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Abstract: Currently, the world is facing high competition and market risks in improving yield, crop
illness, and crop water stress. This could potentially be addressed by technological advancements in
the form of precision systems, improvements in production, and through ensuring the sustainability
of development. In this context, remote-sensing systems are fully equipped to address the complex
and technical assessment of crop production, security, and crop water stress in an easy and efficient
way. They provide simple and timely solutions for a diverse set of ecological zones. This critical
review highlights novel methods for evaluating crop water stress and its correlation with certain
measurable parameters, investigated using remote-sensing systems. Through an examination of
previous literature, technologies, and data, we review the application of remote-sensing systems in
the analysis of crop water stress. Initially, the study presents the relationship of relative water content
(RWC) with equivalent water thickness (EWT) and soil moisture crop water stress. Evapotranspiration
and sun-induced chlorophyll fluorescence are then analyzed in relation to crop water stress using
remote sensing. Finally, the study presents various remote-sensing technologies used to detect
crop water stress, including optical sensing systems, thermometric sensing systems, land-surface
temperature-sensing systems, multispectral (spaceborne and airborne) sensing systems, hyperspectral
sensing systems, and the LiDAR sensing system. The study also presents the future prospects of
remote-sensing systems in analyzing crop water stress and how they could be further improved.

Keywords: crop water stress; hyperspectral; LiDAR; multispectral; optical sensing; remote sensing;
sentinel-1; soil moisture; thermometric sensing

1. Introduction

Irrigation water is considered a fundamental and vital resource for agricultural pro-
duction [1]. A lack of irrigation water will result in crop water stress occurring at different
crop stages and under different environmental conditions, whereby the effects on crop and
soil characteristics manifest in a diverse manner. The primary effect is experienced in the
photosynthesis rate, which further leads to disruption of the transpiration rate. Arid re-
gions have determined innovative ways to fulfill their crop needs according to their growth
stages, type, and environmental conditions, which results in significant improvements
in yield [2,3]. Providing more or less irrigation than required ultimately damages crop
growing length and yield production in addition to causing other problems.

Remote-sensing technology, since its initiation, has come to benefit agriculture in
many ways [4]. It has simplified and optimized agricultural farming [5] through the rapid
detection of crop biomass changes that are often overlooked by traditional methods [6].
Remote sensing utilizes different technologies that are based on computer applications
to gather data from crop, soil, and environmental factors and without physical contact
(Figure 1) [7]. The remote-sensing system provides specific information useful in the
analysis of irrigation scheduling, amount, and time, and determines crop temperature with
high precision [8].
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Figure 1. The graphical abstract visualizes the remote-sensing technology that perfectly addresses crop water stress using 
crop statistics and computer software by (1) identifying the problem, (2) implementing the methodology, (3) delivering 
the solution, and (4) addressing global crop water stress. 

Crop water stress (CWS) assessment is one of the factors that define the environmen-
tal interaction of a crop and is a prerequisite for performing precision irrigation schedul-
ing [9]. CWS is defined as “an indicator that determines water deficit condition based on 
the scale of the leaf and the crop temperature analysis method”. The CWS, which was 
developed by Idso et al. [10], was later considered a standard indicator to assess the stress 
at the leaf and canopy scales. This was an improvement of the standardized procedure for 
assessing plot and regional scale water stress, including evapotranspiration, at a larger 
scale. The standardized method potentially addressed the stress effects by analyzing the 
relationship between TIR and NIR-SWIR as an indicator of vegetation water availability 
[11,12]. Based on the standardized method, Khorsand et al. [13] reported critical limita-
tions of leaf and canopy scales and of their relationship within diverse environmental con-
ditions. The study utilized the regression baseline model and found CWS values of 0.37 
and 0.15 for different leaf- and canopy-level scales. The study further showed that the 
regression baseline method for leaf and canopy scales can provide significant results for 
application in long-term forecasting (Figure 2). The regression baseline model can be read-
ily used to provide CWS status and simplifies the analysis of crop variety, soil type, and 
environmental factors. 

Figure 1. The graphical abstract visualizes the remote-sensing technology that perfectly addresses crop water stress using
crop statistics and computer software by (1) identifying the problem, (2) implementing the methodology, (3) delivering the
solution, and (4) addressing global crop water stress.

Crop water stress (CWS) assessment is one of the factors that define the environmental
interaction of a crop and is a prerequisite for performing precision irrigation scheduling [9].
CWS is defined as “an indicator that determines water deficit condition based on the scale
of the leaf and the crop temperature analysis method”. The CWS, which was developed
by Idso et al. [10], was later considered a standard indicator to assess the stress at the leaf
and canopy scales. This was an improvement of the standardized procedure for assessing
plot and regional scale water stress, including evapotranspiration, at a larger scale. The
standardized method potentially addressed the stress effects by analyzing the relationship
between TIR and NIR-SWIR as an indicator of vegetation water availability [11,12]. Based
on the standardized method, Khorsand et al. [13] reported critical limitations of leaf and
canopy scales and of their relationship within diverse environmental conditions. The study
utilized the regression baseline model and found CWS values of 0.37 and 0.15 for different
leaf- and canopy-level scales. The study further showed that the regression baseline
method for leaf and canopy scales can provide significant results for application in long-
term forecasting (Figure 2). The regression baseline model can be readily used to provide
CWS status and simplifies the analysis of crop variety, soil type, and environmental factors.

This critical review examined the analysis of crop water stress using remote-sensing
systems. Initially, the relationship of relative water content (RWC) with equivalent water
thickness (EWT) and soil moisture crop water stress is determined. Evapotranspiration
and sun-induced chlorophyll fluorescence are then analyzed in relation to crop water
stress using remote-sensing systems. Finally, the study presents an overview of remote-
sensing technologies used to detect crop water stress, including optical sensing systems,
thermometric sensing systems, land-surface temperature-sensing systems, multispectral
(spaceborne and airborne) sensing systems, hyperspectral sensing systems, and the LiDAR
sensing system.
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gation water resources and micro-environmental conditions near the plant source to evaluate the intensity of the crop 
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TW = turgid weight (%). 

Crop RWC is an important parameter in acquiring a crop’s physiological status 
[15,16], biochemical status [17–20], and irrigation use efficiency [21–24]. Thanks to remote-
sensing systems, these conditions can be effectively tracked for leaf water potential and 
moisture availability for effective and timely measures [25]. 

RWC can be determined with high accuracy using spectral remote-sensing systems, 
whereby spectral data are analyzed to provide simple readable information. Qi et al. [26], 
for example, successfully used remote-sensing spectral systems to acquire accurate RWC 
data in a timely manner. The equivalent water thickness (EWT) of a leaf is used to assess 
RWC, which provides the available water quantity per unit leaf area [27], with which re-
searchers can then determine the level of stress that the leaf experiences or will experience 

Figure 2. Crop water stress assessment: (a) Normal stomatal conductance with no stress retrieved, (b) comparison of
irrigation water resources and micro-environmental conditions near the plant source to evaluate the intensity of the crop
water stress content in real-time field conditions.

The aims of our study are to:

(i) Summarize the current scope of crop water stress detection using remote-sensing
technology.

(ii) Present real-world examples and relevant methods.
(iii) Classify common features of crop water stress used in detection to benefit the literature

on this topic.

2. Relative Water Content and Crop Water Stress

Inoue et al. [14] defined the relative water content (RWC) as the ratio of the available
quantity of soil moisture and crop water. The study further specified the RWC as

RWC = (fresh weight − dry weight)/(turgid weight − dry weight)

where:
FW = fresh weight (%);
DW = dry weight (%);
TW = turgid weight (%).
Crop RWC is an important parameter in acquiring a crop’s physiological status [15,16],

biochemical status [17–20], and irrigation use efficiency [21–24]. Thanks to remote-sensing
systems, these conditions can be effectively tracked for leaf water potential and moisture
availability for effective and timely measures [25].

RWC can be determined with high accuracy using spectral remote-sensing systems,
whereby spectral data are analyzed to provide simple readable information. Qi et al. [26],
for example, successfully used remote-sensing spectral systems to acquire accurate RWC
data in a timely manner. The equivalent water thickness (EWT) of a leaf is used to assess
RWC, which provides the available water quantity per unit leaf area [27], with which
researchers can then determine the level of stress that the leaf experiences or will experience
in the future. This remote-sensing technique can precisely quantify crop water stress based
on leaf measurements, which is vital in making certain decisions.

