5686 0.7154 4.42 3.01 59.13
Ours 512× 512 5.8MB 7.77 1.44M 0.9398 0.9658 0.8714 0.9162 5.67 4.67 80.98
Ours 608× 608 5.8MB 10.95 1.44M 0.9602 0.9602 0.9433 0.9517 7.78 5.36 108.46

(b) COWC dataset

Naive 416× 416 14.7 MB 17.19 3.67M 0.9345 0.9001 0.9536 0.9261 5.18 14.48 79.81
Naive 512× 512 14.7 MB 26.09 3.68M 0.9405 0.8989 0.9625 0.9296 6.59 14.05 98.21

Ours 416× 416 5.7 MB 5.10 1.43M 0.9299 0.8772 0.9422 0.9085 4.32 4.00 58.36
Ours 512× 512 5.7 MB 7.73 1.43M 0.9353 0.8853 0.9552 0.9189 5.33 13.89 78.33

Remote Sens. 2021, 13, 4196 24 of 26

References
1. Scherer, J.; Yahyanejad, S.; Hayat, S.; Yanmaz, E.; Andre, T.; Khan, A.; Vukadinovic, V.; Bettstetter, C.; Hellwagner, H.; Rinner,

B. An autonomous multi-UAV system for search and rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use, Florence, Italy, 19–22 May 2015; pp. 33–38.

2. Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. Lsar: Multi-uav collaboration for search and rescue missions. IEEE Access 2019,
7, 55817–55832. [CrossRef]

3. Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research
outlook. Remote Sens. 2020, 12, 1491. [CrossRef]

4. Liu, S.; Wang, S.; Shi, W.; Liu, H.; Li, Z.; Mao, T. Vehicle tracking by detection in UAV aerial video. Sci. China Inf. Sci. 2019,
62, 24101. [CrossRef]

5. Song, W.; Li, S.; Guo, Y.; Li, S.; Hao, A.; Qin, H.; Zhao, Q. Meta transfer learning for adaptive vehicle tracking in UAV videos. In
Proceedings of the International Conference on Multimedia Modeling, Daejeon, Korea, 5–8 January 2020; pp. 764–777.

6. Zhao, X.; Pu, F.; Wang, Z.; Chen, H.; Xu, Z. Detection, tracking, and geolocation of moving vehicle from uav using monocular
camera. IEEE Access 2019, 7, 101160–101170. [CrossRef]

7. Green, D.R.; Hagon, J.J.; Gómez, C.; Gregory, B.J. Using low-cost UAVs for environmental monitoring, mapping, and modelling:
Examples from the coastal zone. In Coastal Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 465–501.

8. Tripolitsiotis, A.; Prokas, N.; Kyritsis, S.; Dollas, A.; Papaefstathiou, I.; Partsinevelos, P. Dronesourcing: A modular, expandable
multi-sensor UAV platform for combined, real-time environmental monitoring. Int. J. Remote Sens. 2017, 38, 2757–2770. [CrossRef]

9. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

10. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,
arXiv:1506.01497.

12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

13. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

14. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
15. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
17. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
18. Lin, T.Y.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.
19. Everingham, M.; Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
20. Liu, Y.; Yang, F.; Hu, P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks. IEEE

Access 2020, 8, 145740–145750. [CrossRef]
21. Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective.

Sensors 2020, 20, 2238. [CrossRef] [PubMed]
22. Pham, M.T.; Courtrai, L.; Friguet, C.; Lefèvre, S.; Baussard, A. YOLO-Fine: One-stage detector of small objects under various

backgrounds in remote sensing images. Remote Sens. 2020, 12, 2501. [CrossRef]
23. Lin, H.Y.; Tu, K.C.; Li, C.Y. VAID: An Aerial Image Dataset for Vehicle Detection and Classification. IEEE Access 2020,

8, 212209–212219. [CrossRef]
24. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A large contextual dataset for classification, detection and counting of

cars with deep learning. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14
October 2016; pp. 785–800.

25. Ma, B.; Liu, Z.; Jiang, F.; Yan, Y.; Yuan, J.; Bu, S. Vehicle Detection in Aerial Images Using Rotation-Invariant Cascaded Forest.
IEEE Access 2019, 7, 59613–59623. [CrossRef]

26. Raj, S.U.; Manikanta, M.V.; Harsitha, P.S.S.; Leo, M.J. Vacant Parking Lot Detection System Using Random Forest Classification.
In Proceedings of the 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India,
27–29 March 2019; Volume 2019, pp. 454–458.

