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Abstract: The three-river headwater region (TRHR) supplies the Yangtze, Yellow, and Lantsang rivers,
and its ecological environment is fragile, hence it is important to study the surface vegetation cover
status of the TRHR to facilitate its ecological conservation. The normalized difference vegetation
index (NDVI) can reflect the cover status of surface vegetation. The aims of this study are to quantify
the spatial heterogeneity of the NDVI, identify the main driving factors influencing the NDVI, and
explore the interaction between these factors. To this end, we used the global inventory modeling and
mapping studies (GIMMS)-NDVI data from the TRHR from 1982 to 2015 and included eight natural
factors (namely slope, aspect, elevation, soil type, vegetation type, landform type, annual mean
temperature, and annual precipitation) and three anthropogenic factors (gross domestic product
(GDP), population density, and land use type), which we subjected to linear regression analysis, the
Mann-Kendall statistical test, and moving t-test to analyze the spatial and temporal variability of
the NDVI in the TRHR over 34 years, using a geographical detector model. Our results showed that
the NDVI distribution of the TRHR was high in the southeast and low in the northwest. The change
pattern exhibited an increasing trend in the west and north and a decreasing trend in the center and
south; overall, the mean NDVI value from 1982 to 2015 has increased. Annual precipitation was
the most important factor influencing the NDVI changes in the TRHR, and factors, such as annual
mean temperature, vegetation type, and elevation, also explained the vegetation coverage status
well. The influence of natural factors was generally stronger than that of anthropogenic factors. The
NDVI factors had a synergistic effect, exhibiting mutual enhancement and nonlinear enhancement
relationships. The results of this study provide insights into the ecological conservation of the TRHR
and the ecological security and development of the middle and lower reaches.

Keywords: NDVI; spatiotemporal variation; driving factors; geographical detector; three-river
headwater region

1. Introduction

The vegetation cover is an important component of surface ecosystems that connects
the atmosphere, hydrosphere, pedosphere, and areas inhabited by humans [1]; thus, the
study of regional vegetation cover is essential to regional ecological conservation. The
normalized difference vegetation index (NDVI) can accurately reflect the status of surface
vegetation cover, which is the best indicator of vegetation coverage and the most effective
indicator for monitoring regional vegetation change and the ecological environment [2,3].
Regional vegetation coverage changes and their drivers have been studied at different
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scales, including globally [4], as well as in Central Asia [5], northern China [6], the Loess
Plateau [7], the Qinghai–Tibet Plateau [8], the Yangtze River Basin [9], and the Amur-
Heilongjiang River Basin [10], using the NDVI.

The geographical detector model proposed by Wang et al. [11] bridges the gap between
the correlation analysis methods used in previous studies, and can quantify the spatial
heterogeneity of vegetation and its driving factors, as well as the interaction between factors.
This method has been successfully used to quantify the influence of driving factors on
vegetation change. Zhao et al. [12] found that precipitation plays a crucial role in the growth
of vegetation in northern China and even in other arid regions of the world. Yuan et al. [13]
showed that vegetation exhibited significant spatial heterogeneity throughout the Heihe
River Basin. Zhu et al. [14] found that land use types and precipitation were the main factors
driving vegetation change in the middle reaches of the Heihe River Basin. Ran et al. [15]
concluded that natural factors had a greater influence on vegetation than anthropogenic
factors in northern Tibet. Zhang et al. [16] found that the influence of anthropogenic factors
was greater than that of natural factors in the oasis-desert ecotone. Liu et al. [17] reported
that precipitation was the main factor affecting the difference in the spatial distribution of
the NDVI in the Qinghai–Tibet Plateau.

The ecological conservation of river sources is of vital importance to the ecological
environment and the development of the middle and lower reaches of rivers. Located in the
hinterland of Qinghai–Tibet Plateau, the TRHR is a natural ecological barrier in China with
special alpine vegetation system and fragile ecological environment. Vegetation coverage
plays an important role in its preservation. Studying the spatial and temporal variation
characteristics of vegetation in alpine areas and its driving forces can better explain the
environmental change process. Previous studies on the characteristics of vegetation change
in the TRHR have had short time series and incomplete datasets, therefore the conclusions
obtained are inconsistent [18,19]. There remains a gap in studying the temporal and spatial
changes of vegetation in long time series, which cannot accurately reflect the distribution
characteristics of vegetation in the TRHR at both temporal and spatial scales. Previous
studies on the driving factors of vegetation change in the TRHR have mostly been limited to
examining the effect of climatic factors, such as temperature and precipitation [20–22], and,
hence, there remains a lack of research on the influence of other natural and anthropogenic
factors on the NDVI. Furthermore, the traditional methods, such as correlation analysis,
used in the existing studies are not suitable for studying the interaction between factors and
to quantitatively analyze the factors affecting NDVI. Therefore, the aims of the present study
are to analyze the spatial and temporal variability of the NDVI in the TRHR over a 34-year
period from 1982 to 2015, using linear regression analysis, the Mann-Kendall statistical
test, and the moving t-test, and quantitatively investigate the natural and anthropogenic
driving factors of NDVI variability and their interactions using a geographical detector that
capable of identifying spatial heterogeneity. The results of this study provide a scientific
basis for ecological restoration and conservation in the TRHR.

2. Materials and Methods
2.1. Study Area

The TRHR (31◦39′N–36◦16′N, 89◦24′E–102◦23′E) (Figure 1) is located south of Qinghai
Province, and it supplies the Yangtze, Yellow, and Lantsang Rivers. It includes 21 counties
and Tanggula Township, covering a total area of 38.1 × 104 km2. The topography is high
in the West and low in the East (Figure 2c), with an average altitude of 3500–4800 m. It
has a continental plateau climate, with temperature and precipitation decreasing from the
southeast to the northwest (Figure 2g,h). The main vegetation types are alpine meadows
and alpine grasslands. The Qinghai–Tibet Plateau is a vast semi-natural area with relatively
little artificial influence [23]. The TRHR is located in the central part of the Qinghai–Tibet
Plateau, with high altitude and sparse population. The TRHR is an important ecological
barrier in China with a fragile ecological environment; therefore, its ecological conservation
is crucial for the sustainable development of a vast area in China.
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2.2. Data and Processing

