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Abstract: The purpose of this study was to evaluate the applicability of medium and long-term
satellite rainfall estimation (SRE) precipitation products for drought monitoring over mainland China.
Four medium and long-term (19 a) SREs, i.e., the Tropical Rainfall Measuring Mission (TRMM)
Multi-Satellite Precipitation Analysis (TMPA) 3B42V7, the Integrated Multi-satellitE Retrievals for
Global Precipitation Measurement V06 post-real time Final Run precipitation products (IMF6),
Global Rainfall Map in Near-real-time Gauge-calibrated Rainfall Product (GSMaP_Gauge_NRT) for
product version 6 (GNRT6) and gauge-adjusted Global Satellite Mapping of Precipitation V6 (GGA6)
were considered. The accuracy of the four SREs was first evaluated against ground observation
precipitation data. The Standardized Precipitation Evapotranspiration Index (SPEI) based on four
SREs was then compared at multiple temporal and spatial scales. Finally, four typical drought-
influenced regions, i.e., the Northeast China Plain (NEC), Huang-Huai-Hai Plain (3HP), Yunnan–
Guizhou Plateau (YGP) and South China (SC) were chosen as examples to analyze the ability
of four SREs to capture the temporal and spatial changes of typical drought events. The results
show that compared with GNRT6, the precipitation estimated by GGA6, IMF6 and 3B42V7 are
in better agreement with the ground observation results. In the evaluation using SPEI, the four
SREs performed well in eastern China but have large uncertainty in western China. GGA6 and
IMF6 perform superior to GNRT6 and 3B42V7 in estimating SPEI and identifying typical drought
events and behave almost the same. In general, GPM precipitation products have great potential to
substitute TRMM precipitation products for drought monitoring. Both GGA6 and IMF6 are suitable
for historical drought analysis. Due to the shorter time latency of data release and good performance
in the eastern part of mainland China, GNRT6 and GGA6 might play a role for near real-time drought
monitoring in the area. The results of this research will provide reference for the application of the
SREs for drought monitoring in the GPM era.

Keywords: IMERG; GSMaP; TMPA 3B42V7; Standardized Precipitation Evapotranspiration Index
(SPEI); drought monitoring; mainland China

1. Introduction

Drought is one of the natural disasters with the highest frequency and the most
extensive impact, which has a huge impact on society, agriculture and economy [1–4].
Affected by climate change and global warming, precipitation patterns and hydrological
cycles have undergone drastic changes [5–8] and the frequency of droughts on a global
scale has also shown an increasing trend in recent decades [9–11]. Therefore, there is an
urgent need to develop more accurate and effective drought monitoring and forecasting
methods.

Previous studies usually divided droughts into four types: meteorological drought
(insufficient precipitation), hydrological drought (insufficient surface or groundwater flow),
agricultural drought (insufficient soil moisture) and socioeconomic drought (depleted
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water resources) [12–14]. Drought monitoring generally relies on data from surface meteo-
rological observation sites. However, due to the sparse and uneven spatial distribution of
regional meteorological sites, it is difficult to meet the monitoring requirements [15]. With
the rapid development of remote sensing technology, the emergence of satellite precipita-
tion products has changed the temporal–spatial distribution and efficiency of precipitation
mapping and drought monitoring [16–19]. Among the many satellite rainfall estimate
(SRE) precipitation products, the TMPA (Tropical Rainfall Measuring Mission (TRMM)
Multi-Satellite Precipitation Analysis), released by National Aeronautics and Space [20],
is one of the most widely used satellite precipitation products with the best comprehen-
sive performance. Numerous research results show that the latest 3B42V7 product has a
precision equivalent to that of ground station observation data on a monthly scale [21–24].
Although the observation history of this precipitation product is less than 30 years (the data
record length generally required to study drought), some studies have proved that it still
has great potential in drought monitoring [25–29]. As the successor of TRMM, the Global
Precipitation Measurement (GPM) Core Observatory was launched in February 2014 by
a joint effort of NASA and the Japan Aerospace Exploration Agency (JAXA). Compared
with the TMPA product, the Level-3 product provided by the Integrated Multi-satellitE
Retrievals for GPM (IMERG) and the Global Satellite Mapping of Precipitation (GSMaP)
product have higher spatial and temporal resolution (half hour and 0.1◦ × 0.1◦) [30,31].
A large number of evaluation results show that GPM precipitation products have higher
accuracy and applicability than previous satellite precipitation products and can better
reflect the temporal and spatial characteristics of precipitation [32–35]. Owing to the late
start of GPM, its application in drought monitoring is limited. However, the latest Version 6
release of IMERG fused the early precipitation estimates collected in 2000–2014 during the
operation of the TRMM satellite with more recent precipitation estimates collected during
operation of the GPM satellite, which broke the previous restrictions. At the same time,
the Japan Aerospace Exploration Agency (JAXA) also released the Global Rainfall Map
in Near-real-time Gauge-calibrated Rainfall Product (GSMaP_Gauge_NRT) for product
version 6 (GNRT6), with a period from 1 April 2000 to present, and the Gauge-calibrated
Reanalysis Product (GSMaP_Gauge_RNL) for the past period from March 2000 to Febru-
ary 2014, which also provided the possibility to study drought. In addition, these GPM
products above are still less used in drought monitoring research.

