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Abstract: Variations in surface physicochemical properties and spatial structures can prominently
transform surface albedo which conversely influence surface energy balances and global climate,
making it crucial to continuously monitor and quantify surface dynamics at fine scales. Here,
we made two improvements to propose an algorithm for the simultaneous retrieval of 30-m Landsat
albedo, based on the coupling of Landsat-8 and MODIS BRDF. First, two kinds of prior knowledge
were added to disaggregate BRDF, including the Anisotropic Flat Index (AFX) and the Albedo-to-
Nadir reflectance ratio (AN ratio), from MODIS scales into Landsat scales. Second, a simplified
data fusion method was used to simulate albedo for the same, subsequent, or antecedent dates.
Finally, we validated the reliability and correlations of the algorithm at six sites of the Surface
Radiation (SURFRAD) budget network and intercompared the results with another algorithm called
the ‘concurrent approach’. The results showed that the proposed algorithm had favorable usability
and robustness, with a root mean square error (RMSE) of 0.015 (8%) and a mean bias of −0.005;
while the concurrent approach had a RMSE of 0.026 (14%) and a mean bias of −0.018. The results
emphasized that the proposed algorithm has captured subtle changes in albedo over a 16-day period.

Keywords: surface albedo; high temporal-spatial resolution; Landsat-8; MODIS; BRDF

1. Introduction

Surface albedo is the ratio of the reflected light to the total incident energy of a
surface in the hemispherical space [1]. It plays an essential role in global climate change,
which affects the Earth’s energy budget [2–4]. Variations in the physicochemical properties
and spatial structure of local objects in turn transform surface albedo [5–8]. At present,
surface albedo has been widely used in modelling for radiation and energy balances,
numerical weather prediction, atmospheric circulation, and land surface processes [9–13].
Studies have shown that uncertainties in albedo can cause the results of climate and
phenology simulations to deviate greatly from real-world conditions [5,14–16]. To minimize
any adverse effects on calculations, surface albedo products are usually required to meet
the standards for climate modelling, with an uncertainty of less than 5% [17]. Therefore,
there is an urgent need to derive a method for obtaining high-accuracy surface albedo
measurements, for monitoring global climate and vegetation phenology.
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Currently, surface albedo can be generated using the Bidirectional Reflectance Dis-
tribution Function (BRDF) with a kernel-driven model [18–21]. The short-period and
multi-angle reflectance data required can be obtained from the MODerate Resolution
Imaging Spectroradiometer (MODIS) [20], Polarization and Directionality of the Earth
Reflectance (POLDER) [22], Visible Infrared Imaging Radiometer Suite (VIIRS) [23], Air-
borne Visible-InfraRed Imaging Spectrometer (AVIRIS) [24], VEGETATION (VGT) [25],
PROBA-VEGETATION (PROBA-V) [25,26], or Spinning Enhanced Visible and Infrared Im-
agers (SEVIRI) [27]. However, these albedo products are too coarse to describe the detailed
features of the surface, which hinders downstream calculations of surface processes such as
land transformations [28], forest structure [29], fire extent and burn severity [30], and snow
cover extent and melt [30–32]. With regard to the cloudless, near-nadir images captured
by high-resolution sensors, which provide single-angle reflectivity information to finely
reveal surface heterogeneity and vegetation coverage. However, previous studies have
demonstrated that ignoring the surface BRDF effects to estimate albedo by single-angle re-
flectance data can cause relative errors of upper to 45% [33,34]. Unfortunately, it is difficult
and expensive to obtain multi-angle reflectivity information from high spatial-temporal
resolution, because currently sensors (such as Landsat satellite series) cannot meet the
requirements of high spatial resolution and short revisit periods [35,36]. Consequently, this
poses a challenging restriction on the generation of high temporal-spatial resolution albedo.

To correct the BRDF effects, several methodologies have been designed to derive
high temporal-spatial resolution surface albedo [37–41]. Shuai et al. [37] proposed a
methodology (hereafter, the ‘concurrent approach’) that couples the Landsat-5 surface
reflectance and MODIS BRDF product to successfully generate a continuous 30-m albedo
product. This method has shown acceptable results for different land uses and land cover
ranges of the Surface Radiation (SURFRAD) budget network, with an overall RMSE of less
than 0.03 units. Moreover, this method has brought comprehensive and critical benefits to
applications in vegetation dynamic monitoring [30,42] and ecosystem assessment [29,43,44].
Although the results of the concurrent approach have met the ± 0.05 range requirement of
climate modeling [15], there are negative deviations (lower retrieved albedo than in situ) in
the results for spatially heterogeneous areas. Other recent studies have also shown that
the concurrent approach results in a certain negative bias when applied to heterogeneous
landscapes [39,42,45,46]. The possible sources of this could be excessive atmospheric
corrections, the relative spectral response (RSR) of the sensors, or the application of same
type anisotropic information to heterogeneous surfaces at the Landsat scale. Shuai et al. [37]
pointed out that the albedo to near-nadir reflectance ratio (at view angles ± 7.5′ from nadir,
hereafter ‘AN ratio’) of pixels with similar spectral characteristics has a wide distribution,
and some land surfaces may have strong spectral similarities but different BRDFs [46]; thus,
it would not be reasonable to classify the heterogeneous structure into any single category
at the Landsat scale [39,45].