The data included in this study included natural factors, such as the NDVI, digital
elevation model (DEM), climate data, landform type, soil type, and vegetation type, as
well as anthropogenic factors, such as land use type, population density, and GDP in
the TRHR. NDVI data were obtained from the Big Earth Data Platform for Three Poles,
using GIMMS NDVI3g data with a spatial resolution of 8 km and a temporal resolution
of 16 days [24,25], the NDVI images for each year from 1982 to 2015 were obtained by
maximum value composite (MVC) [26]. Vegetation coverage was divided into five classes
according to NDVI values: low coverage (≤0.2), medium–low coverage (0.2–0.4), medium
coverage (0.4–0.6), medium–high coverage (0.6–0.8), and high coverage (>0.8). The an-
nual mean temperature and annual precipitation data were obtained from daily standard
meteorological data of 26 meteorological stations in and around the TRHR from 1982
to 2015 using the inverse distance weighting method. DEM data were GDEMV2 30 m
resolution digital elevation data from the Geospatial Data Cloud of the Chinese Academy
of Sciences (http://www.gscloud.cn/ (accessed on 3 August 2021)), and the elevation,
slope, and aspect data were obtained from the DEM data. Other data were obtained from

http://www.gscloud.cn/


Remote Sens. 2021, 13, 4175 5 of 24

the Resource and Environmental Sciences Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/ (accessed on 3 August 2021)). All the above data were extracted
according to the vector boundary of the TRHR [27] and were resampled to make them
consistent with the 8-km NDVI data image. Using ArcGIS to create a fishnet, 5853 random
sampling points were generated based on 8 × 8 km grids according to the scope of the
TRHR, and the spatial attribute values were extracted.

We selected NDVI as the dependent variable and six categories of topography (slope,
aspect, elevation), soil (soil type), vegetation (vegetation type), landform (landform type),
climate (annual mean temperature, annual precipitation), and human activity (GDP, popu-
lation density, land use type), a total of 11 representative and easily quantifiable factors,
as independent variables. Precipitation and temperature are important factors affecting
vegetation changes [21], elevation, slope, aspect, and landform type affect vegetation
distribution by changing water and heat conditions [28]. Soil and vegetation types are
important environmental elements for vegetation growth [29]; economic development
affects ecological environment, land use type, GDP, and population density are indicators
that can quantify changes in socioeconomic development [30]. The independent variables
in the geographical detector model must use discrete quantities, therefore we have to
classify the factors. According to the actual situation of the TRHR, slope was divided into
7 categories according to the Technical Regulations for Land Use Status Survey; aspect was
divided into 9 categories according to slope orientation; Soil type was divided into 10 cat-
egories according to the traditional “Soil Occurrence Classification” system; vegetation
type was divided into 9 categories according to the 1:1,000,000 Chinese Vegetation Atlas;
landform type was divided into 6 categories according to the 1:1,000,000 Landform Atlas
of the People’s Republic of China; land use type was divided into 6 categories according
to the 1:1,000,000 Land Use Map of China; the elevation, annual mean temperature and
annual precipitation were divided into 9 categories according to the natural breakpoint
method [31], and the GDP and population density were divided into 7 categories according
to the natural breakpoint method [31] (Figure 2).

2.3. Methods
2.3.1. Linear Regression Analysis

Linear regression analysis can analyze the trend of each raster in an image [32]. The
raster calculator of ArcGIS was used to analyze the NDVI trend of each image element in the
TRHR from 1982 to 2015, and categorized the NDVI change trend into seven classes accord-
ing to the natural breakpoint method [31]: significant degradation, moderate degradation,
slight degradation, basically unchanged, slight improvement, moderate improvement, and
significant improvement. The slope can be calculated through Equation (1) [32]:

Slope =
n×∑n

i=1(i× NDVIi)− (∑n
i=1 i)(∑n

i=1 NDVIi)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

In Equation (1): n is the total number of the year series (n = 34 in this study), i ranges
from 1 to n, NDVIi is the NDVI value of the ith year, and Slope is the variation trend of
the NDVI; if Slope > 0, the vegetation coverage shows an increasing trend; if Slope < 0, the
vegetation coverage shows a decreasing trend; if Slope = 0, there is no significant change in
the vegetation coverage.

2.3.2. Mann-Kendall Test

The Mann-Kendall method is a nonparametric statistical test used to determine the
significance of trends [33]. The change trend was significant when |Z| > Z0.05. In this study,
the Mann-Kendall statistical test was used to test the mutation points of the NDVI. The
significance level was set at 0.05. The intersection of UF and UB is the mutation point; if
there is more than one intersection, it is not certain whether it is the mutation point, and
further testing is needed [34].

http://www.resdc.cn/


Remote Sens. 2021, 13, 4175 6 of 24

2.3.3. Moving t-Test

The moving t-test was used to test for mutations by examining whether the difference
between the means of the two sample groups was significant [35]. If the difference between
the mean values of the two subsequences exceeded the significance level of p = 0.05,
the mutation was considered to be present; otherwise, no mutation was considered to
be present.

2.3.4. Geographical Detector

The geographical detector is a statistical method used to detect spatial heterogeneity
and its driving factors [11]. We used a geographical detector to compare the spatial
distribution of NDVI vegetation with the spatial distribution characteristics of the detection
factors; if a factor drives the NDVI variation, then the spatial distribution of the NDVI will
be similar to the spatial distribution of that factor. This method has been successfully used
to study the drivers of NDVI change [12–17].

(1) Factor detector. The factor detector q-statistic measures the degree of spatial
stratified heterogeneity of a variable Y; and the determinant power of an explanatory
variable X of Y. A factor detector is used to detect the spatial heterogeneity of the NDVI
and the explanatory power of the independent variable X on the dependent variable Y,
expressed by the q value [11]:

q = 1− 1
Nσ2

L

∑
h=1

Nhσh
2 = 1− SSW

SST
(2)

SSW =
L

∑
h=1

Nhσh
2, SST = Nσ2 (3)

In Equations (2) and (3): q is the explanatory power of the independent variable X
on the dependent variable Y, with a value range of [0, 1]; the larger the q value, the more
obvious the spatial heterogeneity and the stronger the explanatory power of X on Y. The
study area is divided into h = 1, 2 . . . , L regions; Nh and N are the number of units in
layer h and the whole region, respectively; σh

2 and σ2 are the variances of the Y values of
layer h and region, respectively; SSW and SST are the sum of variance within layer and
total variance of region, respectively.