Drought index is the basis and core of drought monitoring and research, which
contains a clear physical mechanism [36]. The common indices used to identify and
quantify drought are the Standardized Precipitation Index (SPI), the Palmer Drought
Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI).
The SPI [37] is widely used in many drought studies because it has the advantages of
simple calculation and time flexibility and can better reflect the beginning, end, duration
and intensity of drought. However, because it only considers precipitation as a single
factor index and ignores the influence of other meteorological factors and the duration
of early drought on the degree of late drought, the SPI has some limitations in practical
application. On the contrary, the PDSI [38] considers not only precipitation but also
evapotranspiration, runoff and soil moisture, which are comparable in time and space.
However, there are also some problems in PDSI, such as a too complicated calculation,
too high data requirements and lack of multi-scale. In response, Wells and Goddard [39]
established the self-calibrating PDSI (scPDSI), which significantly improves the spatial
comparability of PDSI and makes it more reasonable to monitor extreme drought and
flood events. Subsequently, Vicente-Serrano et al. [40] proposed the SPEI, which not only
combines the sensitivity of the PDSI to evaporation changes but also has the characteristics
of simple calculation and multi-time scales of the SPI. The SPEI should be given priority
when monitoring global-warming-enhanced macroscale droughts [32–35].

Some recent studies have evaluated the adaptability of TRMM and GPM precipitation
products in drought monitoring [25,27,41,42]. For instance, Sahoo et al. [25] found that
TMPA 3B42V7 with short-term records can temporally and spatially identify drought
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events. Wei et al. [42] found the IMERGE Final Run precipitation product has perfect
capabilities in drought monitoring over mainland China. Tashima et al. [43] found that the
SPI derived from GNRT6 can better detect short-term (1 to 3 months) drought. However,
the application of consolidated products of GSMaP (standard product combined with
reanalysis product) for drought monitoring has not been confirmed comprehensively,
which hinders its development in different fields.

The geographical and climatic conditions of mainland China are complex, and the
distribution of precipitation is uneven at temporal and spatial scales, which has led to
frequent drought events in recent decades [44]. For instance, drought events in North China
have been increasing in the past 30 years [45]. In addition, extreme droughts have even
appeared in some southern humid regions. For example, the drought of southwest China
during 2009–2010 and the drought in the middle and lower reaches of the Yangtze River in
2011 caused huge losses to the local economy and society [46]. SREs with wider coverage
are highly qualified to make up for the shortage of using precipitation data from uneven
and sparse meteorological stations for drought monitoring in mainland China, which
often suffers from drought disasters. Although the effectiveness of some SREs for drought
monitoring in mainland China has been evaluated, for example, Guo et al. [47], Xu et al. [26]
and Wei et al. [42] found that while PERSIANN-CDR, MSWEP V2.1 and IMERG V06 can
be used for drought monitoring in eastern China, most studies use SPI only, which is the
drought index that does not consider evapotranspiration. Despite that, evapotranspiration
has recently begun to be considered in some studies, such as Jiang et al. [41] who used SPEI
considering evapotranspiration to evaluate the effectiveness of IMERG V06 Three Runs
precipitation products for drought monitoring in mainland China. Nevertheless, there is
no comparison of the ability of typical TRMM and GPM precipitation products to identify
drought events. Thus, it is of urgent significance to comprehensively evaluate and compare
the performance of typical TRMM and GPM precipitation products, including merged
products of GSMaP, when calculating the drought index considering global warming
involving evapotranspiration over mainland China.

Based on the above considerations, the primary objective of this study is to evaluate
the applicability and performance of four medium and long-term SREs (i.e., GNRT6,
GGA6, IMF6 and 3B42V7, which all have been calibrated) in calculating SPEI across
mainland China. More precisely, there are two questions we need to answer: (1) is the
drought-monitoring performance of the GGA6 and IMF6 products better than the other two
products and which is best; and (2) does the GNRT6 product in operation have sufficient
potential for real-time monitoring of drought. The first question is reasonable since GGA6
and IMF6 products are considered to be the ultimate products of GPM compared with
GNRT6 and perform better than 3B42V7 in precipitation estimation generally. It is also
meaningful to address the second question for the reason that there is a delay of several
days or months before GGA6 and IMF6 are processed and produced after collecting satellite
observation data. Therefore, there are limitations in real-time drought monitoring for them
and only real-time or near-real-time products (i.e., GNRT6) can solve the above problems.
The flow chart of this research is shown in Figure 1. It is expected that this research can
provide a new reference for the application of the SREs for drought monitoring under
global warming and climate change.
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Figure 1. Flowchart of the study.

2. Study Area and Data
2.1. Study Area

Mainland China (Figure 2) has a complex climate and diverse landforms. According to
climates, agriculture and elevation, mainland China could be divided into 9 regions, namely,
Northeast China Plain (NEC), northern arid and semiarid region (NAS), Huang-Huai-
Hai Plain (3HP), Loess Plateau (LP), Tibetan Plateau (TP), middle-lower Yangtze Plateau
(MLY), Sichuan Basin and surrounding regions (SBS), South China (SC) and Yunnan–
Guizhou Plateau (YGP). On the whole, the northeast part of mainland China is dominated
by a temperate monsoon climate, the northwest part by an arid temperate continental
climate, the southeast part by a humid tropical monsoon climate and the Qinghai–Tibetan
Plateau by an alpine and plateau climate [48]. The data comes from Geographic Data
Sharing Infrastructure, College of Urban and Environmental Science, Peking University
(http://geodata.pku.edu.cn (accessed on 5 May 2020)).

2.2. Gauge Precipitation Observation

The daily data set of China’s surface climate data is generated by strict quality control
method based on the data of China’s national ground stations. In this study, the data
of 808 weather stations from June 2000 to May 2019 provided by the China National
Meteorological Information Center (https://data.cma.cn (accessed on 7 May 2020)) were
used to calculate the potential evapotranspiration (PET) data for the calculation of SPEI.
The missing data of the data set were reconstructed by using the mean value of the adjacent
three sites.

