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Abstract: Large-scale land-cover classification using a supervised algorithm is a challenging task.
Enormous efforts have been made to manually process and check the production of national land-
cover maps. This has led to complex pre- and post-processing and even the production of inaccurate
mapping products from large-scale remote sensing images. Inspired by the recent success of deep
learning techniques, in this study we provided a feasible automatic solution for improving the quality
of national land-cover maps. However, the application of deep learning to national land-cover
mapping remains limited because only small-scale noisy labels are available. To this end, a mutual
transfer network MTNet was developed. MTNet is capable of learning better feature representations
by mutually transferring pre-trained models from time-series of data and fine-tuning current data.
An interactive training strategy such as this can effectively alleviate the effects of inaccurate or noisy
labels and unbalanced sample distributions, thus yielding a relatively stable classification system.
Extensive experiments were conducted by focusing on several representative regions to evaluate
the classification results of our proposed method. Quantitative results showed that the proposed
MTNet outperformed its baseline model about 1%, and the accuracy can be improved up to 6.45%
compared with the model trained by the training set of another year. We also visualized the national
classification maps generated by MTNet for two different time periods to quantitatively analyze
the performance gain. It was concluded that the proposed MTNet provides an efficient method for
large-scale land cover mapping.

Keywords: classification; deep learning; Landsat; multispectral; national land-cover mapping;
transfer learning

1. Introduction

Large scale land-cover mapping is an important data source for monitoring changes in
land cover and land use, managing land resources, and achieving sustainable
development [1,2]. The most important factors affecting the accuracy of large scale land-
cover maps are the model used for image classification and the training samples, which
should provide sufficient information to train the model. Land-cover classification methods
have developed from unsupervised to supervised methods. In the 1990s, clustering-based
methods constituted the mainstream of land-cover mapping [3]. The spectral characteristics
of objects are very complex to model, and this can result in unsatisfactory classification
results [4]. Supervised methods, however, use samples of the detected classes to train
a classifier and then use the trained classifier to predict the attributes of each pixel in a
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remote sensing image. With the help of the knowledge extracted from the training samples,
supervised methods greatly outperform unsupervised ones [5].

The maximum likelihood classifier (MLC), the decision tree (DT), the random orest
(RF) and the support vector machine (SVM) are the most popular supervised classifiers.
The MLC uses statistical models to describe the characteristics of training samples [6,7].
It is suitable for application to images with known statistical distributions, but the data
distribution needs to be assumed in advance. The essence of the DT is to build a set
of rules that depend on the selected image features. The introduction of information
gain gives it a chance to construct a diagram automatically and thus greatly expands
its applications [8–10]. However, the classification results are still highly dependent on
the selected image features and are sensitive to noise. The RF classifier was designed to
overcome these drawbacks. The RF decreases the impact of image features by using an
ensemble of DTs trained with various training sub-sets [11,12]. Sometimes, image features
are difficult to distinguish in their original forms. Therefore, the SVM proposes to map
the original image features to a higher- dimensional space in which the image features
can be easily divided into two parts by a hyperplane [13,14]. A small number of support
vectors are sufficient for estimating this hyperplane. However, in large-scale remote sensing
images the same class presents different spectral features due to the difference of imaging
conditions. A small number of training samples cannot cover all the image features of the
same class. Thus, only using a small number of training samples to construct a classifier
is a disadvantage in large-scale remote sensing image classification. A similar situation
occurs in the other supervised classifiers mentioned above. To alleviate this drawback,
a large-scale study area is often divided into several small sub-regions, and models in
each sub-region are trained independently. However, this introduces another problem:
the inconsistency in the classification criteria and the related accuracy between different
sub-regions, which occurs even when complex pre- and post-processing is used.

A convolutional neural network (CNN) has the advantage of being able to learn
essential features from a large set of training samples. Because of this, CNN has achieved
great success in computer vision. This gives us a reference in large-scale remote sensing
land-cover mapping, which has attracted a significant amount of attention [15,16]. Most
of these networks end up with fully connected layers. These kinds of networks assume
that all pixels in an image patch share the same label and that only the center pixel label
can be predicted each time. This not only seriously affects the efficiency of large-scale
products but also leads to inaccurate segmentation results, especially near the boundary
of objects when the input image patch contains more than one class. Fully convolutional
networks are only composed of convolutional layers. Networks such as these output the
labels of all the pixels in the input image and can thus avoid the drawbacks of patch-based
ones. FCN was the first fully convolutional network; this extracts information from the
input image using a range of convolutional kernels [17]. However, detailed information
about the detected objects may be lost during the stacking of convolutional and pooling
layers, and the object boundaries in FCN are unsatisfactory. Unet adopts a hierarchical
upsampling strategy to reconstruct target details and concatenates upsampled layers
into corresponding downsampled ones to improve the transfer efficiency for the detailed
information [18]. However, the contribution of detailed information and small object
features to the final classification results is small as only low-level features are concatenated
with high-level ones. PSPNet uses multiple branches to extract a range of information and
then downsamples the learned information to different scales to construct dependencies at
different scales [19]. By concatenating features at different scales, PSPNet is able to learn
both the global information and detailed information. Considering the scales of objects
captured in large-scale remote sensing images, PSPNet is suitable for the corresponding
land cover mapping. Unfortunately, CNN-based models need a large amount of accurately
annotated training samples.

Enough high-quality training samples for large-scale land-cover mapping are difficult
to access to [20]. Insufficient or unreliable training samples may cause serious misclas-
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sification [21,22]. Manual labeling is labor intensive and error-prone. Traditional image
classification algorithms use point-based samples to train the classifier, and the training
samples can be obtained by automatic sample selection methods according to their radio-
metric information or other characteristics [23]. On the contrary, samples for CNN should
be labeled pixel-wise, which makes it much more difficult to access. Existing high-precision
land-cover maps have high-potential sample resource value. When constructing training
sets from existing land-cover maps, the most serious problem is a noisy label (a label that
does not represent the real label of the corresponding pixel).