In this study, the independent variable X represents the detection factor Xs (s = 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, and 11), as is shown in Table 1, and the dependent variable Y is the NDVI.

Table 1. Detection factors.

Type Detection
Factors Index Unit Type Detection

Factors Index Unit

Topography X1 Slope ◦ Climate X7 Annual mean
temperature

◦C

X2 Aspect ◦ X8 Annual
precipitation mm

X3 Elevation m Human
activity X9 GDP 10,000 yuan/km2

Soil X4 Soil type - X10 Population
density people/km2

Vegetation X5 Vegetation type - X11 Land use type -
Landform X6 Landform type -

(2) Interaction detector. The interaction detector reveals whether the factors X1 and
X2 (and more X) have an interactive influence on a response variable Y. Because the factors
in nature do not exist independently, there are interactions between the factors, and the
interactions between the factors need to be analyzed in the study. An interaction detector
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was used to detect the interaction between NDVI detection factors. It can detect any
relationship between factors as long as they exist. The assessment methods used are
presented in Table 2.

Table 2. Types of interaction.

Foundation Interaction

q (X1∩X2) < Min [q (X1), q (X2)] Nonlinear weakening
Min [q (X1), q (X2) < q (X1∩X2) < Max (q (X1), q (X2)] Univariate weakening

q (X1∩X2) > Max [q (X1), q (X2)] Bivariate enhancement
q (X1∩X2) = q (X1) + q (X2) Independent
q (X1∩X2) > q (X1) + q (X2) Nonlinear enhancement

(3) Risk detector. A risk detector was used to compare whether there was a significant
difference between the mean values of the dependent variables in the two regions. This
study was used to detect the appropriate range or types of the driving NDVI factors. The
t-statistic used was the following [11]:

t −
y h=1−

−
y h=2

=

−
Y h=1 −

−
Y h=2Var

( −
Y h=1

)
nh=1

+
Var
( −

Y h=2

)
nh=2

1/2 (4)

In Equation (4):
−
Y h denotes the attribute mean within subregion h, nh is the number

of samples within subregion h, and Var denotes the variance. According to the null

hypothesis H0:
−
Y h=1 =

−
Y h=2, if H0 is rejected at confidence level α, it is considered that

there is a significant difference in the attributed means between the two subregions.
(4) Ecological detector. An ecological detector was used to detect whether there was a

significant difference in the influence of different factors on NDVI changes, as measured by
the F-statistic [11]:

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
(5)

SSWX1 =
L1

∑
h=1

Nhσh
2, SSWX2 =

L2

∑
h=1

Nhσh
2 (6)

In Equations (5) and (6): NX1 and NX2 denote the sample sizes of the two factors X1
and X2, respectively, SSWX1 and SSWX2 denote the sum of within-layer variances of the
strata formed by X1 and X2, respectively, and L1 and L2 denote the number of strata of the
variables X1 and X2, respectively. According to the null hypothesis H0: SSWX1 = SSWX2, if
H0 is rejected at the significance level of α, this indicates that there is a significant difference
in the effect of the two factors X1 and X2 on the spatial distribution of attribute Y.

3. Results
3.1. Spatial and Temporal Variation Characteristics of the NDVI in the TRHR

The NDVI values in the TRHR were high in the southeast and low in the northwest
(Figure 3). Regions with low vegetation coverage were mainly distributed in the northwest,
with most being low coverage grassland; regions with high vegetation coverage were
mainly in the southeast, where the hydrothermal conditions were better, the elevation was
relatively low, and the vegetation was mainly high coverage grassland and forest.
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In this study, the annual mean NDVI values from 1982 to 2015 were selected to repre-
sent the annual vegetation coverage status in the TRHR. The change observed exhibited
an increasing trend, which is consistent with the findings of Zhai et al. [36]. With an
increase rate of 0.002/10 a, the mean NDVI value increased from 0.454 in 1982 to 0.458
in 2015, and the maximum (0.493) and minimum (0.430) NDVI values occurred in 2010
and 1995, respectively (Figure 4). These results indicate that the vegetation coverage of the
TRHR has been improving, but with small changes from 1982 to 2015. Due to overgrazing,
the ecological degradation of the TRHR as serious and the vegetation coverage was low.
After 2005, the vegetation coverage gradually increased due to the increase in artificial
precipitation and the implementation of ecological projects, such as the return of grazing
to grass.
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3.2. Trend Analysis of NDVI Changes in the TRHR

In 1982 and 2015, high and medium-high vegetation coverage areas accounted for
more than 33% and 31%, respectively, of the TRHR area, while low and medium–low areas
accounted for approximately 42% and 41%, respectively, of the total TRHR area. From
1982 to 2015 the low and high vegetation coverage areas decreased, with the former type
decreasing the most (by 3.08%). During the same period, the medium vegetation coverage
area increased the most (by 2.78%; Table 3).
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Table 3. The transfer matrix of NDVI changes during 1982–2015 (km2).

NDVI Grade. ≤0.2 0.2–0.4 0.4–0.6 0.6–0.8 >0.8 Total in 2015 Shifted-In

≤0.2 52,380.30 3574.52 28.62 40.13 0.00 56,023.57 3643.27
0.2–0.4 15,250.20 79,604.60 7079.04 67.18 0.00 102,001.02 22,396.42
0.4–0.6 136.95 11,649.30 75,441.70 15,042.10 21.39 10,2291.44 26,849.74
0.6–0.8 0.00 234.22 9102.26 81,869.60 14,528.30 105,734.38 23,864.78

>0.8 0.00 0.00 40.50 4214.91 10,510.80 14,766.21 4255.41
Total in 1982 67,767.45 95,062.64 91,692.13 101,233.92 25,060.49 380,816.63
Shifted-out 15,387.15 15,458.04 16,250.43 19,364.32 14,549.69
Variation −11,743.88 6938.38 10,599.31 4500.46 −10,294.28

Percentage (%) −3.08 1.82 2.78 1.18 −2.70

The NDVI transfer matrix of the TRHR showed that there was a transformation in
the NDVI at all levels from 1982 to 2015 (Table 3). The shifted-out areas were mainly
medium–high vegetation coverage, which shifted mainly to medium vegetation coverage,
and the shifted-in areas were mainly medium–low, medium, and medium–high vegetation
coverage, with a significant increase in medium vegetation coverage and a substantial
decrease in high vegetation coverage.