The quantity of solar radiation received also affects crop EWT. EWT is related to crop
leaf moisture. Under high solar radiation, the water requirement is high, so a high amount
of water is absorbed and transpired [28]. EWT, as determined with remote sensors, can be
used to analyze crop water demand and moisture availability. The remote-sensing sensors
continuously monitor EWT assessment values (low and high), which, in extreme cases,
lead to crop death, whereas a rapid increase and positive values reveal minor crop water
stress. De Jong et al. [29] presented EWT values determined using a spectral remote-sensing
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system at three locations, where a good correlation of 0.70 was found between leaf water
content and spectral indices at the 970 nm wavelength band.

The EWT approach [29] for determining water weight (FW − DW) per the leaf area
index (LAI) is expressed as

EWT = (FW − DW)/LAI

For determining crop water stress at the RWC level, understanding the leaf water
content is important. The correlation with leaf water content is determined using a remote-
sensing system [30]. Ceccato et al. [31], Wang et al. [32], and Zhang et al. [33] stated that
leaf water content stress and low water potential are created through an imbalance. The
imbalance appears when the evaporated leaf water content and absorbed water level (by
the root system) are not equal. Leaf water stress depends on the plant condition. Its
transpiration rate and temperatures are indirectly related to each other. In conditions of
higher transpiration, low crop water stress is due to the water availability of the leaves,
while low transpiration leads to high crop water stress (Figure 3) [34]. The transpiration
rate, temperature, cooling, and heating effects are detected by remote-sensing systems and
further processed for crop water stress assessment [35]. However, the methods for leaf
water content estimation are overly time-consuming and are not considered efficient for
large-scale spatial analysis. For limited spatial analysis, modern remote-sensing methods
provide useful results [36]. Among them is a canopy temperature remote-sensing method
that has attracted considerable attention for characterizing crop water stress [37].
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Figure 3. Remote-sensing estimation of the crop water stress using leaf transpiration, temperature, cooling, and heating
effects, and comparing it with the air and soil moisture levels.
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Leaves are not considered a real representative of the complete canopy but are the top
portion of the plant that receives direct solar radiation. This quantity of absorbed solar
radiation influences crop parameters, such as leaf area index (LAI) and upper and lower
leaf features, which are significant characteristics in the remote determination of RWC.
Tanner [38] developed a system for studying canopy temperature in order to continuously
monitor RWC. His study provided an overview of leaf temperature and explains how a
single leaf is not capable of representing the entire canopy. This minimizes the need for a
specialized system and high-cost maintenance, and less time is needed for analysis [39].
This opened up new ways to automatically monitor RWC stress. However, the lack
of availability of a diverse set of factors [40], decreased sensor image quality [41], and
high costs [42] are issues of the system that still need to be addressed. As crop RWC is
affected by soil moisture, the RWC is overestimated under conditions of high soil moisture,
while at low soil moisture, the RWC is underestimated. Both RWC and soil moisture are
interdependent variables, and little research has been conducted on their effects on crop
water stress [43,44]. A study conducted a model based on a linear relationship between
NDVI reflectance and soil moisture. It estimated a linear relationship between root zone
soil moisture and leaf water potential, but the test was conducted at a depth of 0–5 cm [25].
In this context, the following section examines the relationship of soil moisture with its
interdependent variables.

Satellite systems such as soil moisture active passive (SMAP) and soil moisture and
ocean salinity (SMOS) use passive signals to assess soil moisture. The L-band frequency
measured by these systems can be used to map the global near-surface (0–5 cm) soil
moisture with optimum spatial (25–40 km) and temporal resolution (2–3 d). They are
further able to analyze the near-surface soil moisture content up to the crop root zone (top
1 m) by using data assimilation methods and processing models [45]. The function of these
systems is to monitor the soil moisture at various locations and sparse monitoring chains
and to perform analysis.

Initial research on SMAP and SMOS soil moisture analysis showed significant correla-
tions between the equipment tested in previous years, but there were differences found in
extreme temperatures such as hot and cold zones due to variations in equipment, structure,
and algorithms [46]. The Sentinel-1 mission was tested using the SMAP system for their
overlapping orbits, system functions, and temporal conductivity. This analysis provided
advancement in the soil moisture data for global coverage. Various modern satellites
(active and passive) and sensors have started acquiring data for soil moisture. Soil moisture
data with advanced spatial resolution have been acquired by Sentinel-1 and the ALOS-2
PALSAR satellite mission with a 10 m resolution [47]. Previous satellite systems provided
a revisit frequency of 14 days that is not efficient for soil moisture analysis [48–50].

Soil moisture spatiotemporal analysis is conducted by the Sentinel-1 system. The sys-
tem further recommends potential processes for relative content analysis. Paloscia et al. [51]
and Hornacek et al. [52] reported on Sentinel-1 as the first soil moisture data analyzer.
Table 1 shows the latest L-band missions, including the National Aeronautics and Space
Administration (NASA), USA, the Indian Space Research Organization (ISRO), the syn-
thetic aperture radar (SAR—collectively referred to as NISAR), and the German-based
Tandem-L missions [53], which provided valuable datasets of soil moisture determination
at a high spatial resolution, giving rise to further novel satellite missions. The German-
based Tandem-L mission was used on two sets of radar satellites that operate in the L-band
module. The system is considered highly efficient for the global monitoring of dynamic
developments on the soil surface, including the crop vegetation’s vertical structure, soil
surface temperature, and soil surface distortion. The NISAR mission is based on a dual fre-
quency (S and L bands) with the synthetic space radar to understand natural developments
of the soil, such as environmental progressions.

Bogena et al. [54] reported on non-invasive remote-sensing systems for the determina-
tion of soil moisture. Particularly, the cosmic ray soil moisture interaction code (COSMIC)
and the cosmic ray neutron probe (CRNP) showed promising results in acquiring soil
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moisture. The system analyzed the tested area from a few hundred to a thousand square
meters at a single time. The soil moisture map was estimated by a study using the SAtélite
de Observación COn Microondas (SAOCOM) mission. The soil moisture sampling work
consists of 17–20 nodes with 44 total measurement sites in order to cover the spatial vari-
ability of the soil moisture of the large area. The objective of the studies was to analyze
the number of surface soil moisture samples required to determine the areal mean, which
showed 95% accuracy and 3% v/v error bounds in all nine fields. Results showed an
acceptable level of accuracy between the tested parameters and satellite data, with no
significant differences [55]. Additionally, various soil moisture test locations including
sensors with diverse levels of precision and accuracy, such as the German-based terrestrial
environmental observatories (TERENO), the US-based Marena Oklahoma in situ sensor
testbed (MOISST), and the US-based Texas soil observation network (TxSON), were tested
in the analysis of soil moisture content.

Table 1. Satellites that monitor global soil moisture content with major applications and their
respective advantages and disadvantages.

Systems Application Advantages Limitations References

AMSR-2

Global
observation of soil
moisture (from the
soil surface to a
few cm depth),
soil water-related
parameter analysis

Acquires both day-
and night-time data
with more than 99%
accuracy/Good
acquisition of the
resolution and
accuracy of the data
collection

Works only at
specific
frequency bands,
such as 6.925,
7.3, 10.65, 18.7,
23.8, 36.5, and
89.0 GHz

[56]

AMSR-E

Passive
microwave soil
moisture analysis
with high
efficiency in
relation to drought

Acquisition of daily
determination of soil
moisture data with
precise resolution of
12.5 km

Only two files
per day, one
daytime and one
nighttime

[57]

NISAR

Spatially based
maps of global soil
moisture in
6–12 days

Acquires day/night
and all-weather for
soil moisture data
with precise
resolution of 3–10 m

Product
evaluation in
12–24 h

[58]

Tandem-L Global soil
moisture

Provides highly
precise measured
data ranging within
a millimeter
accuracy with
precise resolution
from 20 m to 4 km

Much more
expensive than
traditional
satellite systems

[59]

Sentinel-1 Dynamics
observation

Field determination
is less accurate with
precision resolution
from 5 to 20 m

Easy to develop
new systems,
including
application
development
models and
sensor structures

[60]

SMAP
Analyze soil
surface and
vegetation status

High chance of
mission failure with
the precision
resolution of 9 km

Passive sensors
acquire SSM for
about 36 km

[61]
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3. Evapotranspiration and Crop Water Stress

Evapotranspiration (ET) is the water quantity lost to the atmosphere from the crop’s
stomatal aperture and transpiration. Irrigation water availability is a major determinant
of ET, which can be used at different levels. A previous study examined these processes,
and Allen et al. [62] determined various techniques and presented empirical approaches in
analyzing the evapotranspiration with the help of different environmental parameters [63].
This study was tested by many researchers and agronomists under different climatological
conditions and proved to be a good approach in analyzing crop water stress with energy
exchanges. In some climatological conditions, the crop coefficient (Kc) shows a variable
and distant approach for determining real-time crop growth. To avoid issues, techniques
have been further updated by including the weather-dependent references ET and Kc,
which further specifies the type and production stage of the crop.

