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Abstract: Accurate phase unwrapping (PU) is a precondition and key for using synthetic aperture
radar interferometry (InSAR) technology to successfully invert topography and monitor surface
deformations. However, most interferograms are seriously polluted by noise in the low-quality
regions, which poses difficulties for PU. Therefore, using the strategy of leveling network adjustment,
this paper proposes an improved PU method based on hierarchical networking and constrained
adjustment. This method not only limits the phase error transfer of low-quality points, but also takes
the PU results of high-quality points as control points and uses the network adjustment method
with constraints to unwrap low-quality points, which effectively inhibits the influence of noise and
improves the accuracy of unwrapping. Regardless of the unwrapping method used for high-quality
points, the unwrapping accuracy of low-quality points can always be improved. Compared with
other traditional two-dimensional phase unwrapping workflows, this method can more accurately
recover the phase of low-coherence regions only through the interferogram. A simulation experiment
showed that the local noise of the interferogram was effectively inhibited, and the PU accuracy of the
low-quality regions was improved by 16–46% compared with different traditional methods. For a
real-data experiment of mining area with low coherence, the PU result of our proposed method had
fewer residues and lower phase standard deviation than traditional methods, further indicating
the practicability and robustness of the proposed method. The work in this paper has considerable
practical significance for recovering the decoherence phase with serious local noise such as mining
centers and groundwater subsidence centers.

Keywords: phase unwrapping; InSAR; hierarchical networking; constrained adjustment

1. Introduction

Interferometric synthetic aperture radar (InSAR) is the combination of synthetic aper-
ture radar (SAR) and interferometry, which obtains two single look complex (SLC) images
of the same area on the ground through two antennas or at different times, which are
nearly parallel observations, to obtain ground elevation according to the orbit parameters
and interferometric phase information of the sensor during flight [1]. InSAR, with its
all-day, all-weather, high-precision, and wide-range advantages, provides a new tool for
acquiring digital elevation models (DEMs) and monitoring surface deformations such
as earthquakes [2,3], mining areas [4,5], landslides [6,7], glaciers [8,9], and urban infras-
tructure [10–13], etc. However, the interference phase obtained by the interferometric
processing of the SAR image is wrapped between (−π, π), and the entire cycle information
is lost. To restore the real phase representing the actual deformation or topography, it is
necessary to add or subtract the integer multiple of 2π on the basis of the wrapped phase
to restore its real phase, which is called phase unwrapping (PU) [14]. PU is one of the
key technologies of InSAR, and the accuracy of the unwrapped results directly affects the
accuracy of the final products. Further work is required to determine how to accurately
and efficiently perform PU, being a difficult problem and a hot topic in research.
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With the widespread application of InSAR technology, dozens of PU methods have
been developed to deal with different patterns in different situations. The classic two-
dimensional (2D) PU methods are based on the phase continuity assumption [15], which can
be roughly divided into two types: path-following methods and optimization-based methods.

Path-following methods achieve unwrapping by selecting appropriate integration
paths to avoid noise regions; examples include the branch cut method [16], region growing
method [17], quality-guided method [18], and minimum discontinuity method [19], etc.
General path-following algorithms have very high accuracy and efficiency for interfero-
grams with good quality. However, it is difficult to find an appropriate unwrapping path in
areas seriously affected by noise. Once the unwrapping path passes through the residues,
phase jump easily occurs, which causes error transfer or unwrapping islands.

The optimization-based method unwraps phase by solving different objective func-
tions. Among them, the LP norm is the classical method [20]. When P takes a different
value, it corresponds to different unwrapping methods. This kind of algorithm transforms
the PU problem into an optimization problem based on the condition that the unwrapped
phase gradient is equal to the wrapped phase gradient. At present, the least square (LS,
when P is equal to two) [15] method is the most widely used. Various improved LS un-
wrapping algorithms [21–23] markedly improve the accuracy and efficiency of LS PU, and
the unwrapped results have good continuity and smoothness, even for interferograms with
poor quality. However, due to the LS PU fitting the results, the unwrapped results of any
phase point are approximate solutions, which are not accurate enough, and the local noise
spreads around in the sense of the least mean square, resulting in the overall unwrapping
accuracy being low. When P is equal to two, the LP norm method is the minimum-cost flow
(mcf) [24] method, which ensures accuracy and improves efficiency and has the advantages
of continuity and limited error transfer. In addition, methods such as snaphu [25–27],
Kalman filter [28], ant colony algorithm [29], simulated annealing algorithm [30], and deep
learning [31,32] have also been introduced into PU and achieved various results.

Although the above methods can improve the accuracy of PU, they are still unable
to resist noise interference, and the unwrapped results are discontinuous in severe noise
areas. Because interferograms inevitably have low-quality areas due to the influence of
spatial–temporal decoherence and noise, these low-quality areas not only create large errors
in the PU process, but may also spread the error to the high-coherence point areas, affecting
the unwrapping accuracy of high-coherence points, thereby affecting the subsequent
application of InSAR.