Although the trend of the NDVI value of the TRHR was increasing, it was still
dominated by low, medium, and medium–high vegetation coverage, which all accounted
for more than 25% of the area, while the high vegetation coverage area accounted for the
smallest proportion and decreased significantly. Previously, the ecological environment was
severely damaged, and the restoration was difficult and slow. Land use is still dominated
by low-coverage grassland, thus, the status of the vegetation coverage of the TRHR was
still not optimistic.

From the linear regression analysis, it was concluded that the vegetation coverage
of the TRHR showed an increasing trend from 1982 to 2015 (Figure 5), thereby indicating
that the vegetation coverage of the TRHR gradually recovered. The area with the largest
increase in vegetation coverage was mainly distributed in the west and north, covering a
total of 14.5 × 104 km2 and accounting for 37.86% of the total area; this area was mainly
dominated by grassland, meadow, and alpine vegetation. The area with the largest decrease
in vegetation coverage was mainly concentrated in the center and the south, covering a
total of 12.6 × 104 km2 and accounting for 32.87% of the total area. Areas with unchanged
vegetation were distributed throughout the region (Table 4). The NDVI change trend in
the TRHR increased in the north and west and decreased in the south and center. The
desert in the northeast of the TRHR has gradually transformed into grassland and meadow
vegetation types [37]. The unused land in the Sanjiangyuan Ecological Protection Project
area has been transformed into low-coverage grassland, and the area of high-coverage
grassland has increased significantly (Table A1), therefore the implementation of ecological
projects has significantly improved the vegetation coverage of Zhiduo, Qumalai and Mado
counties in the north and northwest of the TRHR. The decrease in vegetation coverage in
Yushu, Jiuzhi, and Banma counties in the south may be due to the decrease in precipitation.

The M-K test showed that none of the intersection points of the UF and UB exceeded
the critical value. Significance test indicated that |Z| = 0.048 < Z0.05 = 0.236, thereby
indicating that the trend of the NDVI change in the TRHR was not significant, but had
multiple intersection points (Figure 6). Therefore, the mutation points needed to be further
examined using the moving t-test.
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Table 4. Change trend of the NDVI during 1982–2015.

Change Trend Gradient Area/km2 Percentage (%)

Significant degradation −0.0107–−0.0024 5511.50 1.44
Moderate degradation −0.0024–−0.0010 40,788.80 10.65

Slight degradation −0.0010–−0.0002 79,577.90 20.78
Basically unchanged −0.0002–0.0005 112,079.00 29.27
Slight improvement 0.0005–0.0013 94,305.40 24.63

Moderate improvement 0.0013–0.0026 44,664.90 11.66
Significant improvement 0.0026–0.0179 6025.25 1.57

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 5. Distribution of the NDVI change trend during 1982–2015. 

The M-K test showed that none of the intersection points of the UF and UB exceeded 
the critical value. Significance test indicated that |𝑍|=0.048 < Z0.05=0.236, thereby indicating 
that the trend of the NDVI change in the TRHR was not significant, but had multiple in-
tersection points (Figure 6). Therefore, the mutation points needed to be further examined 
using the moving t-test. 

 
Figure 6. The results of the M-K test. 

The moving t-test showed that 2008 was the mutation point of the NDVI (Figure 7), 
which experienced a decreasing trend before 2008 and a significantly increasing trend in 
2008 according to the cumulative departure method (Figure 8). Therefore, the combination 
of the M-K test, moving t-test, and cumulative departure method led to the conclusion 
that the NDVI of the TRHR was mutated in 2008. 
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The moving t-test showed that 2008 was the mutation point of the NDVI (Figure 7),
which experienced a decreasing trend before 2008 and a significantly increasing trend in
2008 according to the cumulative departure method (Figure 8). Therefore, the combination
of the M-K test, moving t-test, and cumulative departure method led to the conclusion that
the NDVI of the TRHR was mutated in 2008.
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3.3. Factor Detection

According to the q values of each factor obtained from the factor detector (Table 5),
the magnitude of the influence of each factor on the NDVI of the TRHR was as follows:
annual precipitation (0.550) > annual mean temperature (0.463) > vegetation type (0.409)
> elevation (0.350) > land use type (0.244) > landform type (0.216) > population density
(0.204) > soil type (0.147) > slope (0.141) > GDP (0.088) > aspect (0.055).

Table 5. q values of factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

q value 0.141 0.055 0.350 0.147 0.409 0.216 0.463 0.550 0.088 0.204 0.244
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The q value of annual precipitation was the largest, with an explanatory power of
55%, which was much more influential than other factors; therefore, annual precipitation
was the main driving factor of vegetation change in the TRHR, followed by annual mean
temperature, vegetation type, and elevation, with an explanatory power of more than 30%;
land use type, landform type, population density, soil type, and slope had an explanatory
power of more than 10%; GDP and aspect had little explanatory power.
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3.4. Ecological Detection

Ecological detection reflects whether there is a significant difference in the influence
of each detection factor on the NDVI in the TRHR. The results showed that there were
significant differences in the effects of all factors on NDVI, except for the effects of soil and
slope, population, and landform on NDVI (Table 6). The effects of annual precipitation
on the NDVI in the TRHR were significantly different from those of the other factors.
The factor detection showed that annual precipitation was the dominant driver of NDVI
changes in the TRHR, and the results of ecological detection further proved that the effects
of annual precipitation were stronger than those of other factors. The non-significant
differences between the effects of soil and slope, population density, and landform on the
NDVI indicated that both had little influence on vegetation.

Table 6. Ecological detection of factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1
X2 Y
X3 Y Y
X4 N Y Y
X5 Y Y Y Y
X6 Y Y Y Y Y
X7 Y Y Y Y Y Y
X8 Y Y Y Y Y Y Y
X9 Y Y Y Y Y Y Y Y

X10 Y Y Y Y Y N Y Y Y
X11 Y Y Y Y Y Y Y Y Y Y

Note: Y indicates a significant difference in the influence of two factors on vegetation NDVI, while N indicates no
significant difference (confidence level is 95%).

