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Abstract: The feasibility of rapid and non-destructive classification of six different Amaranthus
species was investigated using visible-near-infrared (Vis-NIR) spectra coupled with chemometric
approaches. The focus of this research would be to use a handheld spectrometer in the field to classify
six Amaranthus sp. in different geographical regions of South Korea. Spectra were obtained from
the adaxial side of the leaves at 1.5 nm intervals in the Vis-NIR spectral range between 400 and
1075 nm. The obtained spectra were assessed with four different preprocessing methods in order to
detect the optimum preprocessing method with high classification accuracy. Preprocessed spectra
of six Amaranthus sp. were used as input for the machine learning-based chemometric analysis.
All the classification results were validated using cross-validation to produce robust estimates of
classification accuracies. The different combinations of preprocessing and modeling were shown to
have a classification accuracy of between 71% and 99.7% after the cross-validation. The combination
of Savitzky-Golay preprocessing and Support vector machine showed a maximum mean classification
accuracy of 99.7% for the discrimination of Amaranthus sp. Considering the high number of spectra
involved in this study, the growth stage of the plants, varying measurement locations, and the
scanning position of leaves on the plant are all important. We conclude that Vis-NIR spectroscopy,
in combination with appropriate preprocessing and machine learning methods, may be used in the
field to effectively classify Amaranthus sp. for the effective management of the weedy species and/or
for monitoring their food applications.

Keywords: Amaranthus; chemometrics; Vis-NIR spectroscopy; machine learning; species discrimina-
tion; weeds

1. Introduction

Amaranthus is a cosmopolitan genus of herbs with about 70 species of plants world-
wide, and about nine species have been introduced into Korea [1]. It is widely distributed
from temperate regions to tropical regions worldwide, and it is very difficult to distinguish
morphologically due to a lot of intra-species hybridization [2]. The genus Amaranthus,
introduced into Korea, is mainly distributed in areas with relatively large ecosystem dis-
turbances, such as agricultural land, roadside, bare land, and riverside. Some important
species are slender amaranth (Amaranthus viridis L.), livid pigweed (A. lividus L.), spiny
amaranth (A. spinosus L.), red-root amaranth (A. retroflexus L.), speen amaranth (A. patulus
Bertoloni.), Powell’s amaranth or green amaranth (A. powellii S. Watson), slim amaranth
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(A. hybridus L.), tumbleweed (A. albus L.), sand amaranth (A. arenicola Johnst.), Palmer
amaranth (A. palmeri S. Watson) [3]. Though Amaranthus sp. are widespread in agricul-
ture and are observable throughout life, a new classification technique is needed because
they are difficult to distinguish and manage, particularly for quality control purposes [4].
Furthermore, plant databases are becoming increasingly important in order to conserve
endemic plants and classify the floral diversity of various species [5]. Species identification
of plants by leaf analysis is an important aspect of botany that is gaining more interest in
study for a variety of reasons, from industrial benefits to endangered species protection [6].
In addition, nearly all Amaranthus sp. are edible, but varieties sold for eating have been
selected for their good seed production and tasty leaves which are believed to be rich in
Vitamin C and iron with a taste rather like spinach [7].

Generally, the large number of plant species worldwide necessitates the adaption
and development of rapid and competent classification techniques which have become
an active area of research [8]. The basic chemical methods based on isoenzymes or DNA
analysis are also used for classification [9]. However, these methods are labor-intensive,
time-consuming and cannot be performed under field conditions [9]. Furthermore, sample
preparation procedures pose additional cost, time and technical accuracy issues, indicating
the need for a non-invasive alternative approach with better advantages [10,11]. Rapid non-
invasive approaches with remote analysis are constantly sorted to pace-up with the huge
volumes of available plant species for nutritional, economical and historical value [8,9].

Visible and Near-Infrared (Vis-NIR) spectroscopy is one such method that has re-
cently been employed in multiple studies for component detection and authentication
purposes [8]. Vis-NIR spectroscopy is a non-destructive analytical method with the advan-
tages of simple preprocessing and fast data acquisition methods that may be applied in the
agricultural industry for monitoring and quality control [9,12]. It is a quantitative method
based on Lambert Beer’s law, which states that when specific functional groups in a sample
are exposed to Vis-NIR rays, they cause molecular vibrations and absorb light of a specific
wavelength [13]. The degree of absorption is proportional to the concentration of functional
groups in the sample. Recently, Vis-NIR spectroscopy has been used to accurately identify
important chemical components in the pharmaceutical, food and agricultural industries [9].
Their potential for precise and reliable detection of plants is also being investigated [14–16].
According to the literature, Vis-NIR spectroscopy is frequently used in combination with
various chemometric and multivariate analyses which are selected based on the objectives
of the study [9,12,17]. Among these techniques, supervised and non-supervised classi-
fication techniques are the most commonly used techniques and they are based on the
fact that samples with similar spectral responses are similar in physical, chemical, and
biochemical properties [18]. NIR/Vis-NIR spectroscopy techniques have been used to
identify chemical properties in recent studies. The near-infrared spectrum has been used
to identify a variety of substances, including water physicochemical content, cellulose,
lignin, cutin, and xylan [19–21], protein powder [22] and even in genetically modified
foods. These were all achieved through the so-called “fingerprint” method, where a unique
spectrum/spectra can be used to define a particular component in the analytes [23].