Previous studies have shown that priori classifications of BRDF shapes can signifi-
cantly improve the accuracy of albedo retrieval [47,48]. Jiao et al. [49] and Zhang et al. [50]
have shown that albedo retrieval can achieve high accuracy through the use of a pri-
ori Anisotropic Flat Index (AFX) and BRDF archetypes. Therefore, using some ground
properties as prior knowledge to classify the BRDF shapes of MODIS pixels could be
an effective solution. In addition, surface reflectance varies both slowly and rapidly as
a function of time and space affecting the retrieval of albedo, but Landsat-8 can only
provide reflectance data for a 16-day period which makes it difficult to capture any per-
turbations in surface albedo over a short time. To address this limitation, several studies
have proposed multi-temporal algorithms to fuse coarser and finer resolution data for the
derivation high temporal-spatial resolution surface reflectance [51–55]. Wang et al. [42]
adopted the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [51] to
generate high spatial-temporal resolution reflectance, which enhanced the continuity of
albedo retrieval by concurrent approach. However, the STARFM does not considered the
directional dependence of reflectance as a function (BRDF) of angular anisotropy, which
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would introduce the errors caused by the BRDF effects [55,56]. Considering the directional
dependence of reflectance, Roy et al. [56] presented a semi-physical fusion approach to
simulate Landsat surface reflectance based on MODIS BRDF data. This approach does not
require any adjustment parameters and cannot be affected by missing or contaminated
adjacent MODIS pixels. This makes it possible to solve retrieval errors caused by sudden
or gradual changes in the ground surface over a short time.

In this study, we further developed the satellite retrieval methodology to reestablish
an albedo dataset with high spatial-temporal resolution, by combining Landsat-8 data
and Collection V006 MODIS BRDF/albedo products (MCD43). Hence, the main aims
were to: (1) reduce uncertainties in applications involving heterogeneous landscapes and
improve the estimation accuracy of retrievals by taking advantage of existing anisotropic
information to effectively extract prior BRDF knowledge, and (2) capture short-term re-
gional disturbances in albedo, based on a simplified data fusion algorithm. The usability
and operability of these processes will provide a reference for the generation of high
spatial-temporal resolution albedo datasets using the data from other satellite systems.

2. Materials and Methods
2.1. Study Areas and Field Data

Crucial in the generation of fine-resolution albedo retrieval products is a requirement
for the field validation on different surface types and seasonal characteristics over long-
term temporal series. Surface albedo measured in situ using tower-mounted pyranometers
has been widely used to verify the surface albedo obtained from satellite data [30,46,57–60].
Since 1995, the SURFRAD budget network (https://gml.noaa.gov/grad/surfrad/index.
html) has been committed to supporting climate research through accurate, continuous,
and long-term field measurements. In addition, sites with extended areas of homogeneous
geomorphology and vegetation have been selected; field equipment have been established
for taking measurements at these sites–thus, fixed-point measurements can be qualitatively
used to represent large areas. These sites are called spatial representative sites and are
more suitable for the verification of albedo in pixels with larger spatial scales (such as
MODIS pixels). However, for non-representative sites with large spatial variability, the
field measurement data are not sufficient for representing the albedo of extended areas [61].
At measurement sites, the tower-height, effective field-of-view of the downward-facing
pyranometer, and area of ground covered are approximately 10 m, 1.8π sr, and 126 m
in diameter, respectively [46]. Coverage areas are larger than the spatial resolution of
Landsat, which aids the verification of the accuracy of the 30-m albedo retrieval results at
measurement sites [61,62]. In this study, we evaluated the accuracy of the retrieval results
using ground measurements from six SURFRAD sites (Table 1). And Figure 1 depicts the
land coverage types and locations of the six stations.

Table 1. SURFRAD ground stations used.

Site Name 1 Site ID Latitude Longitude Land Cover Type Landsat Path/Row Scenes 2

Table Mountain TBL 40.1256′N, 105.2378′W Grassland 34/32, 33/32 15
Desert Rock DRA 36.6232′N, 116. 0196′W Sparse vegetation, desert 40/34, 40/35 15

Fort Peck FPK 48.3080′N, 105.1018′W Grassland 35/26, 36/26 15
Goodwin GWN 34.2547′N, 89.8729′W Grassland, deciduous trees 23/36, 22/36 15
Penn State PSU 40.7203′N, 77.9310′W Agriculture 16/32 10
Bondville BON 40.0516′N, 88.3733′W Agriculture 23/32, 22/32 15
1 The sites in italics are spatially representative, with extended areas of homogeneous surfaces. 2 The number of selected scenarios, filtered
to exclude scenarios with cloud cover greater than 30% and with visible cloud cover at the sites.

https://gml.noaa.gov/grad/surfrad/index.html
https://gml.noaa.gov/grad/surfrad/index.html
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Figure 1. Images of the six ground sites and towers (Table 1) used in this study were acquired from high-resolution sat-
ellite data on https://www.google.com/earth. The red markers and black circles represent the location of the measure-
ment towers and the 126-m diameter area they covered, respectively. 

Figure 1. Images of the six ground sites and towers (Table 1) used in this study were acquired from high-resolution satellite
data on https://www.google.com/earth. The red markers and black circles represent the location of the measurement
towers and the 126-m diameter area they covered, respectively.

The albedo value measured in situ at Landsat local time is the average of the field-
measured values of the first half hour and the next half hour of Landsat’s transit time. As
instantaneous conditions such as clouds or birds cause instantaneous disruptions to the
accuracy of pyranometer measurements, noise is included in the analysis of albedo records.
Therefore, the measured albedo and the ratio of diffuse light to sky light per minute with
unusually large standard deviations are excluded [46]. Additionally, while all in situ field
measurements with clear days and no clouds were included, field measurements with
cloud cover greater than 30% and diffuse-to-total irradiance ratios greater than 30% at
local solar noon (LSN) were excluded. The measurement towers cover the same area as a

https://www.google.com/earth
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3 × 3 Landsat grid. For comparisons of the Landsat albedo to the measured in situ values,
we also used the cosine-factor-based upscaling method to aggregate the Landsat albedos
from 30-m resolutions to the measurement tower area of coverage [37,63].