27. Zhou, H.; Wei, L.; Lim, C.P.; Creighton, D.; Nahavandi, S. Robust Vehicle Detection in Aerial Images Using Bag-of-Words and
Orientation Aware Scanning. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7074–7085. [CrossRef]

28. Liu, K.; Mattyus, G. Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1938–1942.
29. Gleason, J.; Nefian, A.V.; Bouyssounousse, X.; Fong, T.; Bebis, G. Vehicle detection from aerial imagery. In Proceedings of the 2011

IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2065–2070.

http://doi.org/10.1109/ACCESS.2019.2912306
http://dx.doi.org/10.3390/rs12091491
http://dx.doi.org/10.1007/s11432-018-9590-5
http://dx.doi.org/10.1109/ACCESS.2019.2929760
http://dx.doi.org/10.1080/01431161.2017.1287975
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/ACCESS.2020.3014910
http://dx.doi.org/10.3390/s20082238
http://www.ncbi.nlm.nih.gov/pubmed/32326573
http://dx.doi.org/10.3390/rs12152501
http://dx.doi.org/10.1109/ACCESS.2020.3040290
http://dx.doi.org/10.1109/ACCESS.2019.2915368
http://dx.doi.org/10.1109/TGRS.2018.2848243

Remote Sens. 2021, 13, 4196 25 of 26

30. Xu, Y.; Yu, G.; Wu, X.; Wang, Y.; Ma, Y. An Enhanced Viola-Jones Vehicle Detection Method From Unmanned Aerial Vehicles
Imagery. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1845–1856. [CrossRef]

31. Chen, Z.; Wang, C.; Wen, C.; Teng, X.; Chen, Y.; Guan, H.; Luo, H.; Cao, L.; Li, J. Vehicle Detection in High-Resolution Aerial
Images via Sparse Representation and Superpixels. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 103–116. [CrossRef]

32. Cao, S.; Yu, Y.; Guan, H.; Peng, D.; Yan, W. Affine-Function Transformation-Based Object Matching for Vehicle Detection from
Unmanned Aerial Vehicle Imagery. Remote Sens. 2019, 11, 1708. [CrossRef]

33. Cao, L.; Luo, F.; Chen, L.; Sheng, Y.; Wang, H.; Wang, C.; Ji, R. Weakly supervised vehicle detection in satellite images via
multi-instance discriminative learning. Pattern Recognit. 2017, 64, 417–424. [CrossRef]

34. Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 2020,
97, 103910. [CrossRef]

35. Srivastava, S.; Narayan, S.; Mittal, S. A survey of deep learning techniques for vehicle detection from UAV images. J. Syst. Archit.
2021, 117, 102152. [CrossRef]

36. Eggert, C.; Brehm, S.; Winschel, A.; Zecha, D.; Lienhart, R. A closer look: Small object detection in faster R-CNN. In Proceedings
of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; Volume 2017,
pp. 421–426.

37. Cao, C.; Wang, B.; Zhang, W.; Zeng, X.; Yan, X.; Feng, Z.; Liu, Y.; Wu, Z. An Improved Faster R-CNN for Small Object Detection.
IEEE Access 2019, 7, 106838–106846. [CrossRef]

38. Ren, Y.; Zhu, C.; Xiao, S. Small Object Detection in Optical Remote Sensing Images via Modified Faster R-CNN. Appl. Sci. 2018,
8, 813. [CrossRef]

39. Guan, L.; Wu, Y.; Zhao, J. SCAN: Semantic Context Aware Network for Accurate Small Object Detection. Int. J. Comput. Intell.
Syst. 2018, 11, 936–950. [CrossRef]

40. Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-fused SSD: Fast detection for small objects. In Proceedings of the Ninth
International Conference on Graphic and Image Processing (ICGIP 2017), Qingdao, China, 14–16 October 2017; Volume 10615.

41. Cui, L.; Ma, R.; Lv, P.; Jiang, X.; Gao, Z.; Zhou, B.; Xu, M. MDSSD: Multi-scale deconvolutional single shot detector for small
objects. Sci. China Ser. Inf. Sci. 2020, 63, 120113. [CrossRef]

42. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-Shot Refinement Neural Network for Object Detection. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4203–4212.

43. Yang, M.Y.; Liao, W.; Li, X.; Rosenhahn, B. Deep Learning for Vehicle Detection in Aerial Images. In Proceedings of the 2018 25th
IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3079–3083.

44. Sommer, L.; Schumann, A.; Schuchert, T.; Beyerer, J. Multi Feature Deconvolutional Faster R-CNN for Precise Vehicle Detection
in Aerial Imagery. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe,
NV, USA, 12–15 March 2018; pp. 635–642.

45. Zhong, J.; Lei, T.; Yao, G. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks. Sensors
2017, 17, 2720. [CrossRef]

46. Rajput, P.; Nag, S.; Mittal, S. Detecting Usage of Mobile Phones using Deep Learning Technique. In Proceedings of the 6th
EAI International Conference on Smart Objects and Technologies for Social Good, Antwerp, Belgium, 14–16 September 2020;
pp. 96–101.