Changes in Vis-NIR spectra are often too small to notice with the human eye that is
why the actual usefulness of Vis-NIR spectroscopy as an analytical tool is based on statistical
and mathematical manipulation of the spectral data [9]. It is also important to state that
the physical and the environment of experimental conditions can also influence spectra
quality during the Vis-NIR spectroscopy analysis [24]. Therefore, preprocessing techniques
have been proposed as one of the initial steps in the analysis of Vis-NIR spectroscopy data
for optimized results [25,26]. The combination of appropriate preprocessing, chemometric
tools and machine learning approaches with Vis-NIR spectroscopy has been used in various
aspects of the agricultural sciences [9]. This tool has demonstrated excellent results in
identifying plant species by measuring the near-infrared spectra of plant tissues (leaves,
timber, bark) in tropical rain forests. Sandak et al., [27] developed models for the automated
in-field determination of quality indices for log grading in mountain forests by means of a
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portable spectrometer. Durgante et al., [14] showed a high-level classification of closely
related species between the Eschweilera and Corythophora (Lecythidaceae) of the central
Amazon in the NIR spectral data from dry leaves.

Despite all this, there is no information on the development of a classification model
based on Vis-NIR spectroscopy and machine learning for Amaranthus sp. Hence, the
present study aims to analyze the potential of Vis-NIR spectroscopy to discriminate the
six Amaranthus sp. from different geographical locations in South Korea with different
preprocessing and machine learning approaches.

2. Materials and Methods
2.1. Plant Materials

Six Amaranthus sp. were identified and selected for species discrimination from six
different geographical locations in Korea (Table 1). Details of Amaranthus sp., distribution,
spectra collection sites, and number of measured spectra for each species were provided
in Table 1. Different geographical locations have different environmental conditions. The
typical images of the different Amaranthus sp. identified in the fields are shown in Figure 1.
The study was performed from May to July 2019 in six different geographical regions of
South Korea.

Table 1. List of Amaranthus sp. studied in this research.

Classes Scientific Name Vernacular Name Distribution in Korea
Sampling Location

(Latitude,
Longitude)

No. of Spectra

Class A Amaranthus patulus Bertol. Speen amaranth National distribution 36.23438, 128.7617 1000
Class B Amaranthus spinosus L. Spiny amaranth Southern distribution 33.32751, 126.2594 1001
Class C Amaranthus lividus L. Wild amaranth National distribution 36.54434, 127.1181 970
Class D Amaranthus viridis L. Green amaranth Southwest distribution 35.23967, 126.4599 1370
Class E Amaranthus retroflexus L. Red-root amaranth Northeastern distribution 37.61179, 128.7746 1001

Class F Amaranthus powellii S.
Watson Powell’s amaranth Northeastern distribution 37.56574, 128.4476 900

2.2. Spectral Measurement in the Field

For the visible and near-infrared (Vis-NIR) spectral acquisition, fully expanded leaves
with no signs of disease or insect damage were selected and an integrated portable spectral
analyzer (FieldSpec®® HandHeld 2, ASD Inc., Longmont, CO, USA), working in reflectance
mode (log/R) in the range of 400–1075 nm with a stepping of 1.5 nm was used. Spectral
measurement was performed directly on the adaxial surfaces of the leaves, which are most
noted for light capturing. For each leaf, three spectra were taken from different spots of
the leaf blade. During each acquisition, the optical window of the Vis-NIR device was
placed in direct contact with the surface of the leaf, making sure that the sensor window
was completely covered. To avoid the contamination of the adaxial surfaces with external
pollutants, vinyl gloves were used at all times when handling the leaves.

2.3. Preprocessing of Spectral Data

The initial spectrum comprised not only sample-related information, but also noise
signal generated by different variables, which not only interfered with spectral information,
but also hampered the model’s creation and prediction of unknown sample composition or
characteristics. To obtain the best discrimination model, four different types of spectral pre-
processing techniques were used. These included no treatment (raw data), normalization,
Savitzky-Golay [28], and standard normal variate [29] to find an optimal preprocessing
method that removes noise from the spectral data and improves predictability of the clas-
sification models. All the computations were carried out on Unscrambler®® X software,
version 10.5.1 (CAMO ASA, Oslo, Norway).
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(Table 1). 
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Figure 1. Morphological representation of the leaves of all the species tested in the field. (A) Amaranthus patulus Bertol.;
(B) Amaranthus spinosus L.; (C) Amaranthus lividus L.; (D) Amaranthus viridis L.; (E) Amaranthus retroflexus L.;
(F) Amaranthus powellii S. Watson. Figures were captured in different geographical locations where the analysis
has been done (Table 1).