The China Gauge-based Precipitation Daily Analysis (CGDPA) product [49] was
another reference data to evaluate the drought monitoring utility of the SREs and calculate
SPEI. The CGDPA data from more than 2400 independent weather stations across mainland
China are produced through optimized interpolation methods, combined with terrain
correction and strict quality control, and therefore has high reliability and accuracy.

http://geodata.pku.edu.cn
https://data.cma.cn
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Figure 2. Spatial pattern of (a) elevation and (b) annual mean precipitation and division of 9 agricultural regions across
mainland China. NEC: Northeast China Plain; NAS: northern arid and semiarid region; 3HP: Huang-Huai-Hai Plain; LP:
Loess Plateau; TP: Tibetan Plateau; MLY: middle-lower Yangtze Plateau; SBS: Sichuan Basin and surrounding regions; SC:
South China; YGP: Yunnan–Guizhou Plateau.

2.3. Satellite Rainfall Estimate (SRE) Data

The TMPA products supplied by the National Aeronautics and Space Administra-
tion (NASA) [20] are satellite-based precipitation products which are able to estimate
quasi-global rainfall (50◦N–50◦S) with high spatial and temporal resolution (0.25◦ × 0.25◦,
3 h). As the latest version of TRMM data, TRMM 3B42V7 uses the Global Precipitation
Climatology Centre (GPCC) gauge precipitation to correct the merged microwave-infrared
precipitation adjusted by TRMM to achieve higher accuracy [50]. In this study, TRMM
3B42V7 precipitation data with 3 h was derived for the period 2000–2019 from the website
https://trmm.gsfc.nasa.gov/ (accessed on 9 May 2020).

The Global Precipitation Measurement (GPM) mission is the successor to TRMM.
As a core part of the GPM, the GPM Core Observatory, which carries a dual-frequency
precipitation radar (DPR) and a conical-scanning multichannel GPM Microwave Imager
(GMI), was successfully launched on 28 February 2014. This study will focus on the Level-3
product provided by the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm.
The gauge-adjusted Final Run (with a latency of 2.5 months) daily precipitation product
from 2000 to 2019 provided by IMERG, which can be obtained from the Precipitation
Measurement Missions website at https://pmm.nasa.gov/data-access/downloads/gpm
(accessed on 12 May 2020), was used for drought monitoring.

The “standard product”, “near-real-time product”, “real-time product” and “reanaly-
sis product” make up the GSMaP products in the GPM era. The GNRT6 daily precipitation
product from 2000 to 2019, a member of the near-real-time product which is processed 4
h after observations, was used in this study. On the other hand, gauge-adjusted hourly
precipitation rate (GA) belongs to the standard product which is processed 3 days after ob-
servations. Furthermore, Japanese 55-year reanalysis (JRA55) [51,52] is used as input data
to produce reanalysis product (GRG). Kubota et al. [31] found that the differences between
the reanalysis and the standard products are small. Hence, the precipitation products with
daily (GA and GRG) temporal resolution were merged to GGA6 for long-term (2000–2019)
analyses in this study. All products are accessible through the JAXA Global Rainfall Watch
website (http://sharaku.eorc.jaxa.jp/GSMaP/ (accessed on 12 May 2020)).

3. Methodology
3.1. Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI is based on the theory of the simple water cycle and considers the drought
index of falling water and evapotranspiration in the changing environment [53]. The SPEI
calculation process consists of three parts. First, use the improved Penman–Monteith

https://trmm.gsfc.nasa.gov/
https://trmm.gsfc.nasa.gov/
https://pmm.nasa.gov/data-access/downloads/gpm
http://sharaku.eorc.jaxa.jp/GSMaP/
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method to calculate the potential evapotranspiration, then compare the difference between
the monthly precipitation and the monthly potential evapotranspiration as the SPEI input
data and finally calculate the SPEI value by using the frequency value of the 3-parameter
log-logistic distribution. In this study, the SPEI is used with the four most commonly used
time scales (i.e., 1-, 3-, 6- and 12-month). The drought category of SPEI determined by
Vicente-Serrano et al. [40] is shown in Table 1.

Table 1. Classification used for Standardized Precipitation Evapotranspiration Index (SPEI).

Drought Class SPEI Values

Extreme wet SPEI ≥ 2.0
Very wet 1.5 < SPEI < 2.0

Moderate wet 1 < SPEI <1.5
Mild wet 0.5 < SPEI < 1.0
Normal −0.5 ≤ SPEI ≤ 0.5

Mild drought −1 < SPEI < −0.5
Moderate drought −1.5 < SPEI < −1.0

Severe drought −2 < SPEI < −1.5
Extreme drought SPEI ≤ −2.0

3.2. Statistical Metrics for Evaluation

Six statistical indicators and classification metrics (see Table 2) are used to evaluate the
ability of SREs to monitor precipitation and drought in China. Correlation coefficient (CC)
is used to characterize the consistency between satellite data and measured data. Relative
bias (BIAS), root mean-squared error (RMSE) and mean error (ME) describes the error
between them. Probability of detection (POD) and false alarm ratio (FAR) show the ability
of satellite data to capture drought events.

Table 2. Statistical metrics for evaluation used in this study a.