3.5. Interaction Detection

A single variable could not explain the spatial variation in the NDVI, and the syn-
ergistic effects of multiple natural and anthropogenic factors needed to be considered.
The geographical detector can reveal the interactions among the factors and their effect
on NDVI changes. The results showed that all factor interactions enhanced the influence
of a single factor on the NDVI, showing a bivariate and non-linear enhancement effects.
Among them, the interactions of aspect with elevation, annual mean temperature, GDP,
and population density, the interactions of soil type with GDP and population density, and
the interactions of GDP with population density and land use type showed a non-linear
enhancement effect, and the interactions of other factors showed a bivariate enhancement
effect. Among them, the q value of the interaction between annual precipitation and other
factors was high, with the explanatory power reaching more than 58%. This was higher
than the explanatory power of the single factor of annual precipitation on vegetation,
whose q value of interacting with elevation, annual mean temperature, and vegetation type
was the largest, reaching approximately 68% (Table 7). The annual precipitation was the
dominant factor influencing the NDVI changes in the TRHR, and the interaction between
the annual precipitation and other factors could further increase its influence on the NDVI
in the TRHR. Among other factors, the q value of the interaction among vegetation type,
elevation, and annual precipitation was larger, reaching approximately 60%; although the
influence of GDP and aspect on the NDVI was small, their interaction with other factors
greatly increased their explanatory power of the NDVI.
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Table 7. Interaction detection of factors.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0.141
X2 0.176 0.055
X3 0.473 0.415 0.350
X4 0.258 0.164 0.461 0.147
X5 0.468 0.431 0.599 0.468 0.409
X6 0.265 0.255 0.548 0.356 0.507 0.216
X7 0.522 0.532 0.611 0.597 0.660 0.535 0.463
X8 0.583 0.585 0.680 0.610 0.677 0.605 0.679 0.550
X9 0.227 0.149 0.376 0.247 0.487 0.301 0.487 0.586 0.088

X10 0.304 0.266 0.485 0.371 0.558 0.352 0.527 0.607 0.352 0.204
X11 0.324 0.263 0.501 0.324 0.492 0.369 0.573 0.628 0.334 0.360 0.244

3.6. Risk Detection

We used the risk detector to determine the range or types of factors suitable for
vegetation growth (Table 8); the suitable range or types of factors is very important for
vegetation growth, the larger the NDVI value, the better the vegetation growth. The results
of the risk area detection can be applied to the ecological protection project of the TRHR.
The suitable range or types of different factors can be combined with the spatial distribution
of temperature, precipitation, and population density to increase the vegetation coverage.

Table 8. Suitable range or types of natural factors.

Factors Suitable Range or Types NDVI

Slope (◦) >25 0.610

Aspect North, Northeast, East, West,
Northwest 0.484

Elevation (m) 3446–3851 0.743
Soil type Semi-leached 0.689

Vegetation type Coniferous forest, broadleaf
forest, scrub 0.712

Landform type Medium undulating
mountains 0.601

Annual mean temperature (◦C) 1.65–3.82 0.681
Annual precipitation (mm) 578–708 0.770

GDP (10,000 yuan/km2) 12–37, 104–242 0.609
Population density (people/km2) 74.95–94.31 0.699

Land use type Forest land, construction land 0.743

3.6.1. Annual Precipitation

The spatial distribution of vegetation coverage in the TRHR was consistent with the
spatial distribution pattern of annual precipitation. The annual precipitation was divided
into nine subzones. The mean NDVI value generally increased with the increase in annual
precipitation and peaked in the 578 to 708 mm range, thereby indicating that this range
promoted vegetation growth. The results showed that the annual precipitation subzone 9
was significantly different from the other subzones, so that the vegetation coverage was
best in the 578 to 708 mm annual precipitation range in the TRHR (Table 9). The interaction
detector showed that interaction with other factors can further enhance the influence of
annual precipitation on the NDVI.
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Table 9. Mean value of the NDVI and significant differences in annual precipitation between
two regions.

Zones 1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y N
9 Y Y Y Y Y Y Y Y

NDVI 0.310 0.282 0.329 0.462 0.572 0.664 0.696 0.691 0.771
Note: Y indicates a significant difference in the influence of two regions on vegetation NDVI, while N indicates
no significant difference (confidence level is 95%); numbers 1–9 indicate (unit: mm) 184–278, 278–314, 314–345,
345–378, 378–414, 414–454, 454–506, 506–578, and 578–708, respectively.

3.6.2. Annual Mean Temperature

The factor detector showed that the annual mean temperature also had an important
influence on the NDVI in the TRHR. The annual mean temperature was divided into
nine subzones. The mean NDVI value increased and then decreased with the increase in
the annual mean temperature, and peaked in the 1.65 ◦C to 3.82 ◦C range. There were
significant differences between the mean NDVI values in subzone 6 and other subzones
(Table 10). The interaction of annual mean temperature with other factors enhanced the
effect of the former on the NDVI. Temperature changes can cause changes in other factors
in the region, and within the temperature range suitable for vegetation growth, the higher
the temperature, the better the vegetation coverage, beyond which vegetation growth will
be inhibited.

Table 10. Mean NDVI value and significant differences in the annual average temperature between
two regions.

Zones 1 2 3 4 5 6 7 8 9

1
2 N
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y N Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.260 0.275 0.294 0.482 0.598 0.682 0.659 0.497 0.553
Note: Y and N same as Table 9; numbers 1–9 indicate (unit: ◦C) −4.00–−2.49, −2.49–−1.57, −1.57–−0.63,
−0.63–0.49, 0.49–1.65, 1.65–2.82, 2.82–4.22, 4.22–6.02, and 6.02–9.52 respectively.

3.6.3. Vegetation Type

The vegetation type had an important influence on the NDVI of the TRHR, and the
interaction with other factors further enhanced its influence on the NDVI. Vegetation
types were divided into nine subzones. The mean NDVI values peaked in the coniferous
forest vegetation type. There was no significant difference among the mean NDVI values
in vegetation type subzones 2, 3, and 4. There were significant differences between the
coniferous forest vegetation type and other vegetation type subzones; the coniferous forest,
broadleaf forest, and scrub vegetation covers were better (Table 11).
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Table 11. Mean NDVI value and significant differences in terms of vegetation types between two regions.

Zones 1 2 3 4 5 6 7 8 9

1
2 Y
3 Y N
4 Y N N
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y N Y Y Y
8 Y Y N Y Y Y Y
9 Y Y N Y Y Y N N

NDVI 0.159 0.714 0.583 0.702 0.229 0.270 0.544 0.368 0.466
Note: Y and N same as Table 9; numbers 1–9 indicate other, coniferous forest, broadleaf forest, scrub, desert,
grassland, meadow, alpine vegetation, and cultivated vegetation, respectively.