2.2. Satellite Data

In this study, we used the latest version of the daily concurrent MODIS MCD43
V006 product and Landsat-8 OLI surface reflectance product to retrieve albedo for the
period between 2013 and 2016. The Landsat-8 data were obtained from the United States
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Science
Processing Architecture (ESPA) (https://espa.cr.usgs.gov), including 85 cloudless scenes
over nine different paths/rows (Table 1). The accuracy of Landsat-8 OLI surface reflectance
depends on atmospheric correction; thus, we used the Land Surface Reflectance Code
(LaSRC), which is an accurate atmospheric correction algorithm specially designed by USGS
for Landsat-8 data [64], for atmospheric correction. The concurrent MODIS BRDF/albedo
data (Collection 6) were downloaded from the Land Processes Distributed Active Archive
Center of the US National Aeronautics and Space Administration (NASA) and USGS
partnership (https://lpdaac.usgs.gov). The MCD43 BRDF V006 product, which has been
validated in the third stage [65], uses high-quality cloudless MODIS surface reflectance
data within 16-days to retrieve surface anisotropy information through a kernel-driven
model [20,61,66–68]. It includes surface BRDF parameters (MCD43A1), BRDF parameter
inversion quality (MCD43A2), albedo (MCD43A3), and Nadir BRDF-Adjusted Reflectance
(NBAR) (MCD43A4), and encourages users to use frequency-band-specific quality control
(QA) to obtain the highest quality complete inversion results [45,61,69]. Therefore, the
high quality BRDFs marked 0 were used. Both MCD43 BRDF and Landsat-8 OLI data are
available from https://earthdata.nasa.gov.

2.3. Methods
2.3.1. Theoretical Basis to Retrieve Albedo

The albedo inherent to natural surfaces depend on the anisotropic properties of the
land itself, the BRDF, which describes how surface reflectivity changes with the Solar
Zenith Angle (SZA) and viewing angle [70]. Currently, the recognized kernel-driven
model consists of an empirical, linear combination of three scattering properties, that can
accurately characterize the BRDF of surface patches [18,71,72]:

Rλ(θv, θs, ϕ) = fiso,λ + fvol,λKvol(θv, θs, ϕ) + fgeo,λKgeo(θv, θs, ϕ) (1)

Among them, R is the Bidirectional Reflectance Factor (BRF); λ is the given MODIS
spectral band; θv is the observation zenith angle; θs is the SZA; ϕ is the relative azimuth; θv
and ϕ are set to 0 to simplify the calculation when calculating the BRF for Landsat viewing.
Fiso, fvol and fgeo are the three spectral constants of BRDF, representing isotropic scattering,
volume scattering and geometric optical scattering, respectively. Kvol is the volume scatter-
ing kernel called Ross-Thick [71,72]. Kgeo is the geometric optical scattering kernel called
Li-Sparse-Reciprocal [18,73]. Once the surface anisotropy is clearly represented by the
BRDF parameters, the Black-Sky Albedo (BSA, Rλ) is obtained by integrating the viewing
angles over the entire hemisphere at any given SZA. The diffuse light is further integrated
at all illumination angles to obtain the White-Sky Albedo (WSA, Rλ).

Rλ(θs)= fiso,λ + fvol,λ(Hvol_0 + Hvol_1θs
2 + Hvol_2θs

3) + fgeo,λ(Hgeo_0 + Hgeo_1θs
2 + Hgeo_2θs

3) (2)

Rλ= fiso,λ + fvol,λHvol + fgeo,λ Hgeo (3)

where H is the integral value of the kernel function, please refer to Lucht et al. [18] for
specifics. At the same time, if the ratio of diffuse light radiation to the total radiation is
given under certain light conditions (Sθs ), combined with the BSA and WSA, the actual (or

blue-sky) albedo (Rλ(θs)) for a certain time such as could be obtained at the surface area
by satellites for that SZA [18,74,75].

https://espa.cr.usgs.gov
https://lpdaac.usgs.gov
https://earthdata.nasa.gov
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Rλ(θs) = (1− Sθs) · Rλ(θs) + Sθs · Rλ (4)

At present, it is hard to directly retrieve finer-resolution albedo with the kernel-driven
model, due to the difficulty in obtaining finer-resolution BRDFs. Fortunately, the concurrent
approach proposed by Shuai et al. [37] provides an idea for obtaining finer-resolution BRDF.
The concurrent approach made two assumptions that the land surface remains invariable
over a 16-day period and the AN ratio are similar in the homogeneous regions covered by
both MODIS and Landsat pixels (Equation (5)). Then, after unsupervised classification, it
finds the representative pixels (i.e., pure pixel) under the spatial resolution of MODIS, and
calculates the black-sky and white-sky AN ratio, aλ and aλ (Equation (6)).

aλ,l(Ωl) ≈ aλ,m(Ωl), aλ,l(Ωl) ≈ aλ,m(Ωl) (5)

aλ,l(Ωl) =
Rλ,m(θs)

Rλ,m(Ωl)
, aλ,l(Ωl) =

Rλ,m
Rλ,m(Ωl)

(6)

where m denotes the spatial resolution of MODIS 500-m, and l represents the spatial
resolution of Landsat 30-m. Ωl is the geometry for the Landsat radiance observation. Then,
assuming the land surface remains invariable over a 16-day period, the spectral AN ratio
of these pure pixels are used to calculate the spectral albedo for Landsat resolution through
Equations (7) and (8), according to the frequency band correspondence between Landsat
and MODIS sensors (as shown in Table 2).

Rλ,l(θs) = aλ,l(Ωl) · Rλ,l(Ωl) = aλ,m(Ωl) · Rλ,l(Ωl) (7)

Rλ,l = aλ,l(Ωl) · Rλ,l(Ωl) = aλ,m(Ωl) · Rλ,l(Ωl) (8)

Table 2. Equivalence of MODIS and Landsat-8 OLI spectral bands.