Statistic Metrics Equation Perfect Value

Probability of Detection
(POD) POD = H

H+M 1

False Alarm Ratio (FAR) FAR = F
H+F 0

MISS MISS = M
H+M 0

Correlation Coefficient (CC)
CC =

∑n
i=1(Oi−O)(Ri−R)√

∑n
i=1(Oi−O)2×∑n

i=1(Ri−R)2

1

Relative Bias (BIAS) BIAS = ∑(R−O)
∑ O

0
Root Mean Squared Error

(RMSE) RMSE =
√

1
n ∑n

i=1(Ri − Oi)2 0

Mean Error ME = 1
n ∑n

i=1(Ri − Oi) 0
a Notation: H represents the number of hit rainfall events for SREs; M denotes the number of miss rainfall events
for SREs; F indicates the number of false rainfall events for SREs; n is the number of sample sizes for SREs; O
represents precipitation observations from gauge; R is precipitation estimates from satellite.

4. Results
4.1. Evaluation and Intercomparison between Four SREs

Figure 3 shows the spatial distribution of the correlation coefficient, relative bias,
root mean square error and mean error between SREs and CGDPA from 2000 to 2019.
Table 3 lists the correlation coefficient index quantiles between SREs and CGDPA for nine
agricultural districts in China (5%, 50%, 95%). It can be clearly seen that the accuracy of
IMF6, GGA6 and 3B42V7 is better than that of GNRT6. For IMF6, GGA6 and 3B42V7,
except some areas of TP and NAS, the correlation coefficients of other regions are relatively
high (CC >0.85), and the relative bias is relatively small (BIAS: −30% to 30%), indicating
their high accuracy in these regions. The SREs are easy to overestimate or underestimate
the benchmark data in the west of NAS with less precipitation and TP with high altitude.
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There may be two reasons for this phenomenon. On the one hand, the lack of observation
sites in western China has led to high uncertainty in the assessment of SREs in these regions
and, on the other hand, the complex terrain, dry climate and fewer weather stations for
error correction of SREs might also affect the accuracy of the SREs [27]. The root mean
square error in China’s coastal areas is relatively high and gradually decreases towards
inland on account of the spatial distribution of precipitation in China (Figure 2b). On
the whole, the best consistency is IMF6, followed by GGA6 and then 3B42V7, which is
consistent with the results shown in Table 3, except in TP. Although both GNRT6 and GGA6
have undergone correction processing, they use different algorithms where GNRT6 adjusts
GSMaP Near-real-time product version 6 (NRT6) using a system model with parameters
calculated from data obtained during the past 30 days while GGA6 is adjusted by the
NOAA Climate Prediction Center (CPC) global rain gauge data [31], which may be a
crucial reason for the relatively low accuracy of GNRT6 especially in the mountainous
areas of western China. In addition, it can be seen that compared to the other three seasons,
the performance of GNRT6 in winter has significantly decreased (the value of CC decreased
from 0.862 in summer to 0.735 in winter) from the seasonal assessment of SREs (Table 4).
This may be related to more snow and ice coverage in winter, which will influence the
accuracy of PMW-based precipitation [54]. In general, the four SREs showed high accuracy
in east China but their accuracy is still uncertain in most areas of west China.

Figure 3. (a–d) CC, (e–h) BIAS, (i–l) RMSE and (m–p) ME of the four SREs w.r.t in situ observations in June 2000–May 2019.
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Table 3. 50% and 95% quantiles of monthly CC and BIAS of the four SREs w.r.t. in situ observations for the nine agricultural
regions for 2000–2019.

Agricultural
Region

Quantile/Mean
Value(MV) GNRT6 GGA6 IMF6 3B42V7

CC BIAS
(%) CC BIAS

(%) CC BIAS
(%) CC BIAS

(%)

NEC

5% 0.797 −24 0.918 −15 0.933 −2 0.920 2
50% 0.872 −1 0.967 −4 0.973 11 0.956 12
95% 0.907 14 0.985 5 0.984 30 0.974 27
MV 0.863 −1 0.960 −4 0.968 12 0.952 13

NAS

5% 0.115 −41 0.347 −66 0.552 −58 0.399 −47
50% 0.672 8 0.904 −5 0.882 1 0.851 3
95% 0.888 283 0.978 44 0.976 82 0.963 66
MV 0.603 53 0.825 −8 0.841 4 0.792 6

3HP

5% 0.806 −14 0.942 −9 0.954 −6 0.937 −4
50% 0.870 0 0.968 0 0.973 7 0.964 8
95% 0.908 16 0.981 9 0.983 18 0.977 19
MV 0.865 0 0.964 0 0.970 7 0.959 8

LP

5% 0.776 −12 0.922 −14 0.949 −14 0.929 −13
50% 0.857 3 0.962 −2 0.975 0 0.957 3
95% 0.896 20 0.980 15 0.983 17 0.974 18
MV 0.850 3 0.957 −1 0.972 0 0.955 3

TP

5% 0.142 −73 0.586 −54 0.643 −55 0.523 −37
50% 0.640 −11 0.933 −3 0.899 −6 0.850 3
95% 0.903 147 0.988 80 0.973 130 0.961 187
MV 0.601 3 0.884 1 0.868 13 0.810 36

MLY

5% 0.776 −22 0.902 −12 0.930 −11 0.912 −7
50% 0.849 −7 0.953 −1 0.966 7 0.949 5
95% 0.891 10 0.973 12 0.979 16 0.967 16
MV 0.842 −6 0.948 −1 0.961 5 0.944 5

SBS

5% 0.784 −16 0.898 −29 0.898 −28 0.878 −24
50% 0.878 2 0.952 −2 0.964 −2 0.952 2
95% 0.940 36 0.985 19 0.981 19 0.978 19
MV 0.874 5 0.948 −3 0.954 −4 0.943 0