Traditional data-cleaning methods cannot be directly used on pixel-wise training
samples [24]. Other methods such as noise transition and relabeling may need human
assistance, which makes them tedious and error-prone [25–27]. Using specially defined
loss functions and corresponding reweighing methods needs enough knowledge about the
training set, which is a huge workload for large-scale land cover mapping [28,29]. Existing
small-scale noisy labels contain enough information, which can be used for large-scale land
cover mapping if properly used. Fortunately, time series images contain complementary
information due to the difference in time series imaging conditions. Aiming at fully
utilizing the information in original Landsat images to overcome the drawbacks of noisy
labels, we proposed the use of a mutual transfer network (MTNet) by using the transferring
property of CNNs. The model trained in one year was considered as a good initialization
and also a regularization on the target training samples to improve the generality of the
networks. In this study, PSPNet was employed as the baseline due to its local and global
information extraction ability and the changes in object scale in the remote sensing image.
The main contributions can be summarized as follows.

(1) To the best of our knowledge, this is the first time that a mutual deep-learning model
of this type—that is, a MTNet that can be used for national-level land cover mapping—
has been developed.

(2) A novel interactive training strategy was proposed, and this was embedded into our
MTNet to produce large-scale land cover maps with unbalanced training samples and
noisy labels.

(3) Extensive experiments conducted on national land-cover datasets for 2005 and 2010
demonstrated the effectiveness and superiority of the proposed MTNet, yielding
national land-cover maps with high accuracy.

The remainder of this article is arranged as follows. First, previous studies are in-
troduced in Section 2. The data sources and corresponding training sets are shown in
Section 3. Then, the proposed MTNet is described in detail in Section 4. Experiments for
two different time periods (2005 and 2010) are carried out to test the effectiveness of the
proposed MTNet in Section 5. Then, the experiments are extended to the national level to
achieve highly accurate land cover maps of China in Section 6. Conclusions and ideas for
future work are discussed in Section 7.

2. Previous Studies
2.1. CNN-Based Land-Cover Mapping

The rise of convolutional neural networks (CNNs) in computer vision has provided
a new concept that can be used in large-scale land-cover mapping due to its advantages
in processing big data. Rezaee et al. [30] used AlexNet [31] to extract areas of wetland
from remote sensing images, and it was found that this method outperformed traditional
classifiers. To improve the diversity of learned feature maps, Huang combined AlexNet
with a light parallel network [32] and achieved a classification accuracy of up to 80%.
However, training a network requires a large number of accurate training samples, and
these are usually difficult to access in the context of remote sensing imagery. The network
was fine-tuned using pre-trained models in ImageNet, and the overall accuracy improved
from 83.1% to 92.4% [33]. Besides pre-trained models, image augmentation has also been
demonstrated to produce more efficient remote sensing image classification [34].
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The CNNs that were mentioned above all end up with fully-connected layers, which
means that they assume pixels from the image batch share the same label and predict the
label of middle pixels instead of the whole image batch. This assumption leads to inaccurate
classification results near target boundaries. To reduce this phenomenon, superpixel- and
object-based networks have been developed [35,36]. The consistent spectrum information
provided by superpixels is able to improve the recognition ability of CNNs [37]. However,
the application of CNNs to large-scale land-cover mapping still face problems such as
weak generalization, rotation variance and the difficulty of collecting pixel-level training
samples. To solve these problems, pooling layers were recombined to improve the efficiency
of information transmission in the network, and hierarchical sampling strategies were
proposed to automatically construct training datasets [38]. The rotation equivalence was
encoded in a CNN architecture to maintain the rotation invariance [39].

Most traditional classifiers utilize image features with clear physical meanings. These
features are easy to understand and can provide stable information for classifiers. On the
contrary, the feature maps in CNNs are learned from the training samples automatically,
which makes it incomprehensible. To make full use of the difference in their features, a
decision-based classifier that was able to combine the features from RF, SVM and CNNs
was designed [40]. As well as the features learned by traditional classifiers and CNNs,
the feature maps learned by CNNs were also different [41]. The use of ensemble CNNs
is also an efficient method of improving the classification performance [42]. Ref. [43]
combined contextual-based CNNs with pixel-based multilayer perceptron (MLP) to take
advantage of both the spatial and spectral feature representations. To further explore the
advantages of CNNs and MLP, Ref. [44] proposed a joint learning strategy that learned the
joint distribution between CNN and MLP. The proposed algorithm was demonstrated to
produce a great increase in the classification accuracy.

2.2. Noisy Label Problem

A noisy label is an inevitable problem in the practice of land cover mapping. For
traditional classifiers, which use point-based training samples, detecting and filtering
noisy labels is an effective method [45,46]. However, it is invalid in pixel-wise-labeled
samples for CNN. Fortunately, the effects of a noisy label and a correct label on the
learning process are different [47]. To fully utilize this property, Ref. [46] used a self-
organizing map to identify inliers and outliers. Ref. [48] proposed to exploit model
consistency across iterations and combined a hard mask selection and soft mask reweighing
to invalid noisy labels without discarding possibly clean ones. In fact, outliers also contain
usefully information, so identifying and discarding them will be fatal, especially when
training samples are insufficient. To overcome this drawback, Ref. [49] proposed to use the
uncertainty information of training samples and proposed an uncertain aware co-training
method to achieve good generalization performance. Ref. [50] proposed a turning value to
effectively learn positive samples over negative ones to increase the learning ability of the
network. However, it is difficult to recognize and evaluate correct labels and noisy labels.
Ref. [45] randomly selected some seed points as clean labels and propagated the label
information from them to the rest unlabeled samples. Ref. [51] proposed a coarse-to-fine
label iteration model to dig out a set of high-quality labels from fully aggregated labels by
using a sparse filter.