López-López et al. [64] analyzed the crop evapotranspiration (ETc) for soil matrix
potential and validated crop water stress with the help of an infrared ray gun as a remote-
sensing tool. Researchers revealed that values ranging from 1.21 to 1.31 VPD could be
recorded in crops with lower water stress, with an r2 of 0.68. Marino et al. [65] investi-
gated the effects of different irrigation levels on the physiological responses of crops and
found that the seasonal reference evapotranspiration was 252.4 mm, while that of crop
evapotranspiration was 194.3 mm using remote-sensing-based UAV systems.

In many cases, the crop growing stage cannot be observed by growers in field condi-
tions. In these particular conditions, satellites provide spatially uniform data to diversify
crop growth stages by analyzing evapotranspiration. This is performed by the METRIC
modeling of imagery data acquired by the remote-sensing method. The METRIC model
is based on the term SEBAL, which works via the energy balance method for crop water
stress assessment using remote sensing.

Alghory et al. [66] determined crop water stress using an evapotranspiration analysis.
Tests showed that an irrigation deficit could potentially benefit crop yield. Other studies
defined empirical approaches to determine crop water stress [67–69], where the ET of
crops was analyzed using remote-sensing systems. Sun et al. [70] and Shellie et al. [71]
examined the auto-model system for crop water stress estimation. Studies revealed that,
upon minimizing half of the irrigation quantity, the recorded ETc was 70–35% of the original
values, whereas the studies recorded the particular crop water stress index at 0.4–0.6.

Romero-Trigueros et al. [72] and Akkuzu et al. [73] analyzed the crop water stress
index using a thermal remote-sensing system and found values ranging from 0 to 0.68 and
from 0.02 to 0.71 in different years. Dauphin [74] (Figure 4) validated NASA’s Ecosystem
Spaceborne Thermal Radiometer, called ECOSTRESS, to evaluate evapotranspiration and
ultimately assess crop water stress for different crops in Peru. The study concluded that
some regions recorded low evapotranspiration and high crop water stress.

Dauphin et al. [74] studied Moderate–Resolution Imaging Spectroradiometer (MODIS)
imagery that provides maps of global agricultural production and conditions influencing
global food security on a timely and regular basis. The Global Land Evaporation Amster-
dam Model (GLEAM) is a collection of algorithms that separately estimate the evaporation,
transpiration, bare–soil evaporation, interception loss, open–water evaporation, and sub-
limation. The system was developed to maximize the recovery of data on evaporation
contained in the latest satellite observations of environmental and climatic variables. The
system provides three salient features: (1) Consideration of the soil moisture parameter on
evaporation, (2) a thorough analysis of forest interception, and (3) wide utilization of mi-
crowave recordings, which offer an advantage in cloudy conditions [75]. Remote–sensing
systems have a unique capacity to analyze crop water stress. The systems that use spectral
bands provide efficient, accurate, and optimum evapotranspiration for the estimation of
crop water stress. Gerhards et al. [76] revealed that, upon providing complete irrigation
to crops, crop water stress in crop production was guaranteed at the crop maturity stage.
With the proper availability of soil moisture, crop water stress was 0.2. This showed the
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benefits of crop water stress detection, whereby the greater the crop water stress, the lower
the crop yield.
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4. Sun–Induced Chlorophyll Fluorescence and Crop Water Stress

Studies show that remote–sensing systems provide a precise analysis of deep machine
learning [2,77,78], which comes from the target object and evaluates photosynthetic, biotic,
abiotic, and nutrient processes using both passive and active methods to monitor crop
water stress [79]. The passive analysis is linked with chlorophyll fluorescence emissions
and is considered a good indicator of the photosynthetic potential. Passive methods are
used to measure the sun–induced chlorophyll fluorescence (SIF) that is produced from the
vegetation source in the form of a photosynthetic light reaction after sunlight is absorbed by
the leaf. This provides a direct assessment of the photosynthetic process [80] and spectral
resolution data [81]. They are based on the total emitted fluorescence values, but the values
acquired by SIF are lower in field conditions. SIF ranges from 1.0 to 3.5% of the shortwave
energy gained from solar radiation and is determined in a specific spectral wavelength
with a shorter amount of solar irradiation values [82].

Different methods have been used to determine SIF. One important method is the
Fraunhofer line depth (FLD), which is based on specific bands of solar radiation absorbed
by the source plant [83], based on the canopy and ecosystem level. Spaceborne systems
perform global SIF procedures and store the acquired data in a safe database. These systems
were initially developed to measure atmospheric procedures; however, researchers have
since developed specific algorithms that now measure the SIF.

The sensor of the system ranges from a tropospheric monitoring instrument (TROPOMI),
an orbiting carbon observatory (OCO), Global Ozone Monitoring Experiment 2 (GOME–2)
instruments, and a scanning imaging absorption spectrometer for atmospheric cartography
(SCIAMACHY) [84]. The TROPOMI/GOME–2 fluorescence retrievals illustrate a similar
spatial structure as compared with those from a simpler method applied to the Greenhouse
gases Observing Satellite (GOSAT). The system provides a global analysis of far–red
fluorescence with a higher resolution at smaller spatial and temporal scales. Near–global
coverage is delivered within a few days. Studies have shown the physically plausible
variations in chlorophyll over the time period of a single month at a spatial resolution
of 0.5◦ × 0.5◦. Results provided significant differences between chlorophyll fluorescence
and NDVI retrievals [85]. Further investigations about SIF are being carried out by the
European Space Agency, which developed a mission known as the fluorescence explorer
(FLEX) for 2023. The FLEX mission is expected to provide high–resolution spectrometric
data for global SIF mapping and the rapid determination of visible, red, and near–infrared
reflectance [86].

SIF is estimated by using slight absorption lines received from the solar irradiance
range (Fraunhofer lines) between 650 and 800 nm, and Earth’s atmosphere absorption lines
are also utilized [83]. The classical method to retrieve SIF is the sub–nanometer spectral
resolution between 760.5 and 687.5 nm [87].

Studies reported that SIF is an efficient optical indication of leaf and crop water
stress [88] and have validated the use of SIF in evaluating leaf stress; however, the potential
for utilizing this relationship is still not fully understood for the canopy level [89,90]. Be-
cause of this, studies related to SIF in red (FR) and far red (FFR) bands are potentially useful
for tracking crop water stress [91]. A comprehensive analysis of the SIF temporal variable
is required to understand stress levels. SIF and the photosynthetic relationship need to be
further analyzed to assess their application in determining crop water stress [92–96].

5. Optical Sensing Systems and Crop Water Stress

Wheat yield is affected by the grain number per grain filling, which is considered a
dominant factor compared to senescence [97]. However, research using optical sensing
systems revealed a positive correlation between yield and delayed senescence under
crop water stress [98]. An optical sensing system records green phenotypic status as a
determinant of crop water stress and analyzes premature senescence [99]. Senescence is
therefore a vital standard in observing crop vegetation using optical sensing systems when
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considering regions with high weather variation, with more frequent and severe droughts
and high temperatures.

Optical sensing systems provide optimized senescence dynamics that intensify field
tests for various reasons: (i) Senescence in itself is identified and can be indicative of
environmental variations as an underlying cause [100], which ultimately results in low to
moderate heritability in stress conditions [101]; (ii) senescence impacts yield parameters
and protein content and can be caused by crop water stress [102]. The sensitivity of an
optical sensing system can determine stress conditions affecting yield parameters and
green factors. Optical sensing systems can be used to determine the nature of crop water
stress, which is a relevant problem; in fact, various stress factors impose similar effects on
crops. Crop water stress alters the senescence effects on crops, which leads to the removal
or reduction of specific senescence properties [103].

An analysis of efficient senescence provides precise crop water stress using the optical
sensor system, which has positive effects on the harvest index [104], yield protein, and
nitrogen use efficiency [105]. Yield protein is a standard factor in vegetation production,
which is affected by the dilution quantity under the condition of increased C–compound
synthesis [106]. Thus, for exploiting differences in senescence for the determination of crop
water stress using optical sensor systems, concrete knowledge of the vegetation genetics,
environments, and physiological factors of senescence and their correlations under crop
water stress conditions need to be investigated.

An optical sensing system can be used for the detection of various crop stress–
resistance mechanisms [97]. Vegetation crops have benefited from such mechanisms in
avoiding crop water stress. One such mechanism is stomatal conductance (opening and
closure), which can be monitored. This system shows that conductance decreases after a
systemic response commanded by root system signals under a particular stress condition.
This process leads to the closure of the stomata [107]. During crop water stress, stomatal
conductance in the optical sensor system appears to be closed as leaves experience water
stress, particularly when the leaf water potential decreases below a certain threshold [108].