SC

5% 0.810 −49 0.910 −25 0.934 −13 0.917 −14
50% 0.865 −19 0.963 −4 0.969 0 0.962 2
95% 0.903 7 0.982 8 0.982 18 0.980 20
MV 0.862 −19 0.957 −5 0.965 1 0.956 3

YGP

5% 0.744 −25 0.862 −20 0.872 −11 0.863 −15
50% 0.883 −12 0.960 −5 0.969 0 0.960 1
95% 0.928 5 0.984 6 0.986 11 0.982 11
MV 0.865 −11 0.951 −5 0.956 0 0.951 0

4.2. Comparison of SPEI Estimates from SREs and In Situ Observations

Figures 4–8 display the comparison results of SPEI calculated with SREs, CGDPA
and station-interpolated PET data (the probability of detection, false alarm ratio and
MISS are based on SPEI ≤−0.5 as the condition for determining the occurrence of drought).
Distribution metrics (5%, 50% and 95% quantile) of CCs of the SREs for the nine agricultural
regions are also listed in Tables 5 and 6. It can be seen that discrepancies in precipitation
spatial patterns are reflected in the SPEI estimates as well by comparing Figures 3 and 4.
In addition, as expected, compared to precipitation estimates, the correlations of the SPEI
calculated by the four SREs have all decreased (3B42V7 has the largest decline while GGA6
has the smallest) which indicates that the errors and uncertainties of SREs will be amplified
when they are propagated to SPEI. The comparison results of GGA6 and IMF6 are of
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particular interest since the precipitation correlation of IMF6 is higher than that of GGA6,
but the SPEI correlation is the opposite result. It indicates that compared to IMF6, the time
variability of GGA6 in the SPEI estimate is more consistent with those from CGDPA [25].
On the one hand, there is no doubt that GGA6 and IMF6 have outstanding performance
in regional drought monitoring and present similar SPEI spatial pattern, with high CC
above 0.8 (low RMSE below 0.7) in eastern China and low CC below 0.3 in the western
part. According to the POD (Figure 6), >80% of the drought months observed from the
rain gauge observations were also adequately detected by GGA6 and IMF6, except for in
NEC, NAS and TP. FAR and MISS of them show a similar spatial pattern with POD, with
low values below 0.2 in most areas of China. On the other hand, the results for GNRT6
and 3B42V7 are relatively poor but still show good correlation in eastern China (CC >0.7
and RMSE <0.9 in most parts of eastern China). Compared to GGA6 and IMF6, GNRT6
and 3B42V7 are more likely to miss the drought event and mistake normal conditions for
drought events. It should be noted that the drought monitoring results of the four SREs
in western China have large uncertainties. In addition, from Figure 4, it can be seen that
for all the four SREs, SPEI correlation shows a downward trend as time scale increases
in mainland China, which may be caused by the accumulation of systematic errors and
random errors of SREs. Overall, GGA6 and IMF6 have shown good utility in drought
monitoring in eastern China while they perform poorly in western NAS and TP. GNRT6
and 3B42V7 also hold certain potential to monitor drought conditions in eastern China, but
their monitoring results might have more uncertainty.

Figure 4. CC of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ
observations in June 2000–May 2019. Columns for different time scales, rows for different SREs.
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Table 4. Seasonal statistics of the four SREs w.r.t in situ observations over Mainland China.

Season Product CC ME (mm) BIAS (%) RMSE (mm)

Spring

GNRT6 0.857 −3.22 −2.62 3.88
GGA6 0.916 1.28 3.28 3.46
IMF6 0.922 0.57 6.45 3.15

3B42V7 0.906 −2.79 −6.55 3.66

Summer

GNRT6 0.862 2.95 1.23 8.52
GGA6 0.913 −6.59 −1.66 6.98
IMF6 0.922 −3.22 −5.28 6.82

3B42V7 0.905 −2.56 −3.89 8.22

Autumn

GNRT6 0.839 −5.22 −9.55 3.25
GGA6 0.925 −2.88 −5.56 3.01
IMF6 0.930 −1.59 −1.47 2.89

3B42V7 0.902 −3.13 −1.59 3.12

Winter

GNRT6 0.735 −5.75 −8.38 4.05
GGA6 0.919 −1.65 −1.95 1.75
IMF6 0.932 −0.2 −0.87 1.57

3B42V7 0.838‘ −3.24 −7.25 3.02

Figure 5. RMSE of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ
observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
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Figure 6. POD of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ
observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.

4.3. Drought Events: Some Case Studies

In order to evaluate the drought spatiotemporal variability of the four SREs, four
drought events that occurred in different geographic regions and climate systems were
selected, including the drought events from January 2001 to January 2002 in NEC [27],
from 2010 to 2011 in 3HP [26], from 2009 to 2010 in YGP [55] and from 2003 to 2004 in
SC [56]. First, the choice of NEC and YGP was to analyze the typical severe drought events
in the region. Secondly, 3HP, as an important grain producing area in China, was naturally
selected as a case study. Finally, SC was chosen since its agricultural production will be
severely affected if a drought occurs due to developed economy and large population. In
order to better reveal the seasonal drought, three months were selected as the duration of
SPEI in the next regional assessment [46].