The loss function dominates the learning preference of deep learning networks. Dif-
ferent loss functions focus on describing different aspects of the difference between the
predicted result and the corresponding label. For most of the loss functions, it is a robust to
noisy label to some extent in the presence of a large amount of training samples. However,
too many noisy labels will affect the generality of the network [52]. Ref. [53] combined mix-
up entropy and Kullback–Leibler entropy to define a new loss function by fully utilizing
the difference between them. A similar idea was performed in [54]. Ref. [55] proposed an
end-to-end correction with mix-up and balance terms to correct noisy labels to true labels.
To fully utilize the similarities of pixels belonging to the same class, Ref. [56] proposed a
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dubbed self-reweighing from the class centroids method. The class centroids can be used
to measure the reliability of data labels and thus improve the robustness to noisy labels.
Besides the loss function, the structure of the CNN network also has a great impact on its
learning ability. Ref. [54] proposed a novel dual-channel structure to improve the learning
ability along with a noisy robust loss function constructed by reverse cross entropy and
normalized cross entropy.

3. Data Description
3.1. Data Sources

For large-scale land cover mapping, data availability and corresponding observation
ability are the main factors affecting the selection of data sources. Although full-wave
LiDAR contain back scattering information about the detected object, it is still difficult
to recognize the detected classes. In addition, LiDAR implies the highest cost among
commonly used remote sensing datasets [56,57]. SAR is a cost-effective alternative to
LiDAR and is unaffected by clouds. However, the back scattering and interferometric
coherence in special areas are serious, leading to unclear structure representation [58].
Overall, optical images are the most appropriate even though it is easily affected by clouds.
As for the observation ability, low-resolution images cannot reflect the detailed information
about the detected objects, which will affect the distinguishing ability on different classes,
such as vegetation type. Intermediate-resolution Landsat and Sentinel images are the most
commonly used resources in large-scale land cover mapping. Experiments demonstrated
that even though Sentinel images have a higher spatial resolution, the overall accuracy of
land cover maps produced by Landsat 8 images is similar to that produced by Sentinel-2
images [59]. Considering the long time series, Landsat images were employed in this work.
The Level 1T Landsat 5 images of the years 2005 and 2010 from growing seasons were
downloaded from https://earthexplorer.usgs.gov (accessed on 10 December 2017).

Different from traditional classifiers, pixel-wise-labeled image patches are necessary
to train a fully convolutional neural network. That means most of the existing training
samples are invalid for CNN. Manually labeling samples for CNN is labor-intensive and,
more importantly, unreliable. Under this circumstance, existing high-accuracy land cover
maps can be an option. The Land Cover Map of the People’s Republic of China is a high
accuracy time series product, which is widely accepted. It can be downloaded from
http://www.geodata.cn (accessed on 10 April 2018). This map contains six first-level
classes and 38 second-level classes (details shown in Table 1) that have overall accuracies
of 94% and 86%, respectively.

3.2. Data Pre-Processing

Pre-processing is inevitable in traditional large-scale land cover mapping, since it
can provide reliable back-scattering properties of the detected classes. However, the
laborious and time-consuming pre-processing heavily affects the practical application in
large-scale land cover mapping. Fortunately, CNNs use a large number of parameters to
approximate the transformation from input image to output labels, and they are robust
to the changes in spectral features in large-scale remote sensing images. That makes
it a natural choice for large-scale land cover mapping, which can avoid laborious pre-
processing such as radiometric calibration and atmospheric correction. For convenience of
automatic processing, an image mosaic using median values was performed to alleviate
the impact of clouds, images from non-vegetation season, etc. As for the reference, the
data downloaded from http://www.geodata.cn (accessed on 10 April 2018) were stored
in provinces. It can be directly aligned with the mosaicked Landsat images. However, to
fully utilize the label information, its classification system should be modified to adapt
the representation ability of Landsat images. Referencing existing classification systems
employed in [60] and other commonly accepted land-cover maps, the 38 second-level
classes were merged into 8 first-level classes, as shown in Table 1. Then, the merged land
cover map was considered as a reference.

https://earthexplorer.usgs.gov
http://www.geodata.cn
http://www.geodata.cn
http://www.geodata.cn


Remote Sens. 2021, 13, 4194 6 of 20

Table 1. Relationship between the proposed 8 first-level classes and the 38 second-level classes in the reference.

First-Level Classes Second-Level Classes

Forest
Evergreen broad-leaved forest, deciduous broad-leaved forest, evergreen needle-leaved forest, deciduous needle-leaved forest,
Mixed-leaved forest, evergreen broad-leaved shrub, deciduous broad-leaved shrub, evergreen needle-leaved shrub, arbor garden,
Shrub garden, arbor green space, shrub field

Grassland meadow, grassland, grass, herbaceous green land
Wetland Forest wetland, shrub wetland, herbal wetland
Water body Lakes, reservoirs/ponds, rivers, canals
Cultivated land Irrigated farmland, farmland
Artificial surface Residential land, industrial land, transportation land
Bare land Mining land, sparse forest, sparse shrub, sparse grassland, moss/lichen, bare rock, bare soil, desert/sandy land, saline-alkali land
Snow and ice Glacier/permanent snow cover

3.3. Study Area and Training Sets

In the sample selection stage, the sample distribution and the accuracy of the corre-
sponding reference had the most impact on the construction of the training sets. Therefore,
the selected samples should be evenly distributed and should avoid the location of obvious
classification errors. For training CNN, the larger the sample size is, the more information
it contains, and yet, more computation is needed.The larger the size of a training sample,
the more global features it can represent; however, more GPU memory is also required.
To make a trade-off between the expression of global characteristics and the computation
ability of the GPU, a 512× 512 pixel size was chosen. For the experiments in this study,
80% of the selected samples constructed the training set, and the other 20% acted as the
validation set.