3.6.4. Elevation

Elevation affects the spatial distribution of natural elements and human activity.
The elevation was divided into nine subzones. The mean NDVI value increased and
then decreased with the elevation of the TRHR, and it was better in the 3446 to 3851 m
range. There were significant differences between this elevation range and other elevation
subzones (Table 12). At elevations higher than 3851 m, the NDVI decreased as the elevation
increased.

Table 12. Mean NDVI values and significant differences between two regions in terms of elevation.

Zones 1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y N Y Y Y Y
8 N Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.297 0.418 0.744 0.704 0.550 0.457 0.396 0.303 0.253
Note: Y and N same as Table 9; numbers 1–9 indicate (unit: m) 1950–2979, 2979–3446, 3446–3851, 3851–4177,
4177–4436, 4436–4665, 4665–4895, 4895–5183, and 5183–6826, respectively.

3.6.5. Land Use Type

The land use types were divided into six subzones. The NDVI value peaked in
construction land, with no significant difference from the value obtained in forest land,
and with significant differences from other land use types; therefore, construction land
and forest land had the best vegetation coverage. The main land use type in the TRHR
was grassland, accounting for 68%, of which low-coverage grassland accounts for 38%,
followed by unused land, water area and forest land, which accounted for 23%, 5%, and
4%, respectively, of the total area. The cropland, forest land, middle-coverage grassland,
and low-coverage grassland areas in the TRHR decreased from 1980 to 2015, while the
high-coverage grassland, water area, construction land, and unused land areas increased,
with the low-coverage grassland area decreasing the most and the high-coverage grassland
and unused land area increasing the most (Table A1). Both the forest and construction
lands were small, but both were distributed in the middle–high and high vegetation
coverage areas east and south of the study area, with better hydrothermal conditions; the
construction land was affected by human activities and had more green vegetation, thus
the NDVI values were higher there.
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3.6.6. Synergistic Effects of Other Factors

The factor detector demonstrated that the single factors of landform type, soil type,
slope, aspect, GDP, and population density had small effects on NDVI changes in the
TRHR, but the interactions of these factors with others could enhance the effects on NDVI
changes.

The landform types of the TRHR were diverse and affected the distribution of vegeta-
tion. The landform types were divided into six subzones. The mean NDVI values peaked
in the medium-undulating mountains; there were significant differences between this and
other landform types, thereby indicating that the vegetation coverage in the medium-
undulating mountains was the best. The soil types were divided into 10 subzones. The
mean NDVI value peaked in semi-leached soil; there were significant differences between
the mean NDVI value in this soil type and other soil types. Therefore, semi-leached soil
had the best vegetation coverage. Different slopes and aspects led to differences in climatic
elements, and suitable slopes and aspects were conducive to vegetation growth. The slope
was divided into seven subzones. The mean NDVI value increased and then decreased
with slope increases, and peaked in the 35◦ to 45◦ range. The vegetation of this slope
consisted mainly of scrubs and alpine meadows. There were no significant differences
between the mean NDVI value of this slope and those of slope subzones 6, 5, and 7, while
there were significant differences with other subzones. Therefore, the vegetation growth
conditions were better in the slope range of >25◦. As shown by the q value (Table 5), aspect
had a minimal effect on the NDVI. The aspect was divided into nine subzones. The mean
NDVI value fluctuated little with aspect changes. The NDVI value of the eastern slope was
the largest, with no significant NDVI differences between this and aspect subzones 2, 3, 8,
and 9, and significant differences with the other aspect subzones. Therefore, the vegetation
coverage of the northern, northeastern, eastern, western, and northwestern aspects was
the best.

Among the anthropogenic factors, both GDP and population density had little in-
fluence. The GDP was divided into seven subzones. The NDVI value peaked at a
GDP of 12 × 104–37 × 104 yuan/km2 and was not significantly different from that of the
area with a GDP of 1.04 × 104–2.42 × 104 yuan/km2; therefore, the vegetation growth
was good in both of these areas. The population density was divided into seven sub-
zones. The largest NDVI value was observed in the area with a population density of
74.95–94.31 people/km2, with no significant differences with the area with a population
density of 8.43–19.37 people/km2; therefore, the vegetation coverage was optimal in both
areas. The area with a population density in the 74.95–94.31 people/km2 range was very
small, accounting for only 0.02% of the total area, which may have led to inaccurate results.
If this area is not considered in the analysis, the NDVI will increase and then decrease with
increasing population density, with larger values in the range of 8.43 to 19.37 people/km2,
this result would be more accurate.

4. Discussion

Global warming over the last few decades has led to changes in the regional environ-
ment. Under the influence of climate change and human activities, vegetation green has
generally increased in China [38]; the NDVI has shown an increasing trend in northern
China over the past 40 years [39]; the Qinghai–Tibet Plateau tends to become warm and
wet, and the vegetation status has gradually improved [40]. This study showed that the
NDVI of vegetation in the TRHR also showed an increasing trend from 1982 to 2015, which
is consistent with the trend of the NDVI change in China and Qinghai–Tibet Plateau during
this period.

In this study, four geographical detectors were used to quantify the main drivers of
the NDVI in the TRHR and the interaction of the factors. In the following sections, we will
discuss the effects of natural and anthropogenic factors separately.
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4.1. Effects of Natural Factors