6. Thermometric Sensing Systems and Crop Water Stress

Remote–sensing systems (e.g., thermometric infrared and microwave) are used for
a higher output of data in crop water stress assessment. This technology is involved
in determining the energy reflected from source crops, whereby their temperature is
analyzed, and crop water stress, evapotranspiration, and irrigation water requirements are
evaluated [109]. The system analyzes energy emitted from the target crop and evaluates
the actual soil moisture and crop water availability [110]. It assesses the crop water stress
of large areas due to their potential to gather large datasets and is considered more efficient
than other remote–sensing systems.

Thermal infrared systems are widely utilized for their efficient ability to detect crop
water stress. Thermal infrared systems compare the temperatures of all target objects and
provide a mean average value for the leaf temperature and foliage areas.

A thermal infrared imaging system is composed of cooled and uncooled cameras.
Cooled infrared cameras determine slight temperature variations from highly sensitive
data and can be used at limited spatial scales [111–113]. Uncooled infrared cameras are
comparatively lighter and can be reliably utilized for a vast variety of experiments at an
affordable price. They are used on the ground and in UAV systems.

These systems monitor crop water stress and assess crop water levels. Uncooled
cameras, such as HSI3000 (Palmer Wahl Instruments Inc., Asheville, NC, USA), are utilized
to acquire infrared thermal and microwave images from the crop and canopy source. The
range of the camera is 8–14 microns. The camera is based on an imaging system known as
the focal plane array (FPA) detector, which provides a high resolution of 160 × 120 pixels
using a single sensor camera. This sensor provides an instantaneous field of view (IFOV)
option of 1.3 mrad and a field of view (FOV) option of 20◦ × 15◦. This feature of the sensor
allows for a spatial range of 0.4 mm × 0.4 mm from a reduced range of 0.3 m. The sensor
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perfectly detects objects with temperatures ranging from 23 to 25 ◦C, a thermal conductance
sensitivity of 0.15 ◦C, and a temperature precision from 2 to −2 ◦C [114–122].

Studies on the successful utilization of thermal and microwave sensors have been
conducted. Cohen et al. [123] developed a thermal sensing system for crop stress analysis.
The system mapped leaf water potential under different irrigation intervals while providing
promising results that were later validated by others. There are many studies considered as
alternative methods for determining crop water stress using the thermal infrared imaging
system for spatial variability analysis. Fuchs [124] developed leaf temperature variation
analysis by using the theoretical method of the crop energy balance and reported that
stress is directly linked to the crop. Jones et al. [125,126] conducted experiments using the
thermal and microwave method to determine a more accurate approach for crop water
stress under full and uniform cover.

Previous studies on thermal imagery analysis for crop water stress estimation pro-
vided an average and inaccurate measured temperature for wheat and maize crops. Many
limitations such as the cells of dead leaves, the trunk, or soil might be comprised in sam-
pling, which can lead to non–realistic data or major errors in the results [127]. Technological
advancements have resulted in state–of–the–art systems for determining precise crop water
stress using thermal imagery systems with suitable spatial analysis of the soil surface.
Thermal sensors integrated with near–infrared (NIR) and visible sensors exclude the non–
leaf products from all samples and determine the canopy temperature with the option of
choosing various parts of the leaf and canopy for crop water stress analysis [128].

Studies found that, despite the latest developments in the infrared thermal system, the
hardware and software still need to be significantly improved using advanced knowledge
to analyze leaf and canopy temperatures and crop water stress with precise soil–based
measurements. Data on these factors need to be developed in order to interpret crop
water stress estimation in a more accurate way [129]. A thermal infrared system is used to
determine vegetation water content. The system analyzes imagery data and estimates crop
water capacity and water stress [130,131]. This analysis is of significant importance and
can be used to make better decisions in a more timely manner.

7. Land Surface Temperature Sensing Systems and Crop Water Stress

Land surface temperature (LST) is the main factor in modern agriculture that is used
to analyze crop water stress using remote–sensing systems [132]. Many studies have
been performed to validate the LST system for irrigation mapping [133], crop observation,
evapotranspiration, and crop water stress monitoring [134].

Nugraha et al. [135] tested a multi–scale imagery system for conducting a crop water
stress analysis. The study showed that the identified crop water stress using the LST
method provided a linear trend with the other available data. The LST accuracy was
recorded as 1 ◦C. Another study showed that the water deficit index (WDI) based on
imagery sensing data could precisely determine crop water stress. The acquired imagery
data provided an indicator to analyze the normalized green–red difference index (NGRDI),
while the WDI recorded a spatial resolution value of 0.25 m [136].

In the LST method, the system uses two types of pixels for evaluating crop water
stress: Cold and hot. The cold pixel system is able to acquire data from the crop with no
crop water stress, while the hot pixel system acquires data from the water–stressed crop.
Evapotranspiration processes were recorded with the help of the surface energy balance
using remote sensing of hot and cold pixels [134]. The study provided recommendations
for the use of the cold pixel system and suggested that, with minute changes in the hot
pixel system, significant results can be achieved. For regions (particularly arid regions)
with high crop water stress, the hot pixel system is utilized to determine precise crop water
stress content [137].

The hot pixel system is in significant demand for evaluating LST (◦C), as it is directly
linked to crop water stress. Accurate LST determination depends on the precise measure-
ment of soil surface emissivity, which is considered a dynamic function due to abrupt
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variations in land cover, plant growth, and other stress conditions. The inclusion of a soil
emissivity analysis results in a considerable overestimation of LST. However, if emission is
overestimated, the determination based on LST will be inaccurate.

Dhungel et al. [138] argued that when evaluating crop water stress, LST plays a
significant role in providing the required parameters, such as evapotranspiration and
water and surface energy balances. The data for the required parameters are acquired
from the source target using the thermal infrared satellite system. This technical process
includes multiple functions for atmospheric corrections, radiometric analysis, emissivity
management, and cloud removal, which are complex methods and require several other
parameters to be involved.

A study conducted by Heinemann et al. [139] for retrieving LST, including climatolog-
ical emissions and atmospheric management, revealed a value of 0.157 (standard deviation,
SD = 0.227), while the full vegetation revealed a value of 0.905 (SD = 0.111) by means of
four rape plots (healthy varieties). LST values showed a maximum deviation (dLST) of
1.0 K for varieties and bare soil surfaces. An accurate environmental temperature is widely
adapted to measure crop water stress [140]. Malbéteau et al. [141] found an LST mean of
0.99, while the root mean square error (RMSE) was 0.68 ◦C, acquired using the UAV system
for crop water stress assessment. The grass surface showed an RMSE value of 0.45 ◦C.
Torres–Rua et al. [142] analyzed spectral functions to obtain thermal emissivity patterns.
That study suggested that certain characteristics, such as emissivity values ranging from
0.99 to 0.96, can be used to accurately estimate crop water stress.

8. Multispectral Sensing Systems and Crop Water Stress

Figure 5 shows the A–type optical multispectral sensing system, which is composed
of a prism, sensor, crating, and lens. The camera system captures the external light striking
at the prism, which breaks the light into its minor proportions. Ultimately, the sensor
creates multispectral imagery data. Meanwhile, the C–type filter is composed of multiple
spectral filters. The filter acquires crop imagery data, in the minimum processing time,
to provide multi–layer imagery information. Multispectral UAV remote–sensing systems
are equipped with high–resolution pixel cameras that precisely analyze crop water stress.
They are available at lower costs, which makes them more accessible, cheap, and effective
trackers of crop water stress. The camera system simultaneously displays three color bands,
red, green, and blue, with natural color imagery. The AIRPHEN multispectral camera
provides reliable crop water stress results using a lens with an 8 mm focal length; the
lens acquires images of 1280 × 960 pixels, which can be saved in various formats. The
AIRPHEN camera system is constructed with six other separate camera systems that have
a filter corresponding to 450, 530, 560, 675, 730, and 850 nm wavelengths and provides
a spectral resolution of 10 nm in different conditions. The combination intervals of the
separate cameras are adjusted intelligently such that the dynamics and saturation are
maximized. The camera system acquires imagery data on a continuous basis at a 1 Hz
frequency wavelength [143].