3.3.1. Training Samples for the Jing-Jin-Ji Region with Different Composition

It is known that the quality and quantity of training samples has a great impact on the
accuracy of supervised classifiers [61]. For most large-scale land cover mapping training
sets, there is a significant amount of redundant information contained, as well as inaccurate
information. Experiments in [62] demonstrated that the RF classifier can achieve stable
global land cover maps even with 60% fewer sample points or containing 20% errors from
the whole training set, which contain 340,000 sample units of various sizes (from 30 m ×
30 m to 500 m × 500 m) located at approximately 93,000 sites worldwide. However, the
training samples used in this study were pixel-wise image patches, which were cropped
from existing classification results and matched with the collected original Landsat images.
That means we could not accurately evaluate the accuracy of training samples without
a great effort. Therefore, we designed a small experiment to reflect the accuracy of the
training samples. In this experiment, the Jing-Jin-Ji region as shown in Figure 1 was selected
due to the rich classes contained in this region.

Figure 1. Location of the Jing-Jin-Ji region within China.

Impacted by the change in coverage with the seasons and years, as well as the simi-
larity of spectral features of vegetation types, there exist obvious labeling errors among
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vegetation types in the training set. Hence, three training sets were constructed in the
Jing-Jin-Ji region to reflect the accuracy objectively.

TS-1: This set consisted of 1280 training samples covering all the classes present in the
study area, namely, forest, grassland, wetland, water body, cultivated land, artificial
surface and bare land.
TS-2: As there exists serious confusion in the labels of grassland and forest in TS-1,
these two classes were merged to decrease the impact of labeling errors in this set.
TS-3: In this set, the grassland was oversampled so that the impact of the proportion
of inaccurate classes on the final land-cover map could be explored.

3.3.2. Typical Regions

The Chinese provinces of Liaoning, Hubei and Qinghai were selected as study areas.
The locations of these areas within China are shown in Figure 2, in which the original
Landsat images are represented in pseudo-color composed by NIR, red and green bands.
Liaoning is located in northeast China and is mainly composed of cultivated land, artificial
surfaces, forest and grassland. Affected by the low temperature, the vegetation types of the
same class are obviously different from other regions, leading to different spectral features
in vegetation type. Hubei is located in the middle of China. There are thousands of lakes
in this province, so it is a perfect study area to test the accuracy of the classification on
water bodies. Qinghai province is located on the Qinghai–Tibet Plateau, very far away
from the sea. This province is mainly composed of bare land and grassland; in addition,
15.19% of wetlands in China are found in this province. Similar to the experiments on the
Jing-Jin-Ji region, the labels shown in Figure 2 were taken from the reference derived from
Land Cover Map of the People’s Republic of China.

Figure 2. Locations of the study areas in China.

Considering the influence of proportions in the training set, 15,000 non-overlapping
samples with 512× 512 pixels from across China were collected for 2005 and 2010 except
for the three provinces that had been selected as study areas. Four thousand samples with
512× 512 pixels were selected from the study areas and used for validation (as shown
in Table 2). There were significant differences in the quantity of the training samples
for each class due to the natural imbalance between these classes within China. Besides,
original Landsat images for 2005 contained some images obtained from the non-growing
season, which increased the uncertainty in its samples. To express different features as
comprehensively as possible, the selected samples contained different spectral features that
expressed the same objects in different locations. Additionally, the training set contained
objects with different sizes to make it possible for the DL-based method to learn both
detailed and global information. All six bands except the thermal infrared were used to
provide sufficient information for the classifier.
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Table 2. Details for the training sets.

Training Samples Test Samples Patch Size Channels

Typical region 15,000 4000 512 ×512 6
Whole nation 19,200 4800 512× 512 6

3.3.3. The Whole Nation of China

As discussed in Section 3.1, 1056 Landsat 5 images with Level 1T from the growing
seasons of the years 2005 and 2010 were collected. The pre-processed images (mosaicked)
are shown in Figure 3. The stitching lines between the image tiles are obvious: this is
caused by the variation in the spectral values in different images. Comparing the original
images of China for 2005 and 2010, the vegetation cover in 2005 was lower than that in
2010, especially in the regions circled in blue. Figure 3a contains more images from outside
the growing seasons. However, the labels for these regions were obtained during the
growing seasons.

(a) (b)

Figure 3. Original Landsat 5 Level 1T images of China (pseudo-color combined of NIR, red and
green bands). (a) 2005; (b) 2010.

To train a network that could be used in national-land cover mapping, for both 2005
and 2010, 19200 non-overlapping training samples were manually selected, each with a
size of 512× 512 pixels as shown in Table 2. The two training sets from typical regions
and the whole nation were composed of two time periods, namely, 2005 and 2010. Time
series training samples were employed to increase the generality of the proposed MTNet
in this study, due to the similarity between their image features and the difference of the
corresponding information. Since we wanted to train a network that would be used to
produce a national land-cover map of China, the selected training samples were distributed
across the whole nation. More training samples were taken from regions where more
features were presented, such as eastern coastal areas; fewer training samples were acquired
from regions containing fewer features, such as the large areas of grassland and desert
with China. It is well known that the learning ability of the DL network is better when the
training samples are balanced. If a DL-based network is used with an unbalanced training
set, the accuracy of the classes that occupies a small proportion tends to be sacrificed to
ensure the overall accuracy. However, the distribution of classes across China as a whole is
naturally unbalanced. Considering the influence of different proportions of each class, the
proportion of the less distributed classes are increased to match the proportion of majority
classes to balance the training set as much as possible. The proportions of different classes
for the whole of China and in the training set are shown in Figure 4. Less-distributed classes
such as water bodies, artificial surfaces and snow and ice clearly had greater proportions
in the training set than their actual proportions within China; for wetland, the opposite
was the case. The reason for this is that the areas of wetland were very dispersed, and this
made it difficult to collect training samples for this class. Even if a greater effort had been
made to achieve a better balance between the class proportions, the variation would still
have been large.
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Figure 4. Proportions of different classes for China and on the training set.