On the basis of existing PU theory, aiming at the problem of large PU error in low-
quality areas, this paper proposes a PU method based on hierarchical networking and
constrained adjustment (HNCA). According to the quality map, the phase is divided into
high-quality first-level points and low-quality second-level points. The appropriate 2D
unwrapping method is used for high-quality first-level points, and the error is small, which
can ensure the unwrapping accuracy of high-quality points. For low-quality second-level
points regions, the unwrapped results of high-quality points are used as control points,
and the network adjustment unwrapping method with constraints is used. This constraint
can effectively suppress noise and improve the unwrapping accuracy of secondary points.
This is the advantage that the classical 2D phase unwrapping does not have; that is, only
through the interferogram is the unwrapping accuracy of the low-coherence region con-
siderably improved. In particular, the work in this paper is significant for restoring the
low-coherent phase of noise regions such as groundwater centers and mining centers and
can provide reliable guidance for the monitoring and management of these regions.

The effectiveness of the proposed method is verified by simulation experiments and
real mining data. The experimental results show that the proposed algorithm not only
avoids the propagation of noise errors, but also improves the unwrapping accuracy of
low-quality points and has strong robustness.

The rest of this paper is structured as follows: Section 2 introduces the traditional
PU method and the improved HNCA PU method. Section 3 shows the experimental
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results and accuracy evaluation results of the simulated data. The experimental results and
accuracy evaluation results of real data are described in Section 4. The final discussion and
conclusions are provided in Sections 5 and 6, respectively.

2. Phase Unwrapping Principle and Methods

The unwrapped φ phase and the wrapped phase ϕ have the following relationship:

φ = ϕ + k·2π (1)

where k is an integer, which indicates ambiguity.
The purpose of PU is to obtain an accurate phase ambiguity k on the basis of the

interference phase ϕ, so that the absolute phase φ can be obtained by integrating the
wrapped phase ϕ according to a certain path.

Assuming the current unwrapped phase is ϕ(i,j), where i = 1, 2, · · · , M and j = 1, 2, · · ·N,
the discrete partial derivatives ∆ϕx

(i,j) and ∆ϕ
y
(i,j) in the row and column directions are

expressed as follows:

∆ϕx
(i,j) =


ϕ(i+1,j) − ϕ(i,j) − 2π ϕ(i+1,j) − ϕ(i,j) > π

ϕ(i+1,j) − ϕ(i,j)

∣∣∣ϕ(i+1,j) − ϕ(i,j)

∣∣∣ ≤ π

ϕ(i+1,j) − ϕ(i,j) + 2π ϕ(i+1,j) − ϕ(i,j) > −π

(2)

∆ϕ
y
(i,j) =


ϕ(i,j+1) − ϕ(i,j) − 2π ϕ(i,j+1) − ϕ(i,j) > π

ϕ(i,j+1) − ϕ(i,j)

∣∣∣ϕ(i,j+1) − ϕ(i,j)

∣∣∣ ≤ π

ϕ(i,j+1) − ϕ(i,j) + 2π ϕ(i,j+1) − ϕ(i,j) > −π

(3)

Ideally, there is no noise interference in the interferogram, and the phase discrete
derivative is an irrotational vector field, which can be integrated and unwrapped directly
along a certain path. However, due to the influence of noise, some points do not meet the
irrotationality; these points are called residues. Because the existence of residues makes
it impossible to directly integrate discrete derivatives, different algorithms are needed
for processing.

In theory, as shown in Equation (3), the phase gradient before and after unwrapping
should be equal everywhere: {

∆φx
(i,j) = ∆ϕx

(i,j)
∆φ

y
(i,j) = ∆ϕ

y
(i,j)

(4)

However, in practice, there are differences between the two due to noise and other
reasons. The LS method is used to minimize this difference for PU. The LS method
attributes the PU to the objective function shown in Equation (5), which represents the
square sum of the difference between the discrete partial derivative of the unwrapped
phase and the discrete partial derivative of the wrapped phase. The optimal solution of
this function under the least square constraint is the LS unwrapping result.

min =

{
M−1

∑
i=1

N

∑
j=1

Wx
(i,j)

∣∣∣∆φx
(i,j) − ∆ϕx

(i,j)

∣∣∣2+ M

∑
i=1

N−1

∑
j=1

Wy
(i,j)

∣∣∣∆φ
y
(i,j) − ∆ϕ

y
(i,j)

∣∣∣2} (5)

where Wx
(i,j) and Wy

(i,j) represent the weights in the x and y directions, respectively; ∆φ is
the optimal solution in the global.