Figures 9 and 10, respectively, show the time series of the regional average SPEI3
and the ratio of drought area based on the four SREs in the four regions. CCs, RMSEs,
PODs and FARs of the regional-averaged SPEI3 are shown in Figure 10. Although some
deviations were found in the estimation of the SPEI3 value and the percentage of drought
area, the four SREs can accurately identify the start and end times and severity of typical
drought events in the four regions. The drought simulation results of GGA6, IMF6 and
3B42V7 in the four regions are very satisfactory. In contrast, GNRT6 has poor consistency
with the in situ observation results but it can still identify drought events. The difference
between GGA6 and IMF6 is small, and their temporal correlation is better among the four
SREs. Figure 11 exhibits temporal CC, RMSE, POD, FAR and MISS of the regional averaged
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drought indices for the four drought-affected regions. For NEC, GGA6 performs best on
the five evaluation indicators. This situation is also applicable to IMF6 in YGP. However,
for 3HP and SC, the performance of the two SREs on different evaluation indicators has
both advantages and disadvantages. For example, although GGA6 has a higher CC in 3HP,
it has higher RMSE, FAR and MISS and lower POD.

Table 5. CC of the 1-, 3-, 6- and 12-month SPEI calculated by GNRT6 and GGA6 for the nine agricultural regions. The
gray-filled data represents the maximum average CC of the four SREs in the region and time scale.

Agricultural
Region

Quantile/Mean
Value(MV) GNRT6 GGA6

SPEI1 SPEI3 SPEI6 SPEI12 SPEI1 SPEI3 SPEI6 SPEI12

NEC

5% 0.604 0.774 0.626 0.556 0.644 0.865 0.787 0.865
50% 0.810 0.925 0.950 0.900 0.758 0.942 0.923 0.929
95% 0.901 0.971 0.978 0.953 0.832 0.970 0.964 0.957
MV 0.782 0.751 0.761 0.776 0.900 0.934 0.929 0.917

NAS

5% 0.206 0.449 0.361 0.131 0.490 0.690 0.732 0.641
50% 0.681 0.865 0.865 0.681 0.814 0.952 0.948 0.913
95% 0.901 0.976 0.972 0.959 0.939 0.990 0.983 0.972
MV 0.630 0.782 0.737 0.711 0.807 0.917 0.895 0.871

3HP

5% 0.636 0.827 0.841 0.447 0.731 0.924 0.933 0.851
50% 0.797 0.935 0.945 0.849 0.800 0.961 0.961 0.938
95% 0.895 0.976 0.980 0.962 0.843 0.975 0.976 0.965
MV 0.784 0.794 0.781 0.769 0.919 0.956 0.949 0.933

LP

5% 0.601 0.756 0.813 0.396 0.687 0.880 0.889 0.854
50% 0.788 0.911 0.937 0.787 0.816 0.950 0.959 0.928
95% 0.892 0.968 0.977 0.956 0.875 0.976 0.977 0.963
MV 0.776 0.801 0.792 0.788 0.889 0.941 0.930 0.911

TP

5% 0.235 0.357 0.364 0.153 0.491 0.606 0.613 0.524
50% 0.559 0.857 0.800 0.648 0.692 0.907 0.883 0.818
95% 0.790 0.974 0.950 0.926 0.838 0.980 0.962 0.940
MV 0.541 0.678 0.630 0.589 0.796 0.869 0.860 0.836

MLY

5% 0.729 0.855 0.898 0.700 0.724 0.894 0.907 0.883
50% 0.869 0.947 0.969 0.940 0.794 0.944 0.958 0.936
95% 0.939 0.980 0.987 0.977 0.850 0.967 0.972 0.958
MV 0.847 0.790 0.808 0.839 0.925 0.935 0.940 0.939

SBS

5% 0.544 0.693 0.714 0.486 0.574 0.786 0.761 0.747
50% 0.755 0.893 0.915 0.862 0.701 0.900 0.881 0.876
95% 0.857 0.967 0.966 0.945 0.859 0.967 0.948 0.942
MV 0.732 0.713 0.722 0.732 0.868 0.889 0.893 0.882

SC

5% 0.516 0.768 0.837 0.585 0.708 0.846 0.853 0.829
50% 0.786 0.929 0.945 0.909 0.810 0.927 0.922 0.914
95% 0.909 0.972 0.973 0.967 0.868 0.960 0.956 0.953
MV 0.759 0.800 0.774 0.775 0.910 0.919 0.911 0.908

YGP

5% 0.292 0.793 0.868 0.631 0.720 0.840 0.826 0.846
50% 0.884 0.951 0.963 0.932 0.837 0.952 0.952 0.946
95% 0.960 0.987 0.989 0.983 0.874 0.972 0.970 0.968
MV 0.840 0.809 0.813 0.828 0.909 0.914 0.915 0.901
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Table 6. Same as Table 5 but for IMF6 and 3B42V7.

Agricultural
Region

Quantile/Mean
Value(MV) IMF6 3B42V7

SPEI1 SPEI3 SPEI6 SPEI12 SPEI1 SPEI3 SPEI6 SPEI12

NEC

5% 0.644 0.850 0.788 0.813 0.653 0.822 0.716 0.716
50% 0.768 0.941 0.942 0.923 0.789 0.933 0.944 0.910
95% 0.859 0.972 0.970 0.962 0.866 0.970 0.972 0.955
MV 0.907 0.907 0.921 0.914 0.854 0.923 0.910 0.884

NAS

5% 0.407 0.655 0.677 0.498 0.375 0.619 0.596 0.326
50% 0.772 0.937 0.931 0.855 0.755 0.916 0.911 0.785
95% 0.909 0.982 0.974 0.963 0.898 0.979 0.972 0.958
MV 0.789 0.915 0.891 0.861 0.632 0.874 0.811 0.739