4. Methodology

Traditional CNNs learn essential features from a training set, in which sufficient high-
quality training samples are necessary. However, sufficient high-quality training samples
are difficult to access, especially for large-scale study areas. Fortunately, small-scale noisy
labels can be derived from existing land cover maps. Although CNN is robust to noise to
some extent, the learning ability is highly dependent on the degree of noise corruption.
Serious noise corruption will lead the network to over-fitting, which will seriously decrease
the quality of the reduced land cover mapping. As a widely used source for land cover
mapping, Landsat images are superior to other remote sensing images in terms of long-term
and stable observation ability. The similarity and difference information contained in time
series Landsat image gave us a chance to overcome the drawback brought by inaccurate
training samples by providing various features for the same class and thus improving the
generality of the network. To fully utilize the consistency and complementarity of time
series images, a mutual transfer network called MTNet was proposed in this study. First,
the DL-based network was trained by the time series training set introduced in Section 3.
As the training samples in the time series are similar, the purpose of this step in the training
process was to learn the essential features of the training samples: the more details that
can be learned, the better. Then, the trained network was used as an initialization on the
current training set. Benefiting from the consistency of Landsat images, the fine-tuned
process on current data cannot only make full use of the learned essential information but
can also adapt to the distribution of the current classes. In addition, the initially trained
MTNet can be considered as a regularization on the time series training set to resist the
impact of noisy labels and thus improve the generality of the network.

CNN stacks convolutional layers to extract information from input images. The
convolutional layer can be expressed as

X(t+1) = f
(
w(t)X(t) + b(t)

)
(1)

where t represents the iteration index; X(t) is the input image; w(t) is the parameter of the
convolutional kernel, which slides over X(t); b(t) is the bias of the learned features and
f (·) is an activation function that can convert a linear combination of information into
a non-linear one. By stacking different convolutional kernels, the same classes present
similar features, while different classes present different features. The learned features
were mainly dominated by the training process. Taking the Adam optimizer as an example,
the gradient, the first-order momentum and the second-order momentum can be calculated
as

g(t) = ∇w f
(
w(t))

m(t) = β1m(t−1) + (1− β1)g(t)

V(t) = β2V(t−1) + (1− β2)
(

g(t)
)2

(2)

Here, β1 and β2 are coefficients of the first- and second-order momentum, respectively.
The step is then given by

η(t) = α
m(t)
√

V(t)
(3)
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Finally, the updated w(t) is given by

w(t+1) = w(t) − η(t) (4)

When the training set is imbalanced or contains noisy labels, the calculation of
Equations (2) and (3) will have large deviations, thus leading to over fitting. On the
contrary, time series training samples can provide additive information and generalize the
distribution of the classes. Due to the increase in correctly labeled samples in the general-
ized distribution, it is more robust to imbalanced and noisy labels. To take advantage of
this property, an MTNet was proposed. Firstly, the proposed MTNet trained the network
with one of the time series training sets to approach the optimum parameters. Then, the
trained model was used as an initialization to fine-tune the model on the current data.
As an initialization, it can provide a near-optimum combination of parameters. On this
basis, the fine-tuned network can not only converge faster but also better adapt to the
distribution of the target domain. In this way, Equation (4) was obtained by two training
sets: the original parameter w(t) comes from the time series training set, which was used to
train the MTNet, and the gradient η(t), which was obtained from the current training set to
further approach the optimum. The disagreements between the time series training sets
are the main source of information in the mutual learning. The learned parameters can be
written in the form

w f inal = w f irst_set + wsecond_set (5)

where w f irst_set represents the parameters trained by the time series training set that dom-
inates the learning ability of the MTNet; ∆wsecond_set represents the updated parameters,
which were fine-tuned on the current training set. As a regularization, the pre-trained
model can provide diversified information to enlarge the parameter space. In counter
with the training process, which reduces the searching scope of the parameter space, the
pre-trained model can prevent the network from learning features that are too complex.
In other words, by utilizing the consistency and complementarity between time series
Landsat images, the MTNet is able to prevent the network from over-fitting in the presence
of noisy labels.

Taking PSPNet as an example, the flowchart of the proposed MTNet is shown in Figure 5.
The efficiency of the MTNet is improved by ensuring that the network learns essential and
general features from time series training sets. By fully utilizing the similar and dissimilar
features of the time series training sets, the MTNet can learn general information and is
also robust to imbalanced and noisy labels.

Figure 5. Flowchart of MTNet. Training set of Time 1 was used to train the PSPNet. Then, the trained
network was finetuned by the training set of Time 2 to make the network suitable for land cover
mapping of images in Time 2.

5. Experiments and Analysis on Typical Regions

The network was coded using Pytorch and trained by a 3 Titan XP with a 12 GB
memory. To improve the efficiency and decrease the number of training samples needed,
a model that had been pre-trained on ImageNet was employed to initialize the network
parameters. An Adam optimizer was used to calculate the gradient of the network and
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realize the backward propagation. The learning rate was set to 10−4, and the weight decay
was 10−4. The batch size was 18 with a momentum of 0.1. The network was trained 300
epochs and fine-tuned 40 epochs so that it could fully utilize the information contained in
the time series images.

5.1. Experiments on Different Compositions of Training Samples

PSPNet was used to classify the above-mentioned three training sets in Section 3.3.1.
The corresponding precisions are listed in Table 3. Comparing the classification results
of TS-2 with TS-1, it was clear that combining the labels of forest and grassland can
significantly improve both the precision (from 75.25% to 83.16%) and the F1_score (from
71.83% to 78.32%). Of course, merging classes simplifies the learning model, but the
improvement in the accuracy of the training set also contributes to the improvement in
the precision and the F1_score. The existence of labeling errors in the training set cannot
only affect the recognition of the corresponding class but also improves the learning ability
of the network. Actually, the quality of the training set cannot be easily improved in
real-world tasks. So, it is difficult to quantitatively describe the connection between the
noisy corruption degree and the learning ability of the network.