The function is finally transformed into solving the Poisson equation with Neumann
boundary conditions. The LS method based on DCT transform and the LS method based
on FFT transform are efficient methods to solve the Poisson equation. Then, a weighted
form of the DCT-based PU algorithm was developed (called WDCT-LS), so its accuracy is
higher than other LS unwrapping methods. Because these methods are very mature, we
will not elaborate further on them; interested readers can refer to [15,21,22].
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The LS method is a stable global algorithm, and there is no regional unwrapped
problem when unwrapping. However, due to the idea of global fitting, the unwrapped
results obtained by LS are smoother. When the phase quality of some regions is poor, the
influence of noise points on local errors cannot be eliminated, and the error of local regions
is globally averaged, thus reducing the reliability of the unwrapped results.

The minimum cost flow (mcf), also the optimization method, is different from the
LS method, because the mcf method not only provides the objective function, but also an
efficient calculation method and adds constraints to it. Its objective function is expressed
as [24]:

min
k1,k2

{
∑N−2

i=0 ∑M−1
j=0 Wx

(i,j)|k1(i, j)|+ ∑N−1
i=0 ∑M−2

j=0 Wy
(i,j)|k2(i, j)|

}
(6)

k1(i, j + 1)− k1(i, j)− k2(i + 1, j) + k2(i, j)
= 1

2π (∆φ1(i, j + 1)− ∆φ1(i, j)− ∆φ2(i + 1, j)− ∆φ2(i, j))
(7)

Note that Equation (6) is a nonlinear equation and it is difficult to solve. Therefore,
Constantini [24] composed Equations (6) and (7) into a minimum norm problem with
constraints and introduced the solution method of network flow, which not only markedly
accelerated the speed of solution, but also well constrained the transmission of error, and
the unwrapped results were more reliable.

Since Constantini, many scholars have proposed improved network flow algorithms,
such as Carballo’s multi-resolution network flow PU algorithm based on statistics [33],
Chen’s statistical cost network flow PU algorithm [25–27], and so on. These methods
improve the accuracy or efficiency of PU under certain conditions.

3. Phase Unwrapping Based on Hierarchical Networking and Constrained Adjustment

Some of the phase points in the interferogram have high quality and some have low
quality. If the whole unwrapping is performed, not only is the unwrapping accuracy
of low-quality points low, but the error will also spread continuously, which affects the
unwrapping accuracy of high-quality points. In the traditional PU algorithm, all phase
points participate in unwrapping at one time; even if the weights are set in different
methods, there will be noise pollution. Therefore, considering the similarity between the
leveling network solution and the PU, given the large unwrapping error of the traditional
PU algorithm in noise-intensive areas and the problem that the unwrapping error is
transmitted to high-quality points, a network adjustment unwrapping method based on
hierarchical networking is proposed. According to the quality map, the phase is divided
into high-quality first-level points and low-quality second-level points. The appropriate 2D
unwrapping method is used for high-quality first-level points, and the error is small, which
can ensure the unwrapping accuracy of high-quality points. For low-quality second-level
points regions, the unwrapped results of high-quality points are used as control points,
and the network adjustment unwrapping method with constraints is used.

The proposed method not only ensures the unwrapping precision of high-quality
points, but also improves the unwrapping precision of low-quality points.

3.1. Hierarchical Networking

According to the residues’ distribution and quality map of the interferogram, phase
points are divided into different levels. Firstly, the residues in the interferogram are
detected. The existence of residues is the most direct source of unwrapping error, so the
residues are marked. Then, the quality control threshold T is set according to the quality
map of coherence, phase standard deviation [34], or pseudo-coherence coefficient [15].
According to the quality control threshold T, the phase points are divided into high- and
low-quality parts, and the recommended reference value of T is 0.3–0.8 [35]. It is worth
mentioning that only one reference range can be given here, because the quality of the
interferogram is good or bad, and the research range of the researcher is also large or small,
so the threshold can only be flexibly set according to the actual situation to improve the
accuracy as much as possible or to meet actual application requirements. At the same time,
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in order to avoid the unwrapping error caused by the excessive length of the arc, a certain
arc threshold should be set to delete the distant isolated points and islands.

We call the obtained high- and low-quality phase points the first-level points and the
second-level points, respectively. The final mask situation is defined by the following equation:

mask(i,j) =

{
0 C(i,j) < T
1 C(i,j) > T

(8)

In general, after residues detection, the quality map test, and the phase points selection,
the first-level points with relatively uniform and reliable distribution and the second-level
points with low-quality are obtained.

3.2. First-Level Points Unwrapping

According to the distribution of the first-level points, the Delaunay triangulation
network [36] is constructed, as shown in Figure 1. According to the data and research area,
the existing classic methods such as LS, mcf, and snaphu, etc., are used to unwrap the
first-level network.

Figure 1. Schematic diagram of the first-level network. The white points are the phase points that are
masked due to poor quality, the green points are the first-level points, the corresponding green solid
arrow is the Delaunay triangulation formed by the first-level points, and the green dashed arrow is
deleted due to the long distance The yellow points are the second-level points.