3HP

5% 0.707 0.911 0.919 0.733 0.674 0.876 0.895 0.614
50% 0.784 0.954 0.956 0.911 0.772 0.939 0.946 0.878
95% 0.846 0.974 0.975 0.959 0.868 0.976 0.974 0.958
MV 0.925 0.956 0.952 0.939 0.779 0.926 0.881 0.834

LP

5% 0.712 0.867 0.890 0.771 0.676 0.818 0.854 0.638
50% 0.789 0.937 0.949 0.893 0.793 0.921 0.947 0.857
95% 0.886 0.975 0.974 0.956 0.878 0.966 0.972 0.948
MV 0.922 0.951 0.942 0.934 0.747 0.920 0.879 0.825

TP

5% 0.421 0.572 0.561 0.432 0.366 0.501 0.518 0.333
50% 0.642 0.903 0.875 0.783 0.597 0.884 0.848 0.727
95% 0.799 0.977 0.956 0.933 0.786 0.974 0.948 0.925
MV 0.747 0.854 0.838 0.805 0.614 0.783 0.749 0.694

MLY

5% 0.735 0.902 0.917 0.858 0.755 0.895 0.913 0.791
50% 0.815 0.947 0.964 0.936 0.851 0.950 0.967 0.940
95% 0.868 0.972 0.978 0.962 0.913 0.976 0.983 0.972
MV 0.949 0.948 0.955 0.958 0.899 0.927 0.923 0.918

SBS

5% 0.569 0.777 0.757 0.704 0.566 0.741 0.756 0.604
50% 0.730 0.905 0.898 0.874 0.753 0.898 0.910 0.870
95% 0.842 0.969 0.948 0.935 0.838 0.968 0.951 0.939
MV 0.888 0.871 0.882 0.887 0.805 0.862 0.853 0.833

SC

5% 0.666 0.829 0.847 0.771 0.643 0.810 0.846 0.695
50% 0.777 0.922 0.926 0.897 0.785 0.921 0.933 0.897
95% 0.866 0.965 0.961 0.954 0.886 0.967 0.965 0.960
MV 0.931 0.916 0.917 0.922 0.861 0.905 0.886 0.872

YGP

5% 0.699 0.817 0.805 0.773 0.133 0.145 0.793 0.139
50% 0.851 0.951 0.955 0.934 0.878 0.954 0.962 0.931
95% 0.898 0.978 0.978 0.972 0.931 0.984 0.986 0.979
MV 0.929 0.921 0.911 0.912 0.872 0.910 0.890 0.869
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Figure 7. FAR of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ
observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.

Figure 8. MISS of the (a,e,i,m) 1-, (b,f,j,n) 3-, (c,g,k,o) 6- and (d,h,l,p) 12-month SPEI based on the four SREs w.r.t in situ
observa-tions in June 2000–May 2019. Columns for different time scales, rows for different SREs.
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Figure 9. Time series of regional-averaged SPEI3 of the four typical drought-affected areas((a) NEC,
(b) 3HP, (c) YGP and (d) SC) during 2001–2019. Gray backgrounds indicate the period of the typical
drought events.

Figure 10. Time series of ratio of drought area of the four typical drought-affected areas ((a) NEC,
(b) 3HP, (c) YGP and (d) SC) during 2001–2019. Gray backgrounds indicate the period of the typical
drought events.



Remote Sens. 2021, 13, 4153 16 of 22

Figure 11. Temporal (a) CC, (b) RMSE, (c) POD, (d) FAR and (e) MISS of the regional averaged drought indices for the four
drought-affected regions.

Spatial maps of SPEI3 for a specific month of four typical drought events are shown
in Figure 12. In general, the four SREs can detect four typical drought events. The SPEI3
spatial distribution characteristics of GGA6 and IMF6 in each region are highly consistent
with the original observation results. In contrast, 3B42V7 cannot accurately extract the
spatial centers and extent of typical drought events in each region, although it performs
better on the temporal evaluation of above drought events. It is worth noting that GNRT6
can relatively accurately match the spatial pattern of drought events in four regions.
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Figure 12. Spatial pattern of the typical drought events for the four typical drought-affected agricultural regions based on in
situ observations (a,f,k,p), GNRT6 (b,g,l,q), GGA6 (c,h,m,r), IMF6(d,i,n,s) and 3B42V7 (e,j,o,t).

5. Discussion
5.1. Influence of the Length of Base Period on SPEI Calculation

Since the SPEI is statistical index based on multi-year series, its reliability is greatly
affected by the length of the data [57], although predecessors have analyzed the sensitivity
of some drought indices to data length. For example, Sahoo et al. [25] compared the SPI
calculated by long-term (31 a) and short-term (10 a) data records and found that the length
of the data record has little effect on the calculation of SPI. Ref [27] analyzes the calculation
of PDSI based on the data length of long-term (33 a) and short-term (18 a). The results show
that it is reasonable to use the precipitation data with 18 a to evaluate the PDSI. Although
the sequence length (19 a) of the precipitation product used in this study is longer than
previous studies, it may still not meet the requirements, and the influence of the base period
length on the SPEI calculation is unclear. Therefore, it is necessary to verify the sensitivity
of the results of this study to the length of the base period which is used for calculating the
SPEI. We compared the SPEI calculated based on 1981–2019 (38 a) and 2000–2019 (19 a),
spatially and temporally, and selected NEC and YGP as drought cases. The results are
shown in Figure 13. It can be found that, on the one hand, the SPEIs calculated based on
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38 a and 19 a in situ data have a high spatial correlation and, on the other hand, the SPEI
time series of 18 a in situ data can accurately match those of 33 a data. These results verify
the low sensitivity of the results of the study to the length of base period which encourage
us to extend this conclusion to other data sets (such as the GPM products) and regions.
At the same time, many droughts and floods occurred in China during the time interval
selected in this study, which satisfies the assumption of Sahoo et al. [25] that both normal
and extreme events are included in the data recording period. In short, it is reasonable to
apply the precipitation data of 19 a to this study.