As for the classification result of TS-3, increasing the proportion of grassland also
increases the proportion of forest, since they usually appear to be adjacent. With more in-
formation about grassland, the classification precision rose about 18.56%, and the F1_score
increased about 7.11%. Similar to the result of TS-2, all the other classes except cultivated
land were all increased in TS-3. This means that introducing more information can sig-
nificantly increase the learning ability of CNN, even though the introduced information
was with uncertainty. That gave us a clue to jointly learn from time series remote sensing
images by using the similar but differential information.

Table 3. Classification accuracy for the Jing-Jin-Ji region of PSPNet on the four training sets where forest and grassland are
merged as on class in TS-2.

Forest Grassland Wetland Water Body Cultivated Land Build-Up Land Bare Land Overall Accuracy

(%) Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score

TS-1 81.54 76.34 36.05 49.80 41.82 57.23 71.66 16.89 90.34 81.79 47.50 58.61 37.73 49.63 75.25 71.83
TS-2 87.61 78.94 48.43 60.17 72.48 29.11 85.05 83.22 56.49 76.20 41.90 38.90 83.16 78.32
TS-3 81.74 77.16 54.61 56.99 49.60 63.21 75.39 34.11 87.17 78.45 58.11 63.92 45.98 49.40 77.65 72.43

5.2. Qualitative Results for Typical Regions

To test the efficiency of the proposed MTNet, we compared with the most widely used
methods in large-scale remote sensing image classification (to make a fair comparison, all
the network employed in this study took PSPNet as a backbone), including: (1) traditional
random forest (RF) classifier, which was demonstrated to be the most effective method [63];
(2) PSPNet-RL, which employed a robust loss proposed in [54] to alleviate the impact
of noisy labels; (3) PSPNet trained by a training set collected outside the current data
(we called it PSPNet-TF in this study); (4) the traditional PSPNet. The above-mentioned
algorithms and the proposed MTNet were performed on the training set introduced in
Section 3.3.2.

Detailed results for the performance of the model for Liaoning, Hubei and Qinghai
are shown in Figures 6–8. RF uses pixel-wise training samples to train the classifier. The
lack of context relationship makes it sensitive to noise. Accordingly, the corresponding
classification results were not satisfactory. In fact, the class noise contained in the training
samples also had a great impact on RF. As demonstrated in the last subsection, the training
samples were derived from existing land cover maps and contained some class noise.
Since the RF classifier does not need a pixel-wise-labeled image patch, the center pixel of
a training sample was selected as a training point to construct a training set for the RF
classifier. Actually, we tried to select 1–30 pixels from each image as training samples and
even used all the training samples, both randomly or following certain rules. However,
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there was no significant difference on the training or testing precision due to the capacity of
the RF classifier. Considering the trade-off between the precision and the training efficiency,
we randomly selected five pixels from each image and constructed a training set with
67,301 sample points by removing pixels, which were labeled as others.

It is clear that the PSPNet was sensitive to the training samples that were used. Its
recognition ability was significantly reduced when the original Landsat image contained
features that were obviously inconsistent with the training samples. Benefiting from the
robust loss in PSPNet-RL, the noisy resistant ability was slightly improved. This also
decreased the recognition ability of PSPNet-RL on objects that contained complex features,
such as Figure 6(b4,d4), Figure 7(b4,c4) and Figure 8(a4), etc. PSPNet obtained better
classification results than PSPNet-TF, which was trained with samples outside the current
time periods. Overall, the models trained using the 2010 training set had a stronger
generalization ability than the models trained using the 2005 training set. This was because
the 2010 training set was of better quality. Using the consistent information provided by
the 2010 training set, PSPNet was able to learn the image features more efficiently. The
MTNet was fine-tuned using the current training set. The parameters of the MTNet were
determined by time series training sets. This means that the MTNet was able to learn more
general features from the current training set while maintaining the stable feature-learning
ability acquired from the time series training set. In this way, the MTNet can overcome the
drawback of having imbalanced training samples and learn essential features from noisy
labels. As shown in the results in Figures 6–8, the classification for MTNet were the best
among all the models and sometimes outperformed even the reference, visually.

(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(b1) (b2) (b3) (b4) (b5) (b6) (b7)

(c1) (c2) (c3) (c4) (c5) (c6) (c7)

(d1) (d2) (d3) (d4) (d5) (d6) (d7)

Figure 6. Detailed classification results for Liaoning, where (a1–d1) are the original Landsat images,
(a2–d2) are the reference, (a3–d3) are classification results for RF classifier, (a4–d4) are classification
results of PSPNet-RL, (a5–d5) are classification results of PSPNet, (a6–d6) are classification results of
PSPNet-TF and (a7–d7) are classification results of MTNet. The results shown in (a1–b7) are for the
year 2005; the results shown in (c1–d7) are for 2010.
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(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(b1) (b2) (b3) (b4) (b5) (b6) (b7)

(c1) (c2) (c3) (c4) (c5) (c6) (c7)

(d1) (d2) (d3) (d4) (d5) (d6) (d7)

Figure 7. Detailed classification results for Hubei, where (a1–d1) are the original Landsat images,
(a2–d2) are the reference, (a3–d3) are classification results for RF classifier, (a4–d4) are classification
results of PSPNet-RL, (a5–d5) are classification results of PSPNet, (a6–d6) are classification results of
PSPNet-TF, and (a7–d7) are classification results of MTNet. The results shown in (a1–b7) are for the
year 2005; the results shown in (c1–d7) are for 2010.

5.3. Quantitative Results for Typical Region

Using the training set introduced in Section 3.3.2, the precision and F1_score for the
study areas are listed in Table 4. It can be seen that:

(1) Among all the methods: RF obtained the lowest accuracy. Influenced by the indepen-
dence in training samples, RF cannot effectively learn the relationship between pixels
and thus is sensitive to noise. Accordingly, both the precision and the F1_score were
significantly lower than DL-based methods.