MODIS Landsat-8 OLI

Band 1 (0.620–0.670 µm) Band 4 (0.636–0.673 µm)
Band 2 (0.841–0.876 µm) Band 5 (0.851–0.879 µm)
Band 3 (0.459–0.479 µm) Band 2 (0.452–0.512 µm)
Band 4 (0.545–0.565 µm) Band 3 (0.533–0.590 µm)
Band 6 (1.628–1.652 µm) Band 6 (1.566–1.651 µm)
Band 7 (2.105–2.155 µm) Band 7 (2.107–2.294 µm)

2.3.2. BRDF Inversion by Prior AN Ratio and AFX

Although previous studies of surface anisotropy [33,76,77] have discovered an as-
sociation between characteristic BRDF shapes and various homogeneous surfaces, it is
unavoidable that the BRDF shapes retrieved from satellite data are frequently inexact
because veracity is muted by heterogeneous surfaces and complicated vegetation types
and fragmented structures within the same pixel [37]. The lack of classification of pure
pixels in the entire Landsat scene has further hampered the acquisition of exact BRDF
shapes [39,45,46]. To address this limitation, we propose to assume that, the near-infrared
(NIR) band prior knowledge can represent 500-m information, which is roughly the same
as 30-m information within.

In the search for suitable prior knowledge that satisfies this hypothesis, the anisotropic
information and ground scattering properties were considered. The spectral AN ratio,
which is related to anisotropic information and the SZA, has demonstrated the capacity
to capture BRDFs under specific solar illumination conditions. In particular, it is the
key factor for computing spectral albedo. In this study, the AN ratio was used as prior
knowledge for the determination of BRDF. Figure 2A,B shows the spectral AN ratio of the
Landsat red band and NIR band, using the spectral conversion coefficients provided by
He et al. [78]. The histograms of AN ratios in the red band and NIR band were obtained
through unsupervised classification (Figure 2C,D). It is worth noting that the AN ratio
shown in Figure 2A,B is slightly different from the AN ratio under real-world conditions,
because the 500-m grids smoothed the 30-m signal. The red band AN ratio is spatially
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fragmented (Figure 2A), while the NIR band AN ratio is relatively smoother within 500 m
(Figure 2B). At the same time, the NIR band AN ratio of each type (Figure 2D) is more
concentrated than that of the red band (Figure 2C), which indicates that the NIR AN ratio
is more suitable to satisfy the hypothesis. Therefore, the NIR band AN ratio was used as
one of the links that connect different scales.
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Figure 2. Spatial distribution of the ratio of MODIS WSA (white-sky albedo, after converting
spectral coefficients) to Landsat nadir reflectance, and histograms of AN ratio (Albedo-to-Nadir
reflectance ratio), obtained by unsupervised classification, in Northwest Mississippi, on 9 April 2014.
(A): red band AN ratio; (B): near-infrared band AN ratio; (C): histograms of red band AN ratio;
(D): histograms of near-infrared band AN ratio.

The BRDF shapes of the ground features depend not only on the spectral AN ratio
but also on the scattering characteristics. Therefore, it is necessary to introduce further a
priori knowledge to simultaneously describe the scattering properties of ground objects.
The anisotropic flat index (AFX) is a vegetation index that represents a nonlinear response
to changes in surface structure [79]. Further classification of AFX can produce BRDF
archetypes, which can be effectively used to classify BRDFs based on ground scattering
properties [50,79–81]. A study by Jiao et al. [49] showed that the range of variation of AFX
in the NIR band is lower than that in the red band, indicating that the NIR band AFX is
more stable than the red band AFX. Therefore, the NIR AFX was also used to retrieve the
BRDFs of pure pixels, as follows:
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AFXNIR = 1 +
fvol,NIR

fiso,NIR
× Hvol +

fgeo,NIR

fiso,NIR
× Hgeo (9)

The NIR AFX depends on two parameters: geometric optics and volume scattering.
When the volume scattering effect is greater than the geometric optical effect, AFX > 1;
when the geometric optical effect is larger than the volume scattering effect, AFX < 1; when
the two effects are very close, AFX ≈ 1. AFX reveals the relationship between the surface
scattering properties and the BRDF archetypes [49,79].

In summary, we used the NIR AFX and NIR AN ratio as prior knowledge for BRDF
inversion, fully utilizing all the high-quality BRDF data. Additionally, the BRDF spatial
distribution of each type was more suitable for obtaining the scattering properties and
angular characteristics of each location without the use of other auxiliary data. Refer to
Section 3.2. for specific operations.

2.3.3. Narrowband-to-Broadband Conversion

The spectral albedo cannot satisfy the research of energy balance on the land sur-
face, it is necessary to further convert the narrowband spectral albedo into broadband
shortwave (SW) albedo [57]. Narrowband-to-broadband (NTB) conversion coefficients
can be generated by simulating the spectral responses of various ground objects in the
digital spectrum library, based on the sensor’s extensive radiative transmission [57,82].
This method has been verified to be sufficient for estimating shortwave albedo from
spectral albedo [30,57,63,82]. The surface albedo is generated through the conversion
coefficients. In this study, we use the conversion coefficients for Landsat-8 OLI developed
by Wang et al. [30] under the condition of no snow.

2.3.4. Landsat Albedo Modulation

The assumption that the surface reflectance remains unchanged within 16-day periods
is reasonable when the surface changes slowly during the dormant season [37]. However,
during the growing season or the period of large-scale changes in land cover (such as fire,
snow cover, and melt), this assumption is broken because land cover types change rapidly.
Hence, we adopted a multi-temporal fusion method of MODIS-Landsat data based on the
MODIS backup algorithm [52], assuming that the MODIS modulation term C represents
the change in reflectance of the Landsat wavelength with similar spectra at the Landsat
scale. The prediction of Landsat reflectance at t2 from the Landsat observation data at t1 is
defined as:

C =
Rλ,m,t2(Ωl2)

Rλ,m,t1(Ωl1)
≈

Rλ,l,t2(Ωl2)

Rλ,l,t1(Ωl1)
, Rλ,l,t2(Ωl2) = C× Rλ,l,t1(Ωl1) (10)

As the MCD43A1 product provides shortwave BRDF parameters, we simplify the
modulation term C. Similarly, we suppose that the MODIS short-wave (SW) albedo change
is similar to the short-wave albedo change at the Landsat scale [42]. CSW represents the
multiplicative modulation term of the short-wave albedo, which is described as:

CSW =
RλSW ,m,t2(Ωl)

RλSW ,m,t1(Ωl)
(11)