3.3. Unwrapping Second-Level Points

During the PU of the second-level points, the first unwrapping points are used as
known control points to constrain the PU of the second-level points, so as to improve the
unwrapping accuracy of the second-level points. In the second PU, all the phase points
involved in the PU construct an irregular triangular network. There are two methods to
construct the network according to the image quality.

As shown in Figure 2, when the first- and second-level points are evenly distributed
in the image and cross each other, taking second-level point 1 as an example, for the
second-level point to connect with the highest quality around and meet the distance
threshold limit of three first-level points, these three first-level points can effectively control
the unwrapping error of the second-level points during PU. When the phase quality
distribution is uneven, such as the second-level points in the dashed frame, these second-
level points are first composed of Delaunay triangulation separately and, then, connect the
nearest first-level points that meet the distance threshold limit, such as points 5 and 6.
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Figure 2. Schematic diagram of the second-level network.

After the completion of the second-level points construction, the solution process still
follows the phase continuity assumption; that is, it is assumed that there is no crossing
fringe between the arcs.

In Figure 2, point 2 is the first-level point that has been unwrapped, and point 1 is the
second-level point that has not been unwrapped. The phase relationship between them is:

φ1 = φ2 + ω(ϕ1 − ϕ2) (9)

where φ1 is the second-level point to be solved, φ2 is the first-level control point, and ω(·)
represents the phase wrapping operation.

Points 3 and 4 in Figure 2 are both second-level points, and the phase relationship
between them is:

φ4 = φ3 + ω(ϕ4 − ϕ3) (10)

According to the above relationship, the following model can be established:



1 −1 0 0 . . . 0
0 0 1 −1 . . . 0
...

...
...

...
. . .

...
0 · · · 1 0 −1 0
0 0 · · · 0 0 1
0 1 · · · 0 0 0


·



φ1
φ2
...
...

φM

 =



∆ϕ1
∆ϕ2

...
∆ϕM+1

...
∆ϕM+N


(11)

that is: {
BX̂ = L

CX̂ = C0 (12)

Equation (12) represents the observation equation and the condition equation on the
top and bottom, respectively; the observation equation is the network between the second-
level points; the conditional equation expresses the constraint of the first-level points on
the second-level points, so as to reduce the noise impact of the second-level points and
improve unwrapping accuracy.

In order to further improve the unwrapping accuracy, considering the weighted
solution, the weights between arc segments are defined as follows:

P =

√
C1

2 + C22

2
(13)

where C1 and C2 are the coherence values of the starting and ending points of the arc
segment, respectively.

According to the least squares criterion, the solution is

X̂ = (AT PA)
−1

AT PA (14)
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where

A =

(
B
C

)
, f =

(
L

C0

)
(15)

Through the above steps, the sparse point unwrapping results of low-quality points
can be obtained. Finally, the final PU results are obtained by combining the unwrapped
results of the first- and second-level points.

The new method in this paper has abundant redundant observations and reliable
solution results. The joint construction of high-quality points and low-quality points
effectively inhibits the influence of noise and improves the unwrapping accuracy of low-
quality points. At the same time, the unwrapping error of noise points is not transmitted to
the surrounding.

3.4. Data Processing Flow of the Proposed Method

Figure 3 shows the whole process of the new method, which contains the following
seven steps.

• Step1: obtain the interferogram;
• Step2: residues detection and quality map generation;
• Step3: determining the grading threshold to obtain high-quality first-level points and

low-quality second-level points;
• Step4: unwrapping first-level points;
• Step5: second-level points’ network construction;
• Step6: unwrapping first-level points based on constrained adjustment;
• Step7: integrating the unwrapping results of the first- and second-level points to

obtain a complete phase unwrapping result.

Figure 3. The flow chart of the proposed method HNCA.

4. Experiments and Results
4.1. Simulation Experiment

In order to verify the PU ability and anti-noise performance of the proposed algorithm,
the Peaks function was used to construct the simulated phase data, the noise calculated
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by the real coherence [37,38] was added to the simulated phase, and then, the simulated
interferogram was obtained after the rewrapping operation. Notably, the simulated inter-
ferogram was slightly filtered [34] to improve the quality of the interferogram and obtain
more high coherence points. According to the residues’ distribution, pseudo-coherence
coefficient, phase standard deviation, and other quality maps, the first- and second-level
phase points were generated.

Figure 4 shows the simulated phase and the phase grading results of the high- and
low-quality points. Next, the improved method HNCA was applied to the three most
commonly used methods for 2D PU: WDCT-LS (the WDCT method is currently the most
accurate and fastest in least squares unwrapping, so this method was chosen, which is
hereafter referred to as WLS), mcf, and snaphu methods. These traditional methods were
used to unwrap the high-quality first-level points, whereas the method proposed in this
paper was used to unwrap the low-quality second-level points.