The Qinghai–Tibet Plateau is a sensitive area for climate change in China [41]. This
study indicated that climate factors were the main drivers of the NDVI changes in the
TRHR, which is consistent with the findings of Chen [42]. The factor detector showed that
the q value of annual precipitation was the largest and was the dominant factor influencing
NDVI changes in the TRHR, which is consistent with the findings of Zheng [43] and
Xiong [44]. In contrast, Xu [45] and Zhu [46] considered temperature as the dominant
factor influencing NDVI variation in the TRHR; the differences in the results may be
attributed to the different time scales of the study or the different spatial resolutions of
the NDVI used. The warming trend in the TRHR was greater than the Chinese, as well as
global average during 1982–2015, and precipitation was lower compared to the global [20].
Extreme temperature increases, and extreme precipitation is relatively stable. The rapid
increase in temperature and slow increase in precipitation in the TRHR has led to regional
warming and drought [47], while studies have shown that precipitation is the main factor
affecting changes in vegetation NDVI in arid and semi-arid alpine meadow and alpine
grassland regions [48]. The M-K test showed that the annual precipitation in the TRHR
changed abruptly in 2004 and 2006 (Figure A1), and extreme drought events occurred
frequently. In 2006, the TRHR suffered an extreme drought, and the growth of forage
grasses was disrupted and the grassland ecosystem was damaged [49], resulting in a
decrease in NDVI. Precipitation increased abruptly around 2007 [50], since the NDVI has
a lag effect on precipitation [51], the NDVI increased abruptly from 2008 onwards. The
influence of extreme precipitation events on NDVI in the Qinghai–Tibet Plateau region
is more pronounced than that of extreme temperature events, indicating that vegetation
is more sensitive to changes in precipitation. Extreme wetness would offset the negative
effects caused by extreme drought, and extreme high temperature events occurring in
May would stimulate vegetation growth, while extreme low temperatures would inhibit
vegetation growth [52]. The effects of extreme climatic events on the vegetation of the TRHR
need further study. The influence of temperature on the NDVI gradually decreased, while
precipitation occupied a more dominant position [42]. The annual precipitation and annual
mean temperature of the TRHR decreased from southeast to northwest. The increasing
trend of temperature in the TRHR was significantly greater than that of precipitation, can
lead to the warming and drying of the TRHR, which will inhibit vegetation growth [53].
Seasonally, precipitation in the TRHR increases in spring and winter, and in summer when
the temperature rises, precipitation also increases [54]. The growing season of vegetation
in the TRHR is from May to September, and the climate is conducive for vegetation growth.
Water resources are closely related to vegetation, and vegetation changes interact with
hydrological processes [55]. Changes in temperature and precipitation lead to changes in
vegetation patterns, which can alter surface hydrological characteristics, which, in turn,
can affect changes in vegetation coverage [56]. The artificial rainfall implemented by the
ecological project of the TRHR has restored the vegetation coverage and the increase in
precipitation is beneficial to the growth of vegetation, but the excessive precipitation may
cause soil erosion [57], which will instead damage vegetation, therefore the artificial rainfall
project should be implemented scientifically and consistently to promote the growth of
vegetation in the TRHR.

The vegetation types of the TRHR were mainly alpine meadows and alpine grasslands.
During 1982–2015, part of the desert vegetation was converted to grassland and meadow
vegetation types, increasing the vegetation coverage. Coniferous forests were mainly
distributed in the elevation range of 3446 to 3851 m, and natural environmental conditions
were more suitable for vegetation growth. The medium-undulating mountains were mainly
dominated by meadow and scrub vegetation types, which were distributed in the southern
part of the TRHR, with sufficient hydrothermal conditions and relatively suitable elevation,
which are favorable for vegetation growth. The soil is the basis for vegetation growth.
The fertilizer retention capacity of semi-leached soil is high, and the semi-leached soil of
the TRHR is mainly distributed in mountainous areas, which are favorable for vegetation
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growth. In this study, the influence of soil type on vegetation change was small, but the
interaction with other factors could enhance this influence; for example, the interaction of
soil type with temperature and precipitation had a higher influence on the NDVI than did
soil by itself. Soil temperature has an important effect on vegetation growth [58].

Topography affects vegetation distribution by changing water and heat conditions [28].
According to Chen [59], the 3500 to 3800 m elevation range is relatively low and precip-
itation and temperature conditions are good, thus the NDVI value is the largest in this
elevation range. In elevations higher than 3800 m, the natural conditions become worse as
the elevation increases, thus the NDVI value decreases as well. Slope affects vegetation
growth by changing surface runoff, and vegetation coverage generally decreases with
increasing slope. However, in this study, the gentle slope was more influenced by human
activities; the vegetation coverage was low, while, with increasing slope, human influence
decreased and vegetation coverage was relatively high. Aspect affects light intensity, which,
in turn, changes the hydrothermal conditions for vegetation growth. The sunny slope
has strong light, less soil water content, less nutrient accumulation, and lower vegetation
coverage, while the shady, semi-shady, and semi-sunny slopes have sufficient soil water
and high nutrient content [60], which are suitable for vegetation growth.

4.2. Effects of Anthropogenic Factors

According to the results of factor detection, anthropogenic factors had little influence
on the NDVI. However, the combination of anthropogenic with natural factors can increase
the impact. The population density in the TRHR was relatively small, and economic
development was slow. Land use type had the greatest influence on the NDVI among
anthropogenic factors. Low-coverage grassland is mainly located in the northwest, where
water resources are scarce and the altitude is high, while high-coverage grassland is mainly
located in the southeast where water and heat conditions are better. From 1980 to 2015, the
conversion area between unused land and grasslands is large, and most unused land is
converted into low-cover grasslands, but overall the increase in the area of unused land
is greater than the decrease. Due to increase in population, land for construction has
expanded. Ecological protection projects have increased the area of waters and lakes and
improved the condition of wetlands. Before 2000, overgrazing led to the degradation of
grassland; therefore, although the grassland area was large in the TRHR, the NDVI value
was low. The implementation of the Sanjiangyuan Ecological Project in 2005 resulted in the
slight recovery of the grassland, but the effects were short-term [61]. The areas with the
highest NDVI values under the influence of GDP and population density were all located
in the northeastern part of the TRHR, which is relatively densely populated, vegetation is
affected by human activities, and the population is usually distributed in areas with better
vegetation coverage [62] which have good survival conditions. Such natural conditions are
also suitable for the growth of vegetation, but the increase in population will also cause
some damage to vegetation, and the NDVI of vegetation will decrease beyond a certain
range of population numbers.

The main conclusion of this study is that, compared with natural factors, anthro-
pogenic factors had less influence on the NDVI of the TRHR. Natural factors, especially
climatic factors, dominated the changes in the NDVI in the vegetation of the TRHR. In
the context of global climate change, climatic factors have a strong association with veg-
etation change [56]. This is also verified by this study. The TRHR is at a high altitude,
the population is sparse and the area of cultivated land is small. The impact of human
farming activities is small, and although there is a certain degree of grazing, the impact is
minimal relative to the climate, so the study area in this paper is basically equivalent to
an undisturbed area. Therefore, the impact of human activities on the vegetation of the
TRHR is very limited. As the impact of anthropogenic factors is short-lived, ecological
engineering needs to be implemented continuously. Effective interventions for the restora-
tion of vegetation in the TRHR can be based on the appropriate range or types of factors
or a combination of factors. Separating natural factors from anthropogenic factors and
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quantitatively studying the influence of factors on vegetation is important for the ecological
protection and sustainable development of the TRHR, as well as the middle and lower
reaches of the region.