Figure 13. (e,f) Temporal and (a–d) spatial comparison of the SPEI3 based on the long-term (1981–2019, 38 a) and short-term
(2000–2019, 19 a) in situ observations.

5.2. Comparison of the Applicability of Four SREs for Drought Monitoring

Consistent with the findings of Sahoo et al. [25], Zhong et al. [27], Wei et al. [42] and
Jiang et al. [41], SREs performed better in areas with high rain gauge density, as their
deviations in these areas can be more accurately corrected. As the successor to TRMM,
GPM precipitation products (except GNRT6) can better identify drought events in time
and space, which was consistent with the findings of Wei et al. (2020). Although the SPEI
correlation of GGA6 is higher than that of IMF6 as a whole, the performance of the two
needs to be analyzed in detail when the space is gathered on a regional scale. For example,
when only the correlation coefficient is considered, the SPEI temporal consistency of GGA6
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is higher than that of IMF6 in NAS and TP. The opposite results appear in LP and MLY.
Both have advantages and disadvantages in other areas. Taking NEC as an example, the
SPEI of GGA shows the higher correlation at 3-, 6- and 12-month, while IMF6 is at 1-month.
When the number of evaluation indicators considered increases, the comparison between
the two in different regions will show different results. From a spatial perspective, the
performance of GPM products is better than TRMM products. Both GGA6 and IMF6 can
reveal the spatial pattern of drought events well and behave almost the same.

In this study, we evaluated the applicability of the four SREs for retrospective droughts.
However, we often need to monitor droughts in real time or near real time in practical
applications. Flash droughts, a type of drought with rapid onset as accompanied by heat
waves, have occurred frequently in recent years, including those over the central USA in
2012 [58] and southern China in 2013 [59], bringing a huge threat to the safety of people’s
lives and property. GNRT6 and GGA6, with shorter lag time (4 h and 3 days), show better
applicability under the background of higher requirements on the lag time of precipitation
products and other data put forward by flash drought monitoring.

Above all, GPM precipitation products, with better drought monitoring performance,
higher spatial resolution and larger coverage, are able to replace TRMM precipitation
products to identify drought events. Both GGA6 and IMF6 are suitable for retrospective
historical drought assessment. The data release delays of GNRT6 and GGA6 are acceptable
for near-real-time drought monitoring and they can identify drought events in eastern
China, which indicates that they might have potential for real-time drought monitoring
in this area. However, the near-real-time drought monitoring capabilities of them need
to be evaluated at a shorter time scale (weekly to sub-monthly). With the upgrading
of products, the application of next-generation products (such as GNRT7 and GGA7) in
drought monitoring is expected to be further improved. In addition, Xu et al. [26] found
that the integrated precipitation products have great potential for drought monitoring
in China. If the standard, real-time and reanalysis precipitation products involved in
this study are fused into new products, more reliable drought monitoring results can be
obtained, which is also the development direction of future research.

6. Conclusions

This study mainly assessed and compared the drought monitoring applicability of
four medium and long-term SREs over mainland China. The four SREs were evaluated
based on the in situ observed precipitation from China Meteorological Administration. The
SPEI, a widely used drought index which takes into account global warming, was chosen
to test the performance of drought monitoring of the four SREs. The main conclusions are
summed up as follows:

(1) At a monthly scale, except for some areas of TP and NAS, the precipitation estimates
by GGA6, IMF6 and 3B42V7 are highly consistent with observations from ground stations
(average CCs are 0.917, 0.924 and 0.903, respectively) and the deviations between them are
small (average biases are −5.0%, 2.2% and 5.2%, respectively). The accuracy of GNRT6 is
lower than the other three SREs but it still has relatively high consistency (with average CC
of 0.782). As the spatial distribution of precipitation in China (Figure 2b) is characterized
by a stepwise decrease from the southeast to the west, the RMSE decreases gradually from
coastal regions to inland areas. Due to the sparse weather stations and complex terrain, the
error of the four SREs in western China is relatively large.

(2) The regional SPEI values of multiple time scales were calculated based on the
regional monthly average precipitation and potential evapotranspiration data. In most
parts of mainland China, the SPEI values based on the four SREs are in good agreement
with those obtained from in situ observations. In general, GGA6 and IMF6 are better than
GNRT6 and 3B42V7 in terms of the performance of estimating SPEI. In addition, they
present a similar spatial pattern of SPEI that they perform well in eastern China (high CC
and POD) but have low correlation in western China. The performance of SPEI values based
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on the four SREs is better in a short time scale than in a long time scale, which indicates
that they are easier to identify droughts caused by short-term precipitation shortage.

(3) Four drought events were selected to evaluate the spatiotemporal variability of
four SREs. Generally, all four SREs can identify typical drought events. GGA6 and IMF6
have the best performance with a small difference while 3B42V7 cannot match the spatial
pattern of drought events well.

In summary, GGA6 and IMF6 products are superior to GNRT6 and 3B42V7 in detecting
drought events and behave almost the same. GGA6 is slightly better with its shorter
lag time. GNRT6 has also achieved satisfactory results in detecting drought events in
the eastern part of mainland China, indicating that it might have potential for real-time
drought monitoring in this area.
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