Figure 4. (a) Unwrapping phase simulated by Peaks function; (b) phase noise simulated according to coherence; (c) phase
obtained by rewrapping after adding (a,b); (d) phase hierarchical results where white represents high-quality first-level
phase points, and black represents low-quality second-level phase points.

4.1.1. Simulation Experiment Results

Figure 5 depicts a comparison of the results of different unwrapping methods.
Figure 5(a1,b1,c1) is the unwrapped results of the WLS, mcf, and snaphu methods, re-
spectively. These three methods do not use hierarchical networking, so obvious unwrap-
ping errors can be observed; especially in the black ellipse, the unwrapping error is very
large. Figure 5(a2,b2,c2) displays the unwrapping results of the proposed HNCA method.
The unwrapping errors in Figure 5(a2,b2,c2) are not obvious and are significantly im-
proved compared with the traditional methods. The error propagation in the black ellipse
is significantly smaller than for the traditional methods.

4.1.2. Results Analysis and Accuracy Assessment

In this study, the error of each method and the root mean square error (RMSE)
of error were calculated to evaluate the accuracy. The RMSE was calculated by the
following formula:

RMSE =

√
∑N

k=1 (φunw − φsim)
2

N
(16)

where φunw represents the PU result, φsim represents the simulated phase result, and N
represents the number of pixels involved in the statistics.
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Figure 5. Comparison of unwrapped results of different methods: (a1) no hierarchical WLS method;
(a2) WLS method for first-level points and HNCA method for second-level points; (b1) PU results of
no hierarchical mcf method; (b2) mcf method for first-level points and HNCA method for second-
level points; (c1) PU results of no hierarchical snaphu method; (c2) snaphu method for first-level
points and HNCA method for second-level points.

Figure 6 displays the error comparison diagram of different unwrapping methods.
Comparing Figure 6(a1–a6), it can be seen that, for the WLS method, the accuracy improve-
ment in hierarchical unwrapping is obvious. The black elliptical frame indicates a region
seriously polluted by noise. The traditional WLS method not only has a large error in the
inner noise region of the ellipse, but also has an obvious error propagation phenomenon
on its external edge, that is, not only the error of low-quality points is large, but it is
also transmitted to the high-quality point region, reducing the unwrapping accuracy of
high-quality points. After unwrapping by the new method proposed in this paper, not only
is the error inside the ellipse significantly reduced, but also the periphery of the ellipse is
not affected by the error. However, unfortunately, as shown in Figure 6(a6), there are still
some points with large errors because the least squares method is a global algorithm, and
even, the first-level points have error transmission, so the accuracy improvement is limited.

Comparing Figure 6(b1–b6), it can be seen that for the mcf method, the accuracy
improvement in the second-level points is also obvious, but the first-level points show
almost no improvement. This is because mcf is an unwrapping method with restricted
conditions, and it was able to limit the error transmission, so the unwrapping of the first-
order points were not improved. However, it cannot suppress noise, so after using the new
method, as shown in Figure 6(b6), the noise inside the ellipse significantly reduced.

Comparing Figure 6(c1–c6), it can be seen that for the snaphu method, the minimum
spanning tree method can also effectively control the error propagation, but also cannot
suppress the noise. Therefore, the unwrapped results are similar to those in Figure 6(b1–b6).

Table 1 shows the RMSE of the different unwrapping methods. For the WLS method,
the accuracy of the first-level points increased by 10.34%, indicating that hierarchical
network limits error propagation. The accuracy of the second-level points increased by
16.67%, which shows that the method of network adjustment improves the unwrapping
accuracy of heavy noise area. For the mcf and snaphu methods, the accuracy of the first-
level points was not improved. This is consistent with the previous analysis. It has the
ability to limit the propagation of unwrapping errors, which also shows that the mcf and
snaphu methods are better than the WSL method. However, the accuracy of the second-
level points still increased by 18.44% and 18.00%, respectively, indicating that regardless
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of the quality of the global PU method, the proposed HNCA method can improve the
unwrapping accuracy in heavy noise regions on the basis of the original method.

Figure 6. Comparison of unwrapping errors of different methods. Letters a, b, and c represent the
WLS, mcf, and snaphu methods, respectively. Numbers 1–6 represent the unwrapping error of the
first-level phase points without hierarchical networking, the unwrapping error of the first-level phase
points with hierarchical networking, the unwrapping error of the second-level phase points without
hierarchical networking, the unwrapping error of the second-level phase points with HNCA, the
overall unwrapping error without hierarchical networking, and the overall unwrapping error with
hierarchical unwrapping, respectively.

Table 1. The RMSE of different unwrapping methods.

Methods Level 1 Points Level 2 Points All

WLS 10.34% 16.67% 12.86%
mcf 0% 18.44% 9.48%

snaphu 0% 18.00% 9.44%

The above simulation experiments show that the method proposed in this paper can
improve the accuracy of PU compared to traditional methods, especially in areas with low
coherence and serious noise pollution, and can better resist noise interference and restore
the unwrapped results.