Various studies, e.g., by Gago et al. [45], have reported a detailed analysis on drought
and moisture values for crop water stress assessment. This information is acquired by
remote sensors to obtain electromagnetic–range reflectance data. It is feasible that the
light spectra of crops are variable and change with each crop type, tissue water levels,
and intrinsic parameters. A previous study used the backscattering (dB) C–band data
extracted from the multispectral system. For Sentinel–1, Landsat–8, and combination
methods, significant results related to RMSE were recorded, such as 0.89, 0.24, and 0.31 (mm
day–1), respectively [144]. The crop reflectance at a particular electromagnetic wavelength
is analyzed according to the morphological and chemical features of the source surface.
Crop water stress analysis is performed on the given wavelength spectra: (i) Ultraviolet
wavelength (UV) spectra ranging from 10 to 380 nm; (ii) visible wavelength spectra in the
blue range (450–495 nm), the green range (495−570 nm), and the red range (620–750 nm);
and (iii) near–infrared wavelength spectra (850–1700 nm) [145].
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8.1. Spaceborne Multispectral Sensing Systems

In 1967, the medium–resolution spaceborne system acquired wide multispectral im-
agery data to study crop water stress. The Landsat program is considered to be an initial
source of multispectral data analysis for crop water stress [146,147]. Secondly, the French
mid–resolution high–quality multispectral system provides crop water stress assessment
on a regular basis. The imagery dataset is commercially available but is considerably
more expensive than Landsat, while the stereo groups are assembled with special tools.
Okujeni et al. [148] report advanced spaceborne imaging spectroscopy that delivers more
discriminate analysis by comparing contemporary imagery datasets. Separating the spec-
tral temporal metrics (STMs) data of the acquired Landsat imagery provides the benefit
of complete crop water stress temporal information [149]. Thirdly, the GeoEye system
(OrbView and IKONOS) and digital globe system (WorldView and QuickBird) acquire
multispectral high–resolution data for the determination of crop water stress. The dataset
of this system is commercially available with specified parameters and at a cheaper price.
Ibrahim et al. [150] tested the multispectral sensor, which includes the spatial and spectral
resampling of crop water stress that belongs to the spaceborne multispectral system. The
study analyzed resampled crop water stress imagery and showed that the spaceborne
multispectral sensor has the capacity for sediment classification. A study assessed the
interoperability of the SPOT–5 Take–5 data for crop parameter (basal crop coefficient (Kcb)
values and the length of the crop’s development stages) retrieval and crop type classifica-
tion, with a focus on crop water requirements. A high R2 correlation between NDVI and
backscatter analysis was recorded for crops, showing that optical data can be replaced by
microwave data in the availability of cloud cover. However, proper identification of each
stage of the crop cycle was missing due to the lack of earth–observation data [151].

8.2. Airborne Multispectral Sensing Systems

A computerized aerial camera system was initially developed to improve the potential
of the film camera system. The airborne multispectral system provides commercially
available large– and medium–scale analysis that is based on color–infrared, natural color,
and panchromatic imagery for the determination of crop water stress. This is currently
considered the most reliable multispectral remote–sensing equipment [152]. Studies show
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that novel airborne multispectral systems that were initiated have become operational for
crop water stress assessments, including the Optech Titan mission, which provided data
for wavelengths from 532 to 1550 nm. The other airborne multispectral system, known
as Riegl VQ–1560i–DW, provides data for the wavelength range 532–1064 nm. The color
band differentiates the magnitude of absorbed light. These differences are analyzed on
the basis of land cover characteristics [153]. The Optech Titan system analysis presents
crop water stress using spectral [154], texture [155], and geometrical parameters [156]. The
airborne multispectral analysis provides high–accuracy characterization of the dominant
source class [157]. Studies validating the application of the Optech Titan system for crop
water stress characterization based on intensity and structural parameters have provided
significant results [158].

9. Hyperspectral Sensing Systems and Crop Water Stress

Figure 6 shows the process of data acquisition by first observing the target with the
help of a hyperspectral camera and then delivering a large amount of data to a user. The
hyperspectral camera system is based on the continuous acquisition of spectral analysis.
The system provides a correlation between crop health and spectral characteristics [159].
Its objective is to detect crop reactions under environmental conditions and provide an
estimation of crop water stress in an easy and reliable way. The wavelength band of
the hyperspectral remote–sensing approach ranges from 8 to 14 µm [160]. Atmospheric
correction, emissivity, and temperature separation methods need to be applied for hyper-
spectral crop water stress determination [161]. For atmospheric correction, the spectral
radiance analysis, performed by the system, is composed of the source radiance emission
and emission radiated by the surroundings that are reflected from the surface of the source.
Further impacts on the system are created by scattering radiation, absorption, and emission.
Studies have ignored many parameters from the empirical forms of measurement, but it
was later found via the MIDAC FTIR spectrometer system that these data and results are
comprised of ineffective variables that impacted the results [162]. This was later updated
with the required parameters. For emissivity and temperature separation, the data and in-
formation need to be known. The determined spectral radiance in the emissivity separation
is the parameter of the spectral emissive and acquired environmental temperature of the
source target. Therefore, it needs to be considered that radiance is evaluated in the n–band
wavelength, which is correlated with both the soil temperature and emissivity parameters,
which need to be known to analyze the surface temperatures using the hyperspectral
remote–sensing system for crop water stress analysis [163].

Hyperspectral remote sensing for crop water stress has, so far, been rarely studied due
to the lack of attention from researchers, which occurred for various reasons. Ribeiro da
Luz et al. [164] reports that crop plants provide non–suitable spectral parameters when
acquired by the hyperspectral system because of the following: (i) The high cost of the
hyperspectral systems, which makes them inaccessible to many, (ii) the low and minor
spectral emissivity acquired by the system related to crop water stress, which provides non–
significant data, and (iii) there is less chance of detecting minor crop changes such as growth
and development. Studies show that the particular spectral characteristics are relevant to
different crop types [165–167]. Tests on defining the correlation between biochemical stress
effects and leaf structural characteristics are reported by Buitrago et al. [168] and Buitrago
Acevedo et al. [169].

Further studies are required to develop and upgrade the hyperspectral remote–sensing
applications. The traditional system is unable to provide effective and precise data with
the current package of system applications. Our study proposes that there is a serious
need to develop mathematical algorithms that are flexible, reliable, and cheap and that
yield effective results in all environments. The system also lacks satellite mission de-
signs, including a Landsat surface temperature monitor (LSTM) [170–173], a hyperspectral
infrared image (HyspIRI) [174–179], and a high–resolution temperature and spectral emis-
sion mapper (HiTeSEM) [180–184], which are able to acquire crop water stress on a global
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scale [185–189]. A previous study proposed three new spectral absorption indices, the re-
sults of which estimated a suitable correlation for the equivalent water thickness compared
to the fuel moisture content; however, the third index outperformed other indices at the
leaf level [190].
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10. LiDAR Sensing System and Crop Water Stress

Light detection and ranging (LiDAR) can be understood to be a dynamic remote–
sensing system that delivers accurate 3D data by analyzing the flight time of the released
laser light from the sensor to the source. The directed short–band laser light efficiently
infiltrates the crop canopy and is less affected by the infiltrated light [191]. Because of this,
it possesses a great capacity for field–based crop water stress estimation [192]. The LiDAR
system is an emerging system for the analysis of field crop water stress. Currently, research
is being conducted on advancing algorithms to intelligently extract crop water stress from
LiDAR information. For example, Jin et al. [193] recommended techniques that combine
algorithms with geometric regulations to precisely deliver crop water stress and their
relationship with crop parameters using LiDAR analysis. The LiDAR system was tested to
measure leaf water stress in different crops, which revealed a strong relationship between
leaf water stress and the number of points acquired using LiDAR [194]. These research
experiments concretely validated that the LiDAR system is perfect for analyzing crop water
stress in a non–destructive way. New methods of analyzing phenotypic characteristics
for crop water stress using the LiDAR system are in progress [195]. LiDAR, used in
an integrative method with other sensing systems, delivers new insights on crop water
stress that can be established by the spectral reflective method and the required crop
characteristics. Likewise, the LiDAR system estimates aboveground biomass and canopy
as part of a crop water stress platform, offering analysis of the high correlation of volume
and aboveground biomass and providing vertical measurements of crop biochemical
characteristics using the HIS LiDAR technique [196].

Roth et al. [197] studied the heat maps (plot a) of the leaf area index (LAI) (m2 m−2)
and mean leaf angle (◦) (plot b). The cumulative distribution function (cdf) for the leaf
angle distribution (LAD) (◦) was also estimated using a cumulative sum at the normalized
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histogram data (plot c). The study determined the cdf for each of the corresponding pixels
during the tests. The planophile and spherical distributions are analyzed as a comparison
to the disseminations that were utilized for the 10 m vegetation cover.