(2) Generally, PSPNet-RL obtained better accuracies than the PSPNet, due to the in-
troduced robust loss function. This means the robust loss proposed in [54] does
have the ability of improving the robustness to noisy labels. However, as shown in
Figures 6–8, this improvement in the classification accuracy is at the cost of decreasing
the recognition ability of complex features. Unfortunately, for most applications,
object recognition ability is much more important than accuracy.

(3) For Liaoning province at different time periods, the difference in the precision and
F1_score for the years 2005 and 2010 were all notable: this was caused by the quality of
the original images. The Landsat imagery of the west of Liaoning that was acquired in
2005 included some images from outside the growing season; this had a great impact
on the ability to recognize vegetation types. Therefore, both the precision and the
F1_score for 2005 were obviously lower than those for 2010.

(4) For Hubei and Qinghai provinces at different time periods, all the accuracies of
Liaoning in 2010 were higher than those in 2005, since the training samples contained
images obtained in non-growing seasons. Accordingly, models trained by the 2010
training set had higher accuracies than those trained by the 2005 training set. This
phenomenon was not found in Hubei and Qinghai. This demonstrates that models
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trained using high-quality training samples are more general than models trained
using poorer-quality training samples.

(5) For the same study area in the same year, PSPNet-RL outperformed PSPNet, and
PSPNet outperformed PSPNet-TF, while all the classification accuracies of the MTNet
were higher than the others. The MTNet performed well even when the training
samples were not balanced and noisy labels were included. The use of interactive
training samples from time-series data significantly improved the performance of the
networks. This demonstrates the efficiency of the mutual training strategy used in the
MTNet.

(6) For different study areas, the overall accuracies were affected by the quality of the
original images and labels, and so they varied with the study areas. This was a result
of the different proportions of each class that were present in the training samples.
For example, the main classes made up a large proportion of the training samples for
Liaoning and Hubei. As a result, the overall accuracies for these areas were higher
than for Qinghai, for which the samples corresponding to the main classes were of
poor quality or contained noisy labels.

(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(b1) (b2) (b3) (b4) (b5) (b6) (b7)

(c1) (c2) (c3) (c4) (c5) (c6) (c7)

(d1) (d2) (d3) (d4) (d5) (d6) (d7)

Figure 8. Detailed classification results for Qinghai, where (a1–d1) are the original Landsat images,
(a2–d2) are the reference, (a3–d3) are classification results for RF classifier, (a4–d4) are classification
results of PSPNet-RL, (a5–d5) are classification results of PSPNet, (a6–d6) are classification results of
PSPNet-TF and (a7–d7) are classification results of MTNet. The results shown in (a1–b7) are for the
year 2005; the results shown in (c1–d7) are for 2010.
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Table 4. Precision and F1_score for the study areas (Liaoning, Hubei and Qinghai provinces).

Time Period RF PSPNet-RL PSPNet PSPNet-TF MTNet

(%) Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score

Liaoning 2005 47.76 49.79 71.80 71.39 72.97 72.44 71.69 71.80 73.58 73.21
2010 54.04 54.04 84.52 83.31 83.39 82.94 81.14 80.98 83.94 83.04

Hubei 2005 51.16 58.02 80.91 79.47 81.13 79.78 79.10 77.70 81.32 80.04
2010 52.40 59.06 77.70 76.60 76.96 75.82 77.50 76.26 80.68 80.09

Qinghai 2005 51.40 55.81 73.97 74.16 71.57 72.16 71.89 72.03 74.49 74.62
2010 52.79 56.92 71.86 72.24 65.77 65.57 68.03 67.77 75.48 75.36

6. Extension to Land Cover Maps of China

Most of the existing land cover maps were produced by point-based classifiers, such as
MLC, DT, RF and SVM. Point-based training sets are easy to access, and the quality is highly
guaranteed. This greatly shortens the training time of the model and ensures the learning
efficiency of the classifiers. However, restricted by the limited information contained
in small training sets and the essential driver of the classifiers, traditional point-based
classifiers are sensitive to the variation of features representing the same class. This leads
to poor performance on large-scale study areas, which is the reason why the production
of large-scale land cover products need complex pre- and post-processing and a large
amount of human interaction. This means using the RF classifier in the last section cannot
obtain comparable accuracy with existing land cover maps. With the rapid development of
remote sensing techniques, this kind of classifier cannot meet the rapid development of
application demand. DL-based methods use a large amount of parameters to learn from
massive information contained in pixel-wise-labeled training samples, and even it suffers
from imbalanced and noisy labels. This increases the suitability of the DL-based method
on large-scale study areas. Nevertheless, the learning ability of the DL-based method is
highly dependent on the quality of the training set. Benefiting from the transferability
of the DL-based method, the proposed MTNet mutually transfers pretrained models to
other time periods and jointly learns general information in time series training samples.
This obviously increases its robustness on imbalanced and noisy labels. To further test
the proposed MTNet and also to provide a solution for large-scale land cover mapping,
the MTNet was used to produce a new national land cover map of China in 2010. The
produced land cover map was qualitatively compared with existing products as shown in
Figure 9.

(a) (b)

(c) (d) (e)

Figure 9. Original Landsat images for 2010 and corresponding land cover maps, where (a) is
composed of 1056 Landsat 5 image with obvious stitching lines (https://earthexplorer.usgs.gov,
accessed on 10 December 2017); (b) is the Land Cover Map of People’s Republic of China with an
overall accuracy between 86% to 94% (http://www.geodata.cn, accessed on 10 December 2017); (c) is
the GlobalLandCover 30 (GLC30) with an overall accuracy about 80% [63]; (d) is the land cover map
produced by PSPNet and (e) is the land cover map produced by the proposed MTNet.

https://earthexplorer.usgs.gov
http://www.geodata.cn


Remote Sens. 2021, 13, 4194 16 of 20

The original Landsat images for 2010 were only stitched without any pre-processing.
Therefore, the stitching lines were obvious as shown in Figure 9a. Actually, the original
Landsat images wereexactly the ones used for producing all the land cover maps except
Figure 9b. The Land Cover Map of People’s Republic of China (LCMPRC) is the most
accurate land cover product we know. However, there are some obvious errors in northeast
China, where the cultivated land was classified as wetland as shown in Figure 9b. The Glob-
alLandCover 30 (GLC30) contained 10 first-level classes and was merged to the proposed
8 first-level classes listed in Table 1. In Figure 9c, most of Qinghai–Tibet was classified as
grassland where they should be bare land according to Figure 9a. The classification results
of PSPNet and MTNet were similar, from a national perspective.