47. Tang, T.; Deng, Z.; Zhou, S.; Lei, L.; Zou, H. Fast vehicle detection in UAV images. In Proceedings of the 2017 International
Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 19–21 May 2017; pp. 1–5.

48. Sommer, L.; Nie, K.; Schumann, A.; Schuchert, T.; Beyerer, J. Semantic labeling for improved vehicle detection in aerial imagery.
In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce,
Italy, 29 August–1 September 2017; pp. 1–6.

49. Xie, X.; Yang, W.; Cao, G.; Yang, J.; Zhao, Z.; Chen, S.; Liao, Q.; Shi, G. Real-Time Vehicle Detection from UAV Imagery. In
Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September
2018; pp. 1–5.

50. Yang, J.; Xie, X.; Yang, W. Effective Contexts for UAV Vehicle Detection. IEEE Access 2019, 7, 85042–85054. [CrossRef]
51. Carlet, J.; Abayowa, B. Fast Vehicle Detection in Aerial Imagery. arXiv 2017, arXiv:1709.08666.
52. Ammour, N.; Alhichri, H.S.; Bazi, Y.; Benjdira, B.; Alajlan, N.; Zuair, M.A.A. Deep Learning Approach for Car Detection in UAV

Imagery. Remote Sens. 2017, 9, 312. [CrossRef]
53. Audebert, N.; Saux, B.L.; Lefèvre, S. Segment-before-detect: Vehicle detection and classification through semantic segmentation

of aerial images. Remote Sens. 2017, 9, 368. [CrossRef]
54. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers.

In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

55. Zhang, P.; Zhong, Y.; Li, X. SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019.

http://dx.doi.org/10.1109/TITS.2016.2617202
http://dx.doi.org/10.1109/TGRS.2015.2451002
http://dx.doi.org/10.3390/rs11141708
http://dx.doi.org/10.1016/j.patcog.2016.10.033
http://dx.doi.org/10.1016/j.imavis.2020.103910
http://dx.doi.org/10.1016/j.sysarc.2021.102152
http://dx.doi.org/10.1109/ACCESS.2019.2932731
http://dx.doi.org/10.3390/app8050813
http://dx.doi.org/10.2991/ijcis.11.1.72
http://dx.doi.org/10.1007/s11432-019-2723-1
http://dx.doi.org/10.3390/s17122720
http://dx.doi.org/10.1109/ACCESS.2019.2923407
http://dx.doi.org/10.3390/rs9040312
http://dx.doi.org/10.3390/rs9040368

Remote Sens. 2021, 13, 4196 26 of 26

56. Kim, S.J.; Park, S.; Na, B.; Yoon, S. Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, Hilton New York Midtown, NY, USA, 7–12 February 2020; Volume 34,
pp. 11270–11277.

57. Wong, A.; Famouri, M.; Shafiee, M.J.; Li, F.; Chwyl, B.; Chung, J. YOLO Nano: A Highly Compact You Only Look Once
Convolutional Neural Network for Object Detection. arXiv 2019, arXiv:1910.01271.

58. Ringwald, T.; Sommer, L.; Schumann, A.; Beyerer, J.; Stiefelhagen, R. UAV-Net: A Fast Aerial Vehicle Detector for Mobile
Platforms. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Long Beach, CA, USA, 16–17 June 2019; pp. 544–552.

59. He, Y.; Pan, Z.; Li, L.; Shan, Y.; Cao, D.; Chen, L. Real-Time Vehicle Detection from Short-range Aerial Image with Compressed
MobileNet. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20–24
May 2019; pp. 8339–8345.

60. Mandal, M.; Shah, M.; Meena, P.; Devi, S.; Vipparthi, S.K. AVDNet: A Small-Sized Vehicle Detection Network for Aerial Visual
Data. IEEE Geosci. Remote Sens. Lett. 2020, 17, 494–498. [CrossRef]

61. Azimi, S.M. ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded UAV Imagery. In Proceedings of the
European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 88–99.

62. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

63. Misra, D. Mish: A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681.
64. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression.

In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton New York Midtown, NY, USA, 7–12 February 2020;
Volume 34, pp. 12993–13000.

65. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 8 August 2021).

66. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.

http://dx.doi.org/10.1109/LGRS.2019.2923564
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Introduction
	Related Works
	Methodology
	Object Detection Algorithm
	Two-Stage Detector: Faster R-CNN
	One-Stage Detector: You Only Look Once

	Proposed Model: YOLO-RTUAV

	Experiment Settings
	Dataset Description
	VAID Dataset
	COWC Dataset

	Experimental Setup
	Evaluation Criteria and Metrics

	Results and Discussion
	VAID Dataset
	COWC Dataset

	Conclusions
	YOLO-RTUAV Design Process
	References