The estimation of the LiDAR system to crop water stress is less developed, while
allowing the depths and types of data delivered by the LiDAR system in a short period
of time at a lower cost, specifically in relation to crop water stress [198]. This study
evidenced the inherent faults in the procedure, vulnerability, and inefficiency in acquiring
physiological traits and incomplete crop water stress representation. The aforementioned
factors suggest that, in crop water stress, the LiDAR system will need to be linked with
another system to address the above–stated drawbacks. However, further studies are
required to conduct the exploration of crop responses to crop water stress using LiDAR
systems. The reliability of LiDAR in analyzing crop water stress and how crops respond to
water stress conditions still need to be explored.

11. Future Directions

Remote–sensing systems can clearly be applied in target water stress identification.
Other than applications such as crop growth assessment, irrigation, and crop losses, digital
image techniques are performed for leaf and canopy phenotypic classification to detect crop
water stress with the help of digital imagery data. The latest approaches to remote sensing
for digital imagery used for crop water stress estimation have delivered significant results.
The research mostly showed crop water stress at three stages: No water stress (optimum
moisture), medium water stress (light drought stress), and high water stress (drought
stress). These techniques delivered promising results for the estimation of crop water stress,
with precision from 83–99% [199–201]. Visible imagery techniques of crop canopies and
leaves show a diverse set of phenotypes under water–stressed conditions. Analyzing crop
water stress variation is difficult and costly with manual and test–site sensors because
(i) data acquisition with manual sensors is laborious and (ii) the price of sensors is high.
Efficient ground–based sensors and UAV systems are becoming important to advance
image collection. Different symptoms are important to immediately estimate crop water
stress, which cannot be estimated by only using a visible image system, yet spectral bands
(infrared, thermal, and multispectral) have not been fully exploited. Considering this, these
methods could be performed in an integrative fashion for estimating crop water stress in
drought conditions. The SMAP technique (L–band) is highly effective for determining soil
moisture, as it gives flexible parameters that are utilized in cold as well as hot regions,
and it is used by NASA and ISRA. Moreover, the FLEX system is highly compatible and
will be used by ISRA to analyze SIF and reflectance for its 2023 missions, followed by
SEBAL for leaf and canopy thermal imagery (Table 2). Findings from studies related to the
detection of crop water stress using remote–sensing systems will further upgrade the scope
of remote–sensing technology, management, and techniques and open up new perspectives
for research on crop water stress management.

Machine learning is important for improving system efficiency and quality. For exam-
ple, a microcontroller–based signal processor (MSP430) supports soil and environmental
sensors for the proper assessment of crop water stress. A standalone wireless sensor sys-
tem, composed of a gateway and wireless sensory nodes, is a reliable source for analyzing
crop water and soil moisture stress factors as presented in Table 2. Machine–learning–
based artificial neural networks (ANNs) forecast an accurate level of crop water stress.
An ANN obtains the data using a wireless sensory network supported by infrared ther-
mometers (IRTs) that are attached to calculate the irrigation levels. Ultimately, the system
acquires data from the crop, soil, and environmental factors, transmits it to a computerized
irrigation–controlled algorithm, and provides crop, soil, and environmental stress analysis.
Another machine–learning system, the ARS–pivot (ARSP) system, simplifies the ANN
analysis and reliably predicts the potential crop water stress by analyzing previous data
related to IRTs. ANN–based machine–learning systems show promise for the efficient
forecast analysis of crop water stress [202]. Thus, the development of ANN and ARS
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systems can potentially provide beneficial aspects in forecasting crop water stress. This can
also help in generating future data, even in particular conditions where the direct analysis
of crop water stress is not possible due to bad visibility, non–availability, or high cost of
the system.

Table 2. Summarizing a few remote–sensing systems and presenting relevant parameters.

Remote
Sensing Sys-
tem/Features

Advantages Disadvantages Temporal
Resolution

Spatial
Resolution References

Thermal
Sensor

High accuracy
and precision;
Automatic
selection of the
canopy

Limited
commercial
production

1–16 days 30 m–1 km [203]

Optical
Sensor

Multiple light
sources are
captured in a
single image;
Cost effective;
Wide adoption

Limited data
transmission 12 days 10–30 m [204]

Soil Moisture
Sensor

Large field
coverage Expensive 2–3 days 20–40 km [205]

12. Conclusions

Remote–sensing technology is booming and undergoing continuous development
regarding its reliability, remote functions, and efficiency. Crop water stress assessment
is a technical and very complex procedure in itself and conducting these processes with-
out remote–sensing technology is difficult. Complete field sensing using remote–sensing
systems is highly appealing. Our critical review presents a modern and updated analysis
of the suitability of highly advanced and modern remote–sensing systems. Our study
recommends novel techniques that integrate farmers, researchers, and tech–developers so
as to upgrade innovative methods with minimum cost, e.g., multispectral/hyperspectral
and thermal sensing systems based on remote–sensing features. This review proposes
remote–sensing systems and paves the way to designing new facilities that analyze a sys-
tem’s efficiencies under various environmental conditions. It demonstrates their working
abilities and thus contributes to assessments of crop water stress. It further demonstrates
how these technologies work together in a combined and connected setup to maximize sys-
tem efficiency and minimize water deficit conditions. We have updated the literature and
conducted a critical analysis in relation to simple methods for determining crop water stress
factors, including crop water stress detection calculations. Due to a large number of studies
on crop water stress and remote–sensing applications, there is a high number of established
techniques and frameworks that are accurate, reproducible, and applicable under a wide
variety of climatic, soil, and crop conditions. Future upgrades that further maximize water
use efficiency and high yield production will be needed to avoid challenging conditions in
the long run.

13. Patents

The graphical abstract (Figure 1) exclusively presents a new concept related to remote–
sensing technology, which shows how crop water stress is detected and forecasted using
crop statistics and computer software.

The concept (Figure 2) presents two different crop conditions during the crop water
stress using a graphical presentation: a) normal stomatal conductance with no stress and b)
a comparison of irrigation water resources and micro–environmental conditions near the
plant source.
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Figure 3 shows remote-sensing estimation of the crop water stress using leaf transpi-
ration, temperature, cooling, and heating effects, and a comparison with the air and soil
moisture for the potential crop water stress estimation.

Figure 5 shows the A- and C-type optical multispectral camera system and how it
assesses crop water stress using different approaches.

Figure 6, as a graphical method, presents the remote-sensing hyperspectral camera
system to estimate crop water stress in normal and water-stressed conditions, and shows
how to address the water stress conditions.

Author Contributions: Conceptualization, U.A. and S.M.; methodology, U.A. and S.M.; software,
U.A.; validation, U.A. and S.M.; formal analysis, U.A.; investigation, U.A. and S.M.; resources, U.A.
and S.M.; data curation, U.A.; writing—original draft preparation, U.A. and S.M.; writing—review
and editing, U.A. and S.M.; visualization, U.A. and S.M.; supervision, A.A. and S.M. All authors
have read and agreed to the published version of the manuscript.

Funding: There was no funding received for the study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. Water for Sustainable Food and Agriculture A report Produced for the G20 Presidency of Germany; Food and Agriculture

Organization of the United Nations: Rome, Italy, 2017; pp. 1–27. Available online: http://www.fao.org/3/i7959e/i7959e.pdf
(accessed on 3 June 2021).

2. Chang, Y.N.; Zhu, C.; Jiang, J.; Zhang, H.; Zhu, J.K.; Duan, C.G. Epigenetic regulation in plant abiotic stress responses. J. Integr.
Plant Biol. 2020, 62, 563–580. [CrossRef] [PubMed]

3. Goldstein, A.; Fink, L.; Meitin, A.; Bohadana, S.; Lutenberg, O.; Ravid, G. Applying machine learning on sensor data for irrigation
recommendations: Revealing the agronomist’s tacit knowledge. Precis. Agric. 2017, 19, 421–444. [CrossRef]

4. Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative Remote Sensing at Ultra-High Resolution with UAV
Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018,
10, 1091. [CrossRef]

5. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric.
2020, 7, 1–19. [CrossRef]

6. Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and
Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [CrossRef]

7. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020,
12, 3136. [CrossRef]

8. Long, D.S.; Engel, R.E.; Siemens, M.C. Measuring Grain Protein Concentration with In-line Near Infrared Reflectance Spectroscopy.
Agron. J. 2008, 100, 247. [CrossRef]

9. Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery
in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019.
[CrossRef]

10. Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental
variability. Agric. Meteorol. 1981, 24, 45–55. [CrossRef]

11. Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Evaluation of the Crop Water Stress Index as an Indicator for the Diagnosis of
Grapevine Water Deficiency in Greenhouses. Horticulturae 2020, 6, 86. [CrossRef]

12. Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981,
17, 1133–1138. [CrossRef]