Then, we can combine Equations (4), (10), and (11), based on the Landsat surface
reflectance data on the i-th day and the MODIS data on the j-th day (j ranges from 8 days
before i to 8 days after i); finally, retrieve the actual (blue sky) albedo of Landsat on the
j-th day:

Rλ,l,tj
(θs) = CSW × ((1− Sθs) · Rλ,l,ti

(θs) + Sθs · Rλ,l,ti
) (12)

Thus, the calculation procedure can be simplified, based on the existing data, avoiding
any impact arising from the disparity between the spectral response functions for the two
sensors [42,78].
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2.4. Data Processing
2.4.1. Data Preparation

The data processing in this article is shown in the flowchart (Figure 3). In order to
combine MODIS BRDF and Landsat surface reflectance, we need to establish the connection
between them. First, a cluster-based unsupervised classification (Iterative Self-Organizing
[ISO] data analysis) is used to classify the Landsat-8 data after atmospheric correction (the
number of categories is set to 10–15). Then, Landsat-8 coordinate system is converted from
the default WGS-84 projection to the SIN projection to associate with MODIS anisotropy
information. Next, the percentage of each type of 30-m patch throughout the MODIS
grid is calculated. The higher this percentage is, the more applicable the BRDF of coarse-
resolution pixels is to the finer 30-m pixels. All the 500-m pixels, whose category percentage
is higher than the given threshold (60%), are marked as pure pixels [40,83], that is, the
representative pixels. At the same time, the percentage is exported as a quality control
dataset. Lastly, the highest-quality MODIS BRDF parameters are extracted from the
concurrent MCD43A1 BRDF products (the quality is determined by the MCD43A2 QA
marks). For those categories that do not have pixels to meet the threshold conditions, the
pixels in the top 15% of the percentage in those categories are extracted, and the extracted
pixels of those categories are marked as low quality (Table 3).
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Table 3. The outcomes of BRDF inversion and the corresponding quality labels for each case.

Cases Representation AFX AN Ratio Quality Labels Meaning

A Y Y Y 0 High quality
B Y Y N 1 Good quality
C Y N Y 1 Good quality
D Y N N 2 Low quality
E N N/A1 N/A 2 Low quality
F N/A N/A N/A 15 NULL

1 Inversion failure.

2.4.2. BRDF Inversion

In the regions with similar spectral types of ground objects, BRDF parameters of all
high-quality pure pixels can be extracted by the quality control QA (MCD43A2). How-
ever, the value of BRDF parameters is still dispersed (Figure 4A). After the band quality
control QA in the MCD43A2, we find the high-quality NIR parameters of the BRDF in
the MCD43A1 and then calculate the NIR AN ratio (Equation (6)). The WSA after quality
control in MCD43A3 and the isotropic BRDF parameters in MCD43A1 are utilized to obtain
the white-sky AFX (Equation (9)) of each 500-m patch. To determine BRDF shapes, the
consideration is required to get appropriate threshold ranges of the prior AN ratio and
AFX. For AFX, we refer to the threshold ranges of six BRDF archetypal parameters by Jiao
et al. [49], as shown in Table 4. With regard to the AN ratio, threshold range of each patch
is set as [ANNIR, MEAN − 0.05, ANNIR, MEAN + 0.05]. ANNIR, MEAN is the average AN ratio
of a 500-m patch in 16 days.
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Table 4. AFX (the Anisotropic Flat Index) and six BRDF Archetypal ranges in NIR Band offered by
Jiao et al. [49].

Band AFX Range Mean AFX

NIR

[0.541, 0.804] 0.744
[0.804, 0.896] 0.853
[0.896, 0.966] 0.931
[0.966, 1.042] 1.002
[1.042, 1.142] 1.091
[1.142, 1.361] 1.203
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To seek the exact properties that each pixel has, we build a look-up table (LUT) for the
AN ratio and AFX of each category [63]. Then, each type of pure pixel that satisfies both the
AN ratio and the AFX threshold range is a spatial representative pure pixel. The average
value of selected pure pixels is taken as the reliable BRDF parameters, and their values
(Figure 4B) are more centralized than before (Figure 4A). The values of AFX and AN ratio
obtained by the new algorithm (dashed line) are no longer fixed to those corresponding to
the concurrent approach (solid line), but change with different spatial positions (Figure 4C).
Note that when the inversion fails, the BRDF average value of the successful inversion
within 16 days is used to fill, and the pixels of these categories are marked as low quality.
All quality marks are output with the BRDF inversion results, see Table 3 for details.

2.4.3. Shortwave Albedo Generation

In the Landsat scene, each 30-m patch has been assigned a daily change BRDF within
a 500-m grid. This provides a basis for the estimation of 30-m daily surface reflectance and
shortwave albedo under any zenith angle. After obtaining the BRDF parameters of all plots,
these BRDF parameters are used to calculate the black-sky and white-sky albedo of each
band under the Landsat viewing angle and solar illumination. Then, the spectral AN ratio
of all bands is obtained through Equation (6). Landsat data provide the surface reflectance
of each 30-m patch, which can be correlated with the spectral AN ratio of each patch to gain
the spectral albedo through Equations (7) and (8). Then, shortwave albedo is generated
through narrowband-to-broadband conversion, based on extensive radiant transmission
simulation. The modulation term CSW can reflect the changes in the albedo of the date that
Landsat has not observed. Hence, we use the BRDF parameters of shortwave albedo in
MCD43A1 to calculate the actual albedo and gain the multiplication modulation term CSW
of daily albedo. Then, CSW is used to transform the albedo that has been retrieved for the
day through Equation (12). Finally, the Landsat albedo is generated.

3. Results
3.1. Validation Results at SURFRAD

The results show the time series comparison of Landsat albedo obtained by the
concurrent approach and the new algorithm at six sites (Figure 5A–F). Figure 6 shows the
validation results of the concurrent approach product (hereafter ‘CAP’) and the new albedo
product (hereafter ‘NP’) at each site. In the extended Landsat coverage area, the ground
truth was well described by in situ measurements. Landsat albedo retrieval results showed
seasonal characteristics, with the highest value during the dormant period and the lowest
value when entering a complete growth period.