4.3. Effectiveness, Limitations, and Future Directions

To the best of our knowledge, this study is the first to use a geographical detector
to quantify the effects of natural and anthropogenic factors on vegetation activity and
effectively distinguish between the effects of natural and anthropogenic factors on the
NDVI in the TRHR. The natural environment of the TRHR is complex, diverse, and
spatially heterogeneous. Previous studies on vegetation drivers have used correlation
analysis, which assumes a linear relationship between the NDVI and drivers, whereas
correlation studies have shown a nonlinear relationship [63]; in contrast to traditional
methods, the geographical detector can quantify the non-linear effects of factors and their
interactions on vegetation change, making it well suited for this study. We also made
the selection of factors with reference to existing studies, and the factors selected in this
paper have been shown to be effective many times [13,14,29,64,65], so that the factors
selected can be non-independent and the geographical detector method selected for this
study allows the analysis of interactions between factors that have been neglected by
traditional methods. However, the independent variable input to the geographical detector
consists of type quantities, thus the numerical quantities must be classified. This study was
based on the natural break method of classifying independent variables, which has been
applied before and proven to be effective [29]; different methods of classification can affect
the results. To ensure the length and completeness of the time series, NDVI data with a
spatial resolution of 8 km were used in this study, which may have had some influence
on the results owing to the low data resolution. Although NDVI is currently considered
to be the most effective indicator for detecting vegetation change, it has shortcomings,
such as the NDVI can reach saturation in dense vegetation canopies, which may lead
to inaccurate trends in areas of dense biomass, and the effect on soil background in low
vegetation coverage areas is not addressed [66], which were did not consider in this paper.
Additionally, the different time ranges of the selected data may lead to some differences in
the results, for example, if the growing season data are selected for analysis, the spatial
and temporal distribution pattern of the NDVI in the growing season is basically the same
as that of the whole year, the influence results are opposite to the annual data, and the
influence of temperature (0.458) is slightly greater than the influence of precipitation (0.448).
Although there are some differences in the results, the influence of climate factor is still the
largest and is the dominant factor of vegetation coverage change in the TRHR, and this
main result is unchanged. Therefore, for further research, data resolution should be further
improved, while classification methods also need further improvement. To obtain a more
accurate result, future studies could use the improved enhanced vegetation index (EVI) for
comparison. The effect of growing season climate change on vegetation NDVI also needs
further study.

5. Conclusions

In this study, which was based on GIMMS- NDVI data from 1982 to 2015 and 11 de-
tection factors from the same period, we analyzed the spatial and temporal variation
characteristics of the NDVI in the TRHR using linear regression analysis, the Mann-Kendall
test, and the moving t-test. We also analyzed its spatial heterogeneity and driving factors
using a geographical detector, and determined the appropriate range or types of factors
suitable for vegetation growth. The main conclusions of the study are as follows:

(1) The NDVI distribution of the TRHR was high in the southeast and low in the
northwest; the change had an increasing trend in the west and north and a decreasing trend
in the center and south. The annual mean value of the NDVI from 1982 to 2015 generally
followed a slow increasing trend with a growth rate of 0.002/10 a; regions with low and
high vegetation coverage decreased, while other regions increased. The NDVI increased
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abruptly in 2008. Overall condition of the TRHR has been improving, but vegetation
coverage remains poor.

(2) The magnitude of the influence of each factor on the NDVI was as follows: annual
precipitation > annual mean temperature > vegetation type > elevation > land use type
> landform type > population density > soil type > GDP > aspect. Among them, annual
precipitation had an explanatory power of more than 50% and was the dominant factor
influencing NDVI changes in the TRHR. The annual mean temperature, vegetation type,
and elevation had an explanatory power of more than 30% and also explained NDVI
changes well. Land use type, landform type, and population density had an explanatory
power of more than 20%, while other factors had less explanatory power. Compared with
the natural factors, the influence of anthropogenic factors on the NDVI of vegetation in the
TRHR was smaller. Climatic factors were the main drivers of NDVI changes in the TRHR.

(3) Interactions of bivariate and non-linear enhancements among the NDVI factors
were observed, and there were no factors with weakening and independent effects. The
interactions of annual precipitation, elevation, mean annual temperature, and vegetation
type enhanced the influence of the factors to the greatest extent. Although factors such as
the GDP and aspect had small influence on the NDVI, their interaction with other factors
greatly increased their explanatory power on the NDVI.

(4) We analyzed the NDVI changes in the TRHR from 1982 to 2015, revealed the
natural and anthropogenic factors driving NDVI changes, and determined the appropriate
range or types of factors, which is important for ecological conservation and the sustainable
development of the TRHR.
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Appendix A

Table A1. Land use transfer matrix (km2).

Area/km2 Cropland Forest Land High-Coverage
Grassland

Middle-Coverage
Grassland

Low-Coverage
Grassland Water Area Construction

Land Unused Land 2015 Total

Cropland 2010.75 0.00 0.00 232.85 2.41 0.00 0.00 0.00 2246.01
Forest land 0.00 14,805.10 0.00 20.44 30.61 0.00 0.00 0.00 14,856.15

High-coverage
grassland 78.42 0.00 20,236.10 254.87 156.84 0.00 0.00 80.83 20,807.07

Middle-coverage
grassland 0.00 71.34 78.42 93,372.20 1250.00 0.28 0.00 160.96 94,933.20

Low-coverage
grassland 78.42 80.83 19.61 663.11 141,923.00 225.49 0.00 182.09 143,172.54

Water area 313.68 0.00 0.00 50.22 8.78 16,702.20 0.00 289.61 17,364.50
Construction land 78.42 0.00 0.00 156.84 0.00 0.00 78.42 0.00 313.68

Unused land 0.00 0.00 30.61 346.55 738.81 414.77 0.00 85,102.60 86,633.34
1980 Total 2559.70 14,957.27 20,364.74 95,097.07 144,110.46 17,342.74 78.42 85,816.09

Area change −313.69 −101.12 442.33 −163.87 −937.92 21.76 235.26 817.25
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