13. Khorsand, A.; Rezaverdinejad, V.; Asgarzadeh, H.; Majnooni-Heris, A.; Rahimi, A.; Besharat, S.; Sadraddini, A.A. Linking plant
and soil indices for water stress management in black gram. Sci. Rep. 2021, 11, 869. [CrossRef] [PubMed]

14. Inoue, Y.; Morinaga, S.; Shibayama, M. Non-destructive Estimation of Water Status of Intact Crop Leaves Based on Spectral
Reflectance Measurements. Jpn. J. Crop Sci. 1993, 62, 462–469. [CrossRef]

15. Sridhar, B.B.M.; Vincent, R.K.; Roberts, S.J.; Czajkowski, K. Remote sensing of soybean stress as an indicator of chemical
concentration of biosolid amended surface soils. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 676–681. [CrossRef]

16. Yi, Q.-xiang; Bao, A.-ming; Wang, Q.; Zhao, J. Estimation of leaf water content in cotton by means of hyperspectral indices.
Comput. Electron. Agric. 2013, 90, 144–151. [CrossRef]

http://www.fao.org/3/i7959e/i7959e.pdf
http://doi.org/10.1111/jipb.12901
http://www.ncbi.nlm.nih.gov/pubmed/31872527
http://doi.org/10.1007/s11119-017-9527-4
http://doi.org/10.3390/rs10071091
http://doi.org/10.1016/j.inpa.2019.09.006
http://doi.org/10.3390/rs71215841
http://doi.org/10.3390/rs12193136
http://doi.org/10.2134/agronj2007.0052
http://doi.org/10.1016/j.compag.2021.106019
http://doi.org/10.1016/0002-1571(81)90032-7
http://doi.org/10.3390/horticulturae6040086
http://doi.org/10.1029/WR017i004p01133
http://doi.org/10.1038/s41598-020-79516-3
http://www.ncbi.nlm.nih.gov/pubmed/33441705
http://doi.org/10.1626/jcs.62.462
http://doi.org/10.1016/j.jag.2011.04.005
http://doi.org/10.1016/j.compag.2012.09.011


Remote Sens. 2021, 13, 4155 19 of 26

17. Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239. [CrossRef]
18. Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status.

Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]
19. Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in

nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [CrossRef]
20. Stimson, H.C.; Breshears, D.D.; Ustin, S.L.; Kefauver, S.C. Spectral sensing of foliar water conditions in two co-occurring conifer

species: Pinus edulis and Juniperus monosperma. Remote Sens. Environ. 2005, 96, 108–118. [CrossRef]
21. Zhang, L.; Zhou, Z.; Zhang, G.; Meng, Y.; Chen, B.; Wang, Y. Monitoring the leaf water content and specific leaf weight of cotton

(Gossypium hirsutum L.) in saline soil using leaf spectral reflectance. Eur. J. Agron. 2012, 41, 103–117. [CrossRef]
22. Yi, Q.; Wang, F.; Bao, A.; Jiapaer, G. Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative

transfer models. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 67–75. [CrossRef]
23. Cohen, W.B. Temporal versus spatial variation in leaf reflectance under changing water stress conditions. Int. J. Remote Sens. 1991,

12, 1865–1876. [CrossRef]
24. Mirzaie, M.; Darvishzadeh, R.; Shakiba, A.; Matkan, A.A.; Atzberger, C.; Skidmore, A. Comparative analysis of different uni- and

multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs.
Geoinf. 2014, 26, 1–11. [CrossRef]

25. Holzman, M.E.; Rivas, R.E.; Bayala, M.I. Relationship between TIR and NIR-SWIR as Indicator of Vegetation Water Availability.
Remote Sens. 2021, 13, 3371. [CrossRef]

26. Qi, Y.; Dennison, P.E.; Jolly, W.M.; Kropp, R.C.; Brewer, S.C. Spectroscopic analysis of seasonal changes in live fuel moisture
content and leaf dry mass. Remote Sens. Environ. 2014, 150, 198–206. [CrossRef]

27. Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-spectral resolution data for determining leaf water content. Int. J.
Remote Sens. 1992, 13, 461–470. [CrossRef]

28. Podder, A.K.; Bukhari, A.A.; Islam, S.; Mia, S.; Mohammed, M.A.; Kumar, N.M.; Cengiz, K.; Abdulkareem, K.H. IoT based smart
agrotech system for verification of Urban farming parameters. Microprocess. Microsyst. 2021, 82, 104025. [CrossRef]

29. de Jong, S.M.; Addink, E.A.; Doelman, J.C. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry.
Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 128–136. [CrossRef]

30. Bowyer, P.; Danson, F.M. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level.
Remote Sens. Environ. 2004, 92, 297–308. [CrossRef]

31. Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in
the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [CrossRef]

32. Wang, J.; Xu, R.; Yang, S. Estimation of plant water content by spectral absorption features centered at 1450 nm and 1940 nm
regions. Environ. Monit. Assess. 2008, 157, 459–469. [CrossRef] [PubMed]

33. Zhang, J.H.; Xu, Y.; Yao, F.M.; Wang, P.J.; Guo, W.J.; Li, L.; Yang, L.M. Advances in estimation methods of vegetation water content
based on optical remote sensing techniques. Sci. China Technol. Sci. 2010, 53, 1159–1167. [CrossRef]

34. Reginato, R.J. Field quantification of crop water stress. Trans. Am. Soc. Agric. Eng. 1983, 26, 0772–0775. [CrossRef]
35. Idso, S.B. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agric. Meteorol. 1982, 27, 59–70.

[CrossRef]
36. Jackson, R.D.; Reginto, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water

Resour. Res. 1977, 13, 51–656. [CrossRef]
37. Nanda, M.K.; Giri, U.; Bera, N. Canopy Temperature-Based Water Stress Indices: Potential and Limitations. In Advances in Crop

Environment Interaction; Bal, S., Mukherjee, J., Choudhury, B., Dhawan, A., Eds.; Springer: Singapore, 2018. [CrossRef]
38. Tanner, C.B. Plant Temperatures 1. Agron. J. 1963, 55, 210–211. [CrossRef]
39. Monteith, J.L.; Szeicz, G. Radiative temperature in the heat balance of natural surfaces. R. Meteorol. Soc. 1962, 88, 496–507.

[CrossRef]
40. Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in

agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [CrossRef]
41. Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified evaluation of cotton water stress using high

resolution unmanned aerial vehicle thermal imagery. Remote Sens. 2019, 11, 267. [CrossRef]
42. Pou, A.; Diago, M.P.; Medrano, H.; Baluja, J.; Tardaguila, J. Validation of thermal indices for water status identification in

grapevine. Agric. Water Manag. 2014, 134, 60–72. [CrossRef]
43. Crawford, K.E. Remote Sensing of Almond and Walnut Tree Canopy Temperatures Using an Inexpensive Infrared Sensor on A Small

Unmanned Aerial Vehicle; University of California Davis: Davis, CA, USA, 2012.
44. Sepúlveda-Reyes, D.; Ingram, B.; Bardeen, M.; Zúñiga, M.; Ortega-Farías, S.; Poblete-Echeverría, C. Selecting canopy zones and

thresholding approaches to assess grapevine water status by using aerial and ground-based thermal imaging. Remote Sens. 2016,
8, 822. [CrossRef]

45. Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess
water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [CrossRef]

46. Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; de Miguel, E.; Villalobos, F.J. Detection of water stress
in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 2006, 136, 31–44. [CrossRef]

http://doi.org/10.1002/j.1537-2197.1993.tb13796.x
http://doi.org/10.1080/01431169308954010
http://doi.org/10.1016/0034-4257(94)90136-8
http://doi.org/10.1016/j.rse.2004.12.007
http://doi.org/10.1016/j.eja.2012.04.003
http://doi.org/10.1016/j.jag.2014.04.019
http://doi.org/10.1080/01431169108955215
http://doi.org/10.1016/j.jag.2013.04.004
http://doi.org/10.3390/rs13173371
http://doi.org/10.1016/j.rse.2014.05.004
http://doi.org/10.1080/01431169208904049
http://doi.org/10.1016/j.micpro.2021.104025
http://doi.org/10.1016/j.jag.2013.09.011
http://doi.org/10.1016/j.rse.2004.05.020
http://doi.org/10.1016/S0034-4257(01)00191-2
http://doi.org/10.1007/s10661-008-0548-3
http://www.ncbi.nlm.nih.gov/pubmed/18853268
http://doi.org/10.1007/s11431-010-0131-3
http://doi.org/10.13031/2013.34021
http://doi.org/10.1016/0002-1571(82)90020-6
http://doi.org/10.1029/WR013i003p00651
http://doi.org/10.1007/978-981-13-1861-0_14
http://doi.org/10.2134/agronj1963.00021962005500020043x
http://doi.org/10.1002/qj.49708837811
http://doi.org/10.1093/jxb/ers165
http://doi.org/10.3390/rs11030267
http://doi.org/10.1016/j.agwat.2013.11.010
http://doi.org/10.3390/rs8100822
http://doi.org/10.1016/j.agwat.2015.01.020
http://doi.org/10.1016/j.agrformet.2006.01.008


Remote Sens. 2021, 13, 4155 20 of 26

47. Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Pérez-Ruiz, M. Assessing a crop water stress index derived
from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agric. Water Manag. 2017, 187,
210–221. [CrossRef]

48. Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16,
1–9. [CrossRef]

49. Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.; Allen, A.; Bindlish, R. SMAP Handbook–Soil Moisture Active Passive: Mapping Soil
Moisture and Freeze/Thaw from Space; Publ. JPL 2014, 400-1567; NASA, Jet Propulsion Lab: Pasadena, CA, USA, 2014. Available
online: https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1741023&context=L&vid=Lirias&search_scope=Lirias&
tab=default_tab&lang=en_US&fromSitemap=1 (accessed on 15 October 2021).