During growth and dormancy periods, the DRA was uniformly covered by deserts and
sparse vegetation, which occupied most regions covered by the Landsat data (Figure 5A).
Similarly, around the FPK and TBL sites (Figure 5C,E), there was relatively homogeneous
land cover, which enabled the retrieval of albedo from satellite data, and the collection
of a large amount of effective and coherent anisotropy information (i.e., pure pixels). At
three representative sites, the two Landsat albedo retrievals were in good agreement with
the field measurement, with positive and negative deviations evenly distributed. The
slopes of representative sites were almost within the 5% uncertainty range (Figure 6A,C,E).
Therefore, both albedo products showed high consistencies with field measurements at the
representative sites. However, with regard to the non-representative sites of BON, PSU, and
GWN, CAP satellite retrieval results poorly represented seasonal characteristics, translating
to large deviations during dormant periods and small deviations during growing periods
(Figure 5B,D,F). The uncertainties of non-representative sites were higher than 5%, but the
slopes of NP were closer to 1 than the slopes of CAP (Figure 6B,D,F).

Table 5 summarizes the evaluation of the accuracy of the two albedo products relative
to in situ measurements at six sites. After excluding cloud-contaminated albedo values,
the blue-sky albedo values from NP and CAP against in situ were used for statistics.
Uncertainty (root mean square error [RMSE]), accuracy (median deviation), offset (mean
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bias) and linear correlation (slope and correlation coefficient [R2]) for satellite retrievals
were included in the statistical processing [65]. The RMSE, median deviation, and mean
bias of CAP at representative sites were 0.015,−0.014, and−0.012, respectively, but showed
poor results at non-representative sites, with RMSE of 0.032, median deviation of −0.032,
and mean bias of −0.030 (Table 5). However, NP showed a slight improvement at the three
representative sites, with RMSE, median deviation and mean bias of 0.011, 0.004 and 0.002,
respectively. For the three non-representative sites of satellite retrievals, the RMSE dropped
from 0.032 to 0.020, median deviation decreased from −0.032 to −0.019 and the mean bias
decreased from −0.030 to −0.015. Therefore, NP had less uncertainty and better accuracy
than CAP.
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Figure 6. Validation of concurrent approach and new algorithm albedo products using in situ data from each site. Dotted
gray lines indicate 5% uncertainty of each site, solid lines are one-to-one lines. The slopes of the fitted lines were obtained
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Table 5. Comparison between the Concurrent approach and New algorithm for albedo retrieval.

Site ID# Samples
Concurrent Approach New Algorithm

RMSE Median
Deviation

Mean
Bias R2 Slope RMSE Median

Deviation
Mean
Bias R2 Slope

A
DRA 177 0.013 −0.010 −0.011 0.67 1.06 0.012 0.003 −0.002 0.39 1.02
FPK 103 0.017 −0.008 −0.013 0.71 1.10 0.011 0.005 0.004 0.81 0.97
TBL 131 0.014 −0.012 −0.011 0.81 1.07 0.011 0.004 0.002 0.75 0.96

Representative sites 311 0.015 −0.014 −0.012 0.96 1.07 0.011 0.004 0.002 0.94 0.98

B
BON 83 0.029 −0.026 −0.027 0.74 1.16 0.018 −0.013 −0.014 0.61 1.09
GWN 89 0.030 −0.033 −0.029 0.84 1.16 0.019 −0.021 −0.015 0.83 1.08
PSU 31 0.034 −0.032 −0.032 0.81 1.18 0.020 −0.016 −0.015 0.82 1.07

Non-representative
sites 206 0.032 −0.032 −0.030 0.77 1.18 0.020 −0.019 −0.015 0.78 1.09

All six sites 517 0.026 −0.028 −0.018 0.90 1.13 0.015 −0.011 −0.005 0.91 1.03

Although the albedo retrieval for each representative site was in good agreement
with the field measurements, the R2 for some sites were relatively abnormal (Table 5). The
R2 was relatively poor for representative site, such as DRA (R2 = 0.39). Conversely, the
R2 may have been higher for each non-representative site, such as GWN (R2 = 0.83). It
is worth noting that R2 would be very low even if the RMSE is small, if there is a weak
linear relationship between satellite retrieval and ground data, or if the amount of data
analyzed is small [37,39]. To reduce the impact, the data were analyzed using two groups:
representative and non-representative sites, as shown in Table 5. The results of CAP and NP
had high correlation coefficients at representative sites, 0.96 and 0.94, and lower correlation
coefficients at non-representative sites, 0.77 and 0.78, with overall correlation coefficients
of 0.90 and 0.91. Therefore, the correlations between the two products and the ground
measurements were similar.

Figure 7 shows the compared albedo retrieval results from the two algorithms for all
sites and all ground measurements; after aggregation, the total number of samples was 85.
At all sites, the slopes from the new algorithm (Figure 7B) were closer to 1 than those of
concurrent approach (Figure 7A). The overall RMSE decreased from 14% to 8%, the median
deviation dropped from −0.028 to −0.011 and the mean bias decreased from −0.018 to
−0.005. Therefore, the new algorithm has corrected the underestimation and improved the
accuracy of albedo retrieval.
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3.2. Comparison of Three Albedo Products

Figure 8 shows the spatial patterns of the albedo in the 15 × 15 km range of the GWN
site on 9 April 2014. The albedos from these three products visually had similar spatial
distributions in overall patterns, while the MODIS albedo smoothed tiny detail about the
surface. Therefore, the two kinds of Landsat retrievals have the potential to finely describe
tiny-scale natural surface detail in albedo.
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(B), and new algorithm product (C) over a range of 15 × 15 km at GWN on April 9, 2014. A dark red sign indicates the
location of the Goodwin Creek (GWN) site.