4.2. Real Data Experiment and Analysis in Mining Area
4.2.1. Real Experimental Results

The coal mining in Datong, Shanxi Province, China, has caused many problems
for many years such as surface subsidence, ecological damage, and air pollution, which
have threatened people’s lives and property safety and restricted social and economic
development. However, recovering the phase of the central area of the mining area is due
to vegetation coverage and serious spatial–temporal decoherence, and direct PU contains
large errors. Therefore, the proposed method was applied to this region to restore the
phase of the seriously decoherent region.

Two ALOS2 SAR images and the 30 m resolution DEM from SRTM in this area were
selected. After baseline estimation, interference, removing the flat-earth phase and the
topographic phase, and interferogram filtering, the wrapped interferogram was obtained,
and the partially wrapped interferogram was intercepted as the actual verification data.
Table 2 shows basic information of the PALSAR2 data used.
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Table 2. Basic parameters of PALSAR2 images in the Datong mining area.

SAR Images Acquisition
Date Frame Orbit Incidence

Angle (◦)
Temporal

Baseline (Day)
Perpendicular
Baseline (m)

Master 14 September
2018 790 23,281 40.565

28 267.80
Slave 21 October 2018 790 23,695 40.568

The interferogram, coherence, and phase hierarchical results are shown in Figure 7,
where the local fringes of the interferogram are obvious, the local noise is serious, and the
coherence areas are quite different.

Figure 7. Data processing results in the Datong area of Shanxi Province. (a) Wrapped interferometric phase images, (b)
interferometric coherence images, and (c) phase hierarchical results where white represents high-quality first-level phase
points, and black represents low-quality second-level phase points.

Figure 8 shows the unwrapped results of different methods. From a visual point of
view, the new HNCA method is more effective than the traditional methods.

Figure 8. Phase unwrapped results of different methods: (a1) PU results of no hierarchical WLS method; (a2) WLS method
for first-level points and HNCA method for second-level points; (b1) PU results of no hierarchical mcf method; (b2) mcf
method for first-level points and HNCA method for second-level points; (c1) PU results of no hierarchical snaphu method;
(c2) snaphu method for first-level points and HNCA method for second-level points. The black ellipse indicates an area that
is heavily polluted by noise and has low coherence.
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Figure 8(a1) shows that the error propagation of the WLS method is very serious,
especially in the area indicated by the black ellipse, and the unwrapped results of the
deformed region are completely unreliable. The unwrapped results of the mcf and snaphu
methods are similar. Figure 8(b1,c1) show the traditional mcf and snaphu methods. Similar
to the simulation experiment, their unwrapped results are similar. Although they can also
restore the approximate phase, the unwrapping jump is large in areas with severe noise,
and the coherence corresponding to these areas is low, so we think that the unwrapped
results in these areas are unreliable. Figure 8(b2,c2) shows that after using the HNCA
method for low-quality points, the unwrapped results are not only more continuous and
smoother overall, but the noise in the low-quality regions is also significantly suppressed.

4.2.2. Accuracy Assessment

Due to lack of real data, it was difficult to evaluate the accuracy of the methods, but
some quantitative methods can be used to reflect and infer the unwrapping accuracy.

The residues represent the discontinuity of the phase. Figure 9 compares the distribu-
tion of the residues by rewrapping the unwrapping phase. Regardless of the unwrapping
method, the number of residues of the new method is much smaller than that of the
traditional method, which shows that the new method is effective. Notably, the reason
why WLS has the fewest residues is that least squares unwrapping is a global smoothing
algorithm. Although there are fewer residues, the accuracy is also low. The mcf and snaphu
methods have more reliable control points, so the results are more reliable.

Figure 9. The distribution of the residues of different unwrapping methods, where the grey dots indicate the residues and
Nres indicates the number of residues.

Figure 10 shows the phase standard deviations of the different unwrapping methods.
It can be seen that the PSD of the traditional method is relatively scattered, and there
are many unusually large values, which correspond to the low-quality region. The PSD
of the new method is much smaller than that of the traditional method and is basically
symmetrically distributed on both sides of the mean, which also illustrates the reliability of
the new method.

The above analysis shows that the proposed new method is superior to the traditional
PU method, which not only avoids the propagation of noise errors, but also improves
the unwrapping accuracy in areas with severe noise pollution, and has strong robustness.
By applying the new method to LS, mcf, and snaphu, which are the three most widely
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used two-dimensional phase unwrapping methods, it can be seen that the new method has
higher accuracy in areas with serious noise and low coherence.

Figure 10. The statistical distribution of the PSD between the proposed method and the traditional
method: (a) based on the WLS method; (b) based on the mcf method; (c) based on the snaphu method.