50. Gruber, A.; Su, C.H.; Zwieback, S.; Crowd, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation
analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [CrossRef]

51. Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images:
Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [CrossRef]

52. Hornacek, M.; Wagner, W.; Sabel, D.; Truong, H.L.; Snoeij, P.; Hahmann, T. Potential for high resolution systematic global surface
soil moisture retrieval via change detection using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311.
[CrossRef]

53. Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P. Tandem-L: A highly innovative bistatic
SAR mission for global observation of dynamic processes on the Earth’s surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23.
[CrossRef]

54. Bogena, H.R.; Huisman, J.A.; Güntner, A.; Hübner, C.; Kusche, J.; Jonard, F. Emerging methods for noninvasive sensing of soil
moisture dynamics from field to catchment scale: A review. Water 2015, 2, 635–647. [CrossRef]

55. Thibeault, M.; Cáceres, J.M.; Dadamia, D.; Soldano, A.G.; Quirno, M. Spatial and temporal analysis of the Monte Buey SAOCOM
and SMAP core site. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); IEEE: New York, NY, USA,
2015; pp. 969–971. [CrossRef]

56. Kaihotsu, I.; Asanuma, J.; Aida, K. Evaluation of the AMSR2 L2 soil moisture product of JAXA on the Mongolian Plateau over
seven years (2012–2018). SN Appl. Sci. 2019, 1, 1477. [CrossRef]

57. Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy.
Part 1: Satellite data analysis. Remote Sens. Environ. 2016, 173, 1–14. [CrossRef]

58. NISAR: The NASA-ISRO SAR Mission. Water: Vital for Life and Civilization. © 2019 California Institute of Technol-
ogy. Government Sponsorship Acknowledged. Available online: https://nisar.jpl.nasa.gov/system/documents/files/15
_NISARApplications_SoilMoisture1.pdf (accessed on 16 July 2021).

59. DLR. Tandem-L, Satellite Mission Proposal for Monitoring Dynamic Processes on the Earth’s Surface. Cologne, April 2016. Reprint-
ing or Other Use (Including Excerpts) Only Permitted after Prior Agreement with DLR. DLR.de/HR. Available online: https:
//www.dlr.de/content/en/downloads/publications/brochures/tandem-l-brochure_1663.pdf?__blob=publicationFile&v=11 (ac-
cessed on 16 July 2021).

60. Harm-Jan, F.B.; van der Velde, R.; Su, Z. Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields. J.
Hydrol. X 2020, 9, 100066. [CrossRef]

61. Abbaszadeh, P.; Moradkhani, H.; Gavahi, K.; Kumar, S.; Hain, C.; Zhan, X.; Duan, Q.; Peters-Lidard, C.; Karimiziarani, S.
High-Resolution SMAP Satellite Soil Moisture Product: Exploring the Opportunities. Bull. Am. Meteorol. Soc. 2021, 102, 4–309.
[CrossRef]

62. Allen, R.G.; Pereira, L.S.; Dirk, R.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO—Food
and Agriculture Organization of the United Nations: Rome, Italy, 1998. Available online: http://www.fao.org/3/x0490e/x049
0e00.htm (accessed on 16 July 2021).

63. Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water
2016, 3, 834–853. [CrossRef]

64. López-López, R.; Ramón, A.R.; Cohen, I.S.; Bustamante, W.O.; González-Lauck, V. Evapotranspiration and Crop Water Stress Index
in Mexican Husk Tomatoes (Physalis ixocarpa Brot). In Evapotranspiration—From Measurements to Agricultural and Environmental
Applications; Giacomo Gerosa, G., Ed.; Mexico. Project: Irrigation Scheduling and Programming; IntechOpen: London, UK, 2011;
p. 187.

65. Marino, S.; Ahmad, U.; Ferreira, M.I.; Alvino, A. Evaluation of the Effect of Irrigation on Biometric Growth, Physiological
Response, and Essential Oil of Mentha spicata (L.). Water 2019, 11, 2264. [CrossRef]

66. Alghory, A.; Yazar, A. Evaluation of crop water stress index and leaf water potential for deficit irrigation management of
sprinkler-irrigated wheat. Irrig. Sci. 2018, 37, 61–77. [CrossRef]

67. Sepaskhah, A.R.; Ilampour, S. Relationships between yield, crop water stress index (CWSI) and transpiration of cowpea (Vigna
sinensis L). Agronomie 1996, 16, 269–279. [CrossRef]

68. Finch, J. Remote Sensing in Water Resources Management. The State of the Art. By W. G. M. Bastiaanssen. Colombo, Sri Lanka:
International Water Management Institute pp. 118, US$25.00 (developing countries US$12.50). ISBN 92-9090-363-5. Exp. Agric.
2000, 36, 415–418. [CrossRef]

http://doi.org/10.1016/j.agwat.2017.03.030
http://doi.org/10.2136/vzj2016.10.0105
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1741023&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1741023&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1
http://doi.org/10.1016/j.jag.2015.09.002
http://doi.org/10.1016/j.rse.2013.02.027
http://doi.org/10.1109/JSTARS.2012.2190136
http://doi.org/10.1109/MGRS.2015.2437353
http://doi.org/10.1002/wat2.1097
http://doi.org/10.1109/IGARSS.2015.7325929
http://doi.org/10.1007/s42452-019-1488-y
http://doi.org/10.1016/j.rse.2015.11.011
https://nisar.jpl.nasa.gov/system/documents/files/15_NISARApplications_SoilMoisture1.pdf
https://nisar.jpl.nasa.gov/system/documents/files/15_NISARApplications_SoilMoisture1.pdf
https://www.dlr.de/content/en/downloads/publications/brochures/tandem-l-brochure_1663.pdf?__blob=publicationFile&v=11
https://www.dlr.de/content/en/downloads/publications/brochures/tandem-l-brochure_1663.pdf?__blob=publicationFile&v=11
http://doi.org/10.1016/j.hydroa.2020.100066
http://doi.org/10.1175/BAMS-D-21-0016.1
http://www.fao.org/3/x0490e/x0490e00.htm
http://www.fao.org/3/x0490e/x0490e00.htm
http://doi.org/10.1002/wat2.1168
http://doi.org/10.3390/w11112264
http://doi.org/10.1007/s00271-018-0603-y
http://doi.org/10.1051/agro:19960501
http://doi.org/10.1017/S0014479700283099


Remote Sens. 2021, 13, 4155 21 of 26

69. Bastiaanssen, W.G.; Noordman, E.J.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL Model with Remotely Sensed
Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [CrossRef]

70. Sun, X.; Zou, C.B.; Wilcox, B.; Stebler, E. Effect of Vegetation on the Energy Balance and Evapotranspiration in Tallgrass Prairie: A
Paired Study Using the Eddy-Covariance Method. Bound. Layer Meteorol. 2018, 170, 127–160. [CrossRef]

71. Shellie, K.C.; King, B.A. Application of a Daily Crop Water Stress Index to Deficit Irrigate Malbec Grapevine under Semi-Arid
Conditions. Agriculture 2020, 10, 492. [CrossRef]

72. Romero-Trigueros, C.; Bayona Gambín, J.M.; Nortes Tortosa, P.A.; Alarcón Cabañero, J.J.; Nicolás Nicolás, E. Determination of
Crop Water Stress Index by Infrared Thermometry in Grapefruit Trees Irrigated with Saline Reclaimed Water Combined with
Deficit Irrigation. Remote Sens. 2019, 11, 757. [CrossRef]
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