Figure 9 shows the histograms of the three albedo products in Figure 8. Here, the
standard deviation (Stdev) was used to quantify the magnitude of spatial heterogeneity
between the MODIS product, CAP, and NP. Unsurprisingly, the standard deviations of
both CAP and NP were significantly higher than that of MODIS albedo. The standard
deviation of the MODIS product was 0.009, while that of CAP and NP were 0.026 and 0.027,
respectively, indicating that the two finer albedo products had similar spatial heterogeneity.
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To test the spatial characteristics of the three albedo products, a random transect line
was graphed in Figure 8, from which the data were picked up for spatial characteristics
analysis. The results implied that the Landsat albedo retrievals had a better spatial expres-
sion capability, because they were more dramatic and greater fluctuation than the MODIS
product (Figure 10A). Figure 10B further qualitatively analyzes the spatial characteristics
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of three products. Obviously, the whiskers of NP albedo had greater range than other
products, which further indicated that NP had better spatial expression capability.
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3.3. Capture Daily Surface Dynamics

Although a finer resolution of surface albedo has been derived to describe fragmented
details, the 16-day Landsat reflectance makes it difficult to capture surface dynamics, espe-
cially in the growing and senescent seasons, which are of vital importance in monitoring
the seasonal characteristics of climate change. The new algorithm in this study generated
a synthetic 30-m high temporal-spatial resolution albedo to solve this problem. In the
growing season of GWN, we differentiated between the inversion results from 9 April
2014 and that from adjacent dates to identify daily changes in black-sky albedo in the
15 × 15 km range (Figure 11). As the new algorithm modulated albedo values, the signifi-
cant variations in albedo (difference > 0.01) were captured (Figure 11a–l; Figure 11c–p). We
calculated the daily mean albedo of the two products and the spatial correlation between
two products’ variation in the eight days as shown in Table 6. The results indicated that
NP not only reflected the daily albedo change such as MODIS with R2 higher than 0.7, but
also described the range of change more finely.

Table 6. Statistical results of the mean albedo of the two products, and the correlation between two
products’ variation in the eight days adjacent to 9 April 2014 at GWN (Figure 11).

Date 04/05 04/06 04/07 04/08 04/10 04/11 04/12 04/13

MODIS mean albedo 0.131 0.131 0.131 0.131 0.133 0.133 0.134 0.134
Landsat mean albedo 0.138 0.139 0.139 0.139 0.140 0.140 0.141 0.142

R2 0.76 0.87 0.87 0.86 0.81 0.79 0.71 0.71
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Figure 11. (a–h) depict the difference distributions of black-sky new albedo products from 9 April
2014 and that from adjacent dates (5th, 6th, 7th, 8th, 10th, 11th, 12th, and 13th of April 2014),
respectively, in the 15 × 15 km range at Goodwin Creek (GWN). (i–p) show the corresponding
difference distributions in MODIS black-sky albedo. Red depicts areas with higher albedo than 9 April
2014, and blue shows the opposite. (q–x) depict the corresponding quality marks of MODIS albedo.

4. Discussion
4.1. Performance Evaluation and Seasonal Deviation Analysis

High temporal-spatial resolution albedo is helpful for understanding the relationship
between surface energy balances, vegetation cover dynamics, and ecosystem disturbance.
In this study, NP had a lower uncertainty (RMSE of 8%) than CAP (RMSE of 14%), which
was approaching the requirement of the World Meteorological Organization (5%) [17].
Therefore, NP had favorable usability and robustness to produce high spatial-temporal
resolution albedo.
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Similar to previous retrieval results using the concurrent approach [37,39], CAP was
underestimated at all sites, compared with field measurements (Table 5). The deviation
is mainly due to the underestimation of dormant albedo at non-representative sites. The
reason could be that the single-type composition of these sites still contained a variety of soil
conditions (such as soil moisture, soil hardness, and planting types) [39,45]. In addition, the
fragmented vegetation at these sites is dominated by human disturbance events, because
the GWN site is covered with pasture, and both BON and PSU are agricultural research
fields. This means that albedo decreases rapidly after crops are planted and increases
rapidly after the crops are harvested. For these non-representative areas, the single-type
anisotropy information collected by the concurrent approach contains a variety of other
vegetation information, which hinders the accurate determination of BRDFs [45]. Therefore,
in these complex areas where land cover changes faster or slower than the average rate of
land cover in single type, seasonal deviations are likely to occur.

Fortunately, because the new algorithm incorporates the addition of prior NIR AFX [79]
and NIR AN ratio [37] in spatial differences, these complicated areas could be further
distinguished into combinations of various homogeneous surfaces, so that the seasonal
deviations were taken into account in an improved way. The retrieval errors have been
limited to each 500-m grid by the use of prior knowledge, instead of accumulating with
changes in spatial position. Therefore, the new method has shown favorable retrieval
capabilities at all sites, especially for those that are non-representative.

4.2. Spatial Heterogeneity

Regarding the spatial heterogeneity of three albedo products, Landsat albedo products
were significantly higher than that of MODIS (Figure 9). Especially, NP had better spatial
expression capability (Figure 10B). However, there was a consistent mismatch of mean
albedo among the MODIS albedo and NP in the extended heterogeneous area of GWN
(Table 6). According to Cescatti et al. [84], MODIS albedo retrievals for non-forested land
underestimate the field measurements of the entire seasonal cycle. This mismatch is likely
due to the extreme fragmentation of these landscapes [84].

4.3. Quality Control Suggestions and Limitations

Surface albedo is sensitive to atmospheric conditions, which the synthetic albedo
products cannot control the quality of albedo at simulated illuminations. Although MODIS
quality markers cannot describe the atmospheric conditions under the specific simulated
illumination of Landsat, data from multiple samples taken at different times gives a better
picture of the day’s weather. Additionally, the reliability of these variations depends on
MODIS albedo quality markers (Figure 11C), because the modulation term CSW at MODIS
scale is limited by the quality of satellite acquisitions [20]. Therefore, we suggested to use
both MODIS quality markers and BRDF inversion markers for the 30-m albedo quality
control to obtain the high-quality albedo.