5. Discussion

When the overall quality of interferogram is very high, the proposed method will still
be effective, but the accuracy improvement will not be as obvious. However, more complex
situations should be considered; that is, when data quality is poor and many conventional
methods fail.

According to the above experiments, the threshold of hierarchical networking, noise
level, and arc length threshold of the second-level network affect the final phase unwrap-
ping results. Notably, the arc length is very flexible, which is closely related to the quality
and resolution of the interferogram and the size of the deformation region. Since only one
empirical reference value is provided in this paper, we think that the surface deformation is
related within the range of less than 500 m, so the arc length is recommended not to exceed
500 m.

In fact, the filtering intensity of interferogram will also affect the accuracy of the HNCA
method, but the filtering actually changes the quality of the interferogram. Therefore, we
regard the influence of filtering as the change in the quality of the interferogram and select
intensity as low as possible when filtering to ensure the reliability of high-quality points.

Next, we discuss the influence of threshold and noise level of hierarchical networking
on the proposed method. In the simulation experiment and real-data experiment, we found
that the mcf method has the highest accuracy when used to unwrap the first-level phase
point, so only the mcf method is used as an example here. In order to further evaluate the
accuracy, we used the simulation data for experiments.

5.1. Influence of Different Hierarchical Networking Thresholds on Unwrapping Results

For a certain interferogram, different hierarchical networking thresholds will affect
the accuracy of the final result. Therefore, at the same noise level, the coherence was taken
as the quality map on the basis of the masked residues to explore the optimal threshold
or threshold range. In order to more clearly show the applicability of the new method, as
shown in Figure 11, we increased the noise level compared with Section 4.1.

Next, the coherence was taken as the step size of 0.05, increasing from 0.10 to 0.80, to
test the new algorithm. Figure 12 shows the unwrapping errors under different thresholds.
Figure 12(1) shows the mcf method without hierarchical networking, and Figure 12(2–16)
shows the unwrapping errors of the HNCA method under different thresholds. Figure 13
provides the points hierarchical results under selected partial thresholds, which, respec-
tively, correspond to Figure 12(3,7,11,15) in Figure 12.
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Figure 11. (a) Simulated phase noise according to coherence; (b) interferogram after adding noise; (c)
phase coherence.

Figure 12. Unwrapping error with different coherence thresholds: (1), the error without hierarchical
networking; (2)–(16) denote the unwrapping error of the new method under different thresholds; T,
the coherence threshold.
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Figure 13. Point hierarchical results under different thresholds, where white represents high-quality first-level phase points,
and black represents low-quality second-level phase points.

Figure 12 shows that when the threshold is between 0.10 and 0.45, although the error
of the new method is lower compared with the traditional method, the effect is not obvious.
Combining Figure 13a,b shows that this is because a too-small threshold mixes a large
number of noise points with high-quality points; that is, the first-level points used to
constrain the second-order point contains large errors, so the accuracy improvement is not
obvious. When the threshold is between 0.50 and 0.65, the unwrapping effect of this method
is ideal, especially when T = 0.55. This is because the high-quality point noise is low and
the distribution is relatively uniform (from Figure 13c), so it can provide a better constraint.
When the threshold exceeds 0.70, very large errors appear in some regions because the
larger threshold makes the low-quality points appear as very large holes (from Figure 13d);
these holes exceed the range of deformation space correlation. In this case, the constraint
of high-quality points increases the error and leads to incorrect unwrapping results.

In order to demonstrate the change in unwrapping accuracy in more detail, Figure 14
shows the change in RMSE for the different levels of points. Figure 14a show that under
the same threshold, the accuracy of the first-level points of the new method is basically
unchanged compared with the traditional method, due to the constraint effect of the mcf
method. However, the RMSE of the first-level points decreases because, when the threshold
increases, there are increasingly fewer noise points contained in the first-level points, so
the accuracy is higher.

With the increase in the threshold, the new method provides considerable improve-
ments in the low-quality point area compared with the traditional method (Figure 14b).
Combined with the blue line in Figure 14d, it can be seen that the accuracy of the second-
level points can be improved by up to 40%, and the proposed method’s results are always
better than those the traditional method.

When the threshold is above 0.7, the accuracy is lower (shown in Figure 14c and the
blue line in Figure 14d). This is consistent with the problems reflected in Figure 12(15,16),
and the answer can be found in Figure 13d. A high threshold makes the low-quality point
appear as a larger hole; too far away from the high-quality point, the phase continuity
assumption cannot be met, so it plays an incorrect control role, so the error will be large.

Based on the above analysis, different thresholds have a considerable impact on the
unwrapping results, but the selection of grading thresholds is flexible. Therefore, we
provide the following suggestions: under the premise of as uniform distribution of high-
quality points as possible, the higher the threshold of the hierarchical network, the better.
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Figure 14. RMSE statistics under different hierarchical networking thresholds. (a–c) The RMSE
changes in the first-level points, the second-level points, and all points with the increase in the
hierarchical networking thresholds, respectively. (d) The accuracy improvement of the second-level
points and all points with the increase in the hierarchical networking thresholds.