To further explore the difference among all the land cover maps, detailed classification
results are shown in Figure 10. Figure 10(a1) is an area stitched from multi-images, where
the lower-right part comes from non-growing seasons. PSPNet classifies this area as grass-
land, while the proposed MTNet can correctly recognize this area as forest. Figure 10(a2)
shows the details of the misclassification of cultivated land to wetland in the northeast
China of LCMPRC. GLC30 cannot obtain a satisfactory result in this area as shown in
Figure 10(a3). Figure 10(b1) is mostly covered by forest (darker red part) and cultivated
land (lighter red part). LCMPRC can distinguish different classes, but the result is frag-
mented. GLC30 classifies some forest as cultivated land, while PSPNet classifies some
forest as grassland. The classification results of MTNet are promising compared with
other land cover maps. Figure 10(c1) is an atypical landform in China, and it can only be
found in the middle east area. LCMPRC misclassified some of the cultivated land as an
artificial surface, and even typical features of artificial surface exist in this area (as shown
in Figure 10(a2)). GLC30 cannot recognize the water body with such salient features and
classifies them as cultivated land. PSPNet is able to recognize the water bodies but misses
the features of artificial surfaces. Benefiting from time series training samples, MTNet is
more robust to changes of features in the same class and obtains satisfactory classification
results (as shown in Figure 10(c5)). Influenced by the nature distribution of different classes
all over China, wetland occupies the least proportion. Accordingly, the training samples
for wetland is less efficient compared with other classes. This has a great impact on both
traditional point-based classifiers and DL-based methods (as shown in Figure 10(d2,d4)).
Besides, the similarity between features of different classes also has a great impact on the
recognition ability of traditional classifiers, as shown in Figure 10(d3). The MTNet jointly
learns from time series training samples and is able to learn more information and obtain
better classification results.

From a quantitative evaluation point of view, traditional point-based evaluation may
over-estimate the accuracies since sample points have a higher probability to lie in the
middle of an object, while misclassification is more likely to appear near the boundary. To
roughly estimate the classification results of PSPNet and MTNet, we randomly selected
15 images with 10,240 × 10,240 pixels as an estimation area and then calculated the preci-
sion and F1_score by considering the GLC30 and LCMPRC as the ground truth, respectively.
The corresponding results are listed in Table 5. It was clear that: (1) the evaluation results
based on LCMPRC were much higher than those based on GLC30. That was caused by
the accuracy of the base, which was considered as the ground truth. The overall accuracy
of GLC30 was about 80%, while it was between 86% and 94% for LCMPRC. This means
the evaluation results based on LCMPRC were more accurate than those based on GLC30.
(2) Under this evaluation criteria, DL-based methods (PSPNet and MTNet) outperformed
traditional ones (GLC30, which is a combination of MLC, DT, SVM and human labors, and
LCMPRC, which is produced by many cooperative institutes). Benefiting from the large
amount of parameters, DL-based methods can learn more from the training samples and
outperform traditional classifiers. (3) MTNet outperformed PSPNet to some extent. As
shown in the detailed results of GLC30 and LCMPRC in Figure 10, these two products
may be superior in some classes in some areas, but they also contain obvious misclassi-
fied areas. That may have an impact on the evaluation results. Actually, jointly learning
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from time series training samples allows MTNet to learn more essential information than
PSPNet. Overall, MTNet provides a new idea for large-scale land cover mapping, and its
classification result is promising compared with existing ones.

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

Figure 10. Detailed classification results for the original Landsat images and corresponding land cover maps, where (a1–d1)
are original Landsat images, which were used for the producing of GLC30 and the results of PSPNet and MTNet; (a2–d2)
are classification results from the Land Cover Map of People’s Republic of China; (a3–d3) are classification results from the
GLC30; (a4–d4) are classification results of PSPNet and (a5–d5) are classification results of MTNet.

Table 5. Jointly Comparison Results.

Base GLC30 LCMPRC PSPNet MTNet

Precision F1_Score Precision F1_Score Precision F1_Score Precision F1_Score

GLC30 - 74.21 62.63 77.05 63.74 77.55 64.03
LCMPRC 74.50 59.77 - 82.51 64.38 82.61 64.41
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7. Conclusions

A mutual transfer network (MTNet) for large-scale time-series land-cover mapping
was proposed. After comparing the performances of PSPNet, PSPNet-RL, PSPNet-TF and
MTNet, we proposed an idea for large-scale land cover mapping. It was demonstrated by
experiment that, as also stated in [20], the quality of the training samples had a significant
impact on the classification results. Based on the transferability of CNN, the proposed
MTNet can take advantage of the time-series of training samples and obtain better classifi-
cation results than a traditional training strategy based on an imbalanced training set with
noisy labels. This study provides a solution for practical large-scale land cover mapping,
but it did not take the consistency between time series land cover mapping into considera-
tion. Large-scale land cover maps produced by MTNet can be post-processed according
to [64,65].

The DL-based method provides a new opportunity for producing large-scale land
cover maps. In future work, we will focus on introducing training samples with different
imaging times to improve the recognition ability of the DL-based method, especially for
vegetation. We will also try to introduce domain adaption and change detection methods
into MTNet to improve its generality for large-scale land cover mapping.
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