In agricultural areas of GWN, spatial variations in albedo may be caused by crop
growth, human disturbance, or small-scale microclimates [40]. As a result, these finer
resolution albedo images not only captured details of surface heterogeneity, but also
reflected the small-scale changes in albedo caused by variations in surface conditions,
which is helpful for monitoring continuous small-scale changes in albedo (e.g., vegetation
phenology, fire, snow, and melt). Further study is needed to extend this study to different
land cover over a longer time-series, to accurately obtain the seasonal characteristics of
heterogeneous ground.

4.4. Other Sources of Errors and Potential Improvements

There are potential random and systematic errors in data processing, mainly caused
by MODIS/Landsat scale conversions and narrow-to-broad band conversion. Here, we
focused on the errors of the MODIS/Landsat scale conversions. First, it retrieves favorable
results for Landsat albedo, using NIR AFX and NIR AN ratio as a connection between
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Landsat and MODIS at different scales, to convert heterogeneous surfaces into appropriate
pure pixel values. Although using these two types of prior knowledge can most effectively
produce appropriate information for ground objects, outputs may be incorrect for some
land surfaces, because the properties of some 30-m surfaces may not fall within the 500-m
resolution of information provided by high-quality BRDF. Therefore, further research on
these specific land surfaces is needed, to find a more reliable retrieval method that suits
them. Second, although the simplified data fusion method can bypass the need to convert
multi-band spectral response functions and capture variations in albedo, the modulated
results might be unreliable because the 500-m smooth modulation term, C, may not match
fragmented Landsat patches. Hence, a more advanced method is required to reasonably
disaggregate the 500-m modulation term, C, to a 30-m resolution.

In addition, we note that another potential source of errors in albedo retrieval may be
the algorithm itself. With regard to the studies on validating albedo at ground observation
stations, the albedo retrieved by the kernel-driven model has generally lower values
than those from in situ site measurements [62,75]. Liu et al. [60] pointed out that with
increases in SZA, the negative deviation and RMSE of the albedo retrieval results from
the kernel-driven model increase. This means that the uncertainties in albedo retrieval
might be related to the SZA through the kernel-driven model. In this study, because
Landsat’s observation zenith angle and relative azimuth angle are both set to 0 to simplify
the calculation, the value of the volume scattering kernel is always zero, which would
result in erroneous BRF calculations for some SZAs via the kernel-driven model. Therefore,
using the kernel-driven model to calculate the AN ratio might produce inaccuracies for
some SZAs, causing systematic errors in the retrieval results. Further study is needed to
validate the reliability of AN ratio.

Practical solutions can reduce procedural difficulties and errors. In the Landsat
180 × 180 km scene range, using prior knowledge could reduce the number of pure pixels
that meet requirements or even lead to retrieval failure. To increase the possibility of pure
pixels being identified, Li et al. [46] suggested that multiple adjacent images collected on
the same day should be mosaicked to increase the chance of finding these pure pixels. It is
also possible to couple VIIRS BRDF with Landsat surface reflectance, and then select for
qualified VIIRS pure pixels to improve the quality of albedo retrievals [46]. Additionally,
terrain effects can cause distortion of the reflection shape and hemispherical distribution,
thereby affecting surface reflectivity [85]. In future research, a three-dimensional kernel-
driven model could be used to reduce the impact of terrain effects on albedo retrieval.

5. Conclusions

This study proposed a new method for estimating Landsat albedo by coupling MODIS
BRDF and Landsat-8 surface reflectance. These efforts have been verified at six SURFRAD
sites, and the main conclusions are the following:

• The results demonstrated that the new method had favorable usability and robustness,
with less uncertainty (RMSE of 0.015 [8%]), less offset (mean bias of −0.005), and
better accuracy (median deviation of −0.011) than CAP. In particular, the RMSE
for non-representative sites was significantly improved, mainly by corrections for
seasonal deviations.

• The new method can limit the seasonal deviations and capture subtle changes in
surface albedo of an extended heterogeneous surface. As a result, the new method
expands the capacity to retrieve albedo for complex heterogeneous surfaces, because
the retrieval errors have been limited to each 500-m grid by prior BRDF knowledge,
instead of accumulating with changes in spatial position.

• The new Landsat albedo product can accurately, finely, and continuously reveal more
dynamic surface information. In addition, this simple operability could enable users to
continuously and accurately retrieve albedo products with high spatial and temporal
resolution in the absence of other auxiliary data (such as topography, land cover types,
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or disturbance of nature). Therefore, the new method is quite practical and thus
very attractive.

Future work will be devoted to the additional verification of Landsat albedo products
for different types of surface areas over a longer period, and consider the impact of
topographical effects.
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BSA Black-Sky Albedo
CAP Concurrent Approach Product
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EROS Earth Resources Observation and Science
ESPA EROS Processing Architecture
FPK Fort Peck site
GWN Goodwin Creek site
ISO data analysis Iterative Self-Organizing data analysis
LaSRC Land Surface Reflectance Code
LSN Local Solar Noon
LUT Look-Up Table
MODIS MODerate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NIR Near-infrared
NP New albedo Product
NTB Narrowband-to-Broadband
POLDER Polarization and Directionality of the Earth Reflectance

https://lpdaac.usgs.gov
https://espa.cr.usgs.gov
https://gml.noaa.gov/grad/surfrad/index.html
https://www.google.com/earth


Remote Sens. 2021, 13, 4150 21 of 24

PROBA-V PROBA-VEGETATION
PSU Penn State University site
RMSE Root Mean Square Error
RSR Relative Spectral Response
SEVIRI Spinning Enhanced Visible and Infrared Imagers
STARFM Spatial and Temporal Adaptive Reflectance Fusion Model
SURFRAD Surface Radiation budget network
SW Short-wave
SZA Solar Zenith Angle
TBL Table Mountain site
USGS United States Geological Survey
VGT VEGETATION
VIIRS Visible Infrared Imaging Radiometer Suite
WSA White-Sky Albedo
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