5.2. Influence of Different Noise Levels on Unwrapping Results

This section discusses the sensitivity of the new method to interferogram quality.
By adding different levels of noise, we selected the appropriate threshold for the experiment.

Figure 15 shows the coherence results under four different noise levels. The coherence
in Figure 15 is increasingly worse. Figure 16 provides a comparison of unwrapped errors
under four different noise levels. It can be seen that the method in this paper is better than
the traditional method under any noise level. However, with the increase in noise level,
the error increases gradually. This is because when the noise is large enough, the first-level
points are also affected by the noise. Therefore, the accuracy of the second-level points
caused by the phase constraint of the first-level points is naturally not high. Notably, this
is not because the unwrapping method is poor, but because the data quality is too poor;
the interferogram is basically completely decoherent, so it is difficult to restore the real
unwrapping phase.

Figure 15. Coherence at four different noise levels. (a–d) Noise is continually increasing, and the coherence continually worsens.
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Figure 16. Comparison of unwrapped errors under different noise levels. (a1–d1) The unwrapping errors of mcf method at
four noise levels; (a2–d2) the unwrapping error of HNCA method at four noise levels.

Table 3 lists the RMSE and its accuracy improvement under four different noise levels.
As the noise continually increases, the RMSE of the first-level point unwrapping error also
continues to increase from 0.49 to 0.86. This is because reducing the threshold of hierarchical
networking can have more first-level points around the second-level point, but the accuracy
is also reduced. The unwrapping error of the second-level points increases as the noise
increases, as does the RMSE, from 0.87 to 0.95, which shows that as noise increases, the
unwrapping accuracy decreases. However, the accuracy improvement gradually increased
from 32.83% to 46.29% because, the greater the noise, the more significant the constraint
effect of the first-level points, so the accuracy improvement range is also more obvious.

Table 3. Comparison of RMSE under four noise levels.

Points Level Noise 1 Noise 2 Noise 3 Noise 4

Level 1
No hierarchical 0.49 0.60 0.73 0.87

Hierarchical 0.49 0.60 0.72 0.86
Improvement 0% 0% 0.30% 0.54%

Level 2
No hierarchical 1.29 1.42 1.60 1.77

Hierarchical 0.87 0.86 0.89 0.95
Improvement 32.83% 38.91% 44.46% 46.29%

All points
No hierarchical 0.54 0.71 0.89 1.07

Hierarchical 0.51 0.62 0.74 0.87
Improvement 5.1% 11.68% 16.28% 18.80%

In order to more clearly show the unwrapping effect of the proposed method for
low-quality regions, Figure 17 depicts the distribution of the unwrapping error of the
low-quality points under different noise levels. With the increase in noise level, low-quality
points also increase, but the error of the new method is far less than that of the traditional
method at any noise level. Notably, with the increase in noise level, the error distribution
widens, which indicates that the variance in the error increases, which is consistent with
the analysis in Table 2. The improvement in the overall unwrapping accuracy is basically
from the second-level points, so the reason for this finding is the same as that for the
second-level points.
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Figure 17. Distribution statistics of unwrapping error of low-quality second-level points under different noise levels.

Overall, the accuracy of the proposed method is higher than that of the traditional
method; especially in low-coherent regions with heavy noise pollution, the accuracy can be
improved by more than 16–46%.

Although there are errors in the result, the method is more reliable than the traditional
method. The improvement in accuracy is of great significance for the deformation recovery
of the center of mining areas and funnel centers of groundwater subsidence and can provide
the basis of later parameter inversion and disaster warning.

6. Conclusions

PU is one of the key steps of InSAR technology, but serious local noise restricts its
application and development. Therefore, on the basis of the traditional two-dimensional
PU, we adopted the network adjustment phase unwrapping method based on hierarchical
networking to improve the unwrapping accuracy for low-quality regions with heavy noise
pollution. Through the hierarchical network, the classic 2D PU method was used for the
high-quality first-level points to limit the error transmission of the low-quality points.
The network adjustment method was introduced to the low-quality second-level points
to limit the influence of noise by taking the surrounding first-level points as the control.
This method considerably improves the unwrapping accuracy in areas with heavy noise
and low coherence through the interferogram, which is an advantage over the traditional
method. According to the verification of the simulation experiments and real experiments,
our method generally exhibits much higher accuracy and better anti-noise performance.
However, it is unsuitable for large deformation regions, because it struggles to obtain
enough stable high-quality points. To address at this shortcoming, we plan to use corner
reflectors or GNSS points to assist in unwrapping. Moreover, the integration of this method
with a time-series inversion algorithm may further improve the accuracy of long-term
deformation monitoring.
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