2.4. Modeling and Statistical Analysis

To analyze the data extracted from the Vis-NIR spectroscopy, a data mining model was
developed. Model construction was performed with RapidMiner studios Version 9.0.002
(Rapidminer, Inc., Boston, MA, USA). Rapid miner is a software used for data mining
and machine learning. It was used to apply different algorithms on the dataset, and the
performance of each algorithm could be easily evaluated using the performance operator.
Four classification algorithms, namely the Support Vector Machine [30], Generalized Linear
Model [31], Decision Tree, and Naïve Bayes were used to find the best modeling approach
with higher classification accuracy. For each algorithm, the inputs were provided as the
data points of the spectra (absorbance values of wavelengths 400 nm to 1075 nm, with a
stepping of 1.5 nm) and the classes were the identification labels of each Amaranthus sp. All
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the classification results were validated using cross-validation to obtain robust estimates of
classification accuracies of the experiments [32]. One-way analysis of variance (ANOVA)
was performed when comparing means for testing the influence of:

(i) The application of a scatter correction method;
(ii) The four classification algorithms and,
(iii) The interaction of the two precious factors.

Tukey’s range test was used as mean comparison method at a significance level of
p ≤ 0.05.

3. Results
3.1. VNIR Spectra and Data Preprocessing

Raw spectra (without preprocessing) collected from the leaves of six Amarnathus sp. are
shown in Figure 2a–f. The X-axis represented the wavelength and the Y-axis indicated the
spectral absorbance (Figure 2). With the exception of A. viridis, no clear differences could be
visualized in the spectral patterns of the analyzed species (Figure 2a–f), but the average spectral
curves of Amaranthus sp. were somewhat different, suggesting the need for more detailed
mathematical analysis. The differences among the six Amaranthus sp. were further visualized in
PCA analysis, which showed 89.35% of the variance being expressed in the PC1. The different
species could be slightly visually separated in the plot, with the exception of A. patulus,
which overlapped with all the other species in the plot (Figure 3). Therefore, chemometric
methods were introduced to build more reliable qualitative models for classification after
outlier detection in PCA. Based on the visual inspection of the spectra prior to preprocessing
and outlier detection in PCA, some of the spectra that could be affected by measurement errors
were removed, and the final spectral library had a total of 6242 leaf spectra.

3.2. Chemometric Analysis-Based Species Discrimination

The classification accuracy of various machine learning approaches combined
with different preprocessing methods was calculated to identify the precise method
for the discrimination of Amaranthus sp. After the cross-validation, the classification
accuracy ranges from 71% to 99.7% for the different classification models, according
to the combination of preprocessing and models applied to the spectra (Table 2). For
Support Vector Machine, preprocessing with Derivative (Savitzky-Golay) yielded the
best classification accuracy of 99.7%. The best classification accuracy of 98% was also
achieved using the Derivative (Savitzky-Golay) preprocessing for the Generalized
Linear Model. For the Decision Tree and Naive Bayes classification models, the best
classification accuracy of 89.6% and 89% respectively, was achieved using the Standard
Normal Variate preprocessing technique. Overall, the Support Vector Machine yielded
the highest classification accuracy among all the tested classification models when only
raw spectra were used (98% with Savitzky-Golay Derivative).

In this study, normalization yielded the least performance accuracies method among
the tested preprocessing methods (Table 2). Generalized Linear Model and Support Vector
Machine accuracies were 93% and 91.3%, respectively, for normalization, whereas Naive
Bayes and Decision Tree accuracies were 78.3% and 72.8%, respectively. With Savitzky-
Golay preprocessing, the accuracies of Support Vector Machine and Generalized Linear
Model were 99.7% and 98%, respectively, while Naive Bayes and Decision Tree were 87.5%
and 89%, respectively. In the case of Standard Normal Variate preprocessing, Support
Vector Machine showed 98.8% accuracy, Generalized Linear Model 92.5%, Naive Bayes
89%, and Decision Tree 89.6%. It is not certain whether Vis-NIR spectroscopy can be applied
to varietal discrimination or classification of other plants, as there are numerous factors
such as light conditions and the state of the spectrum acquisition device that can affect the
results of applying spectral preprocessing methods.
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Raw spectra have been used. Axes are first and second principal components. 
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spectra have been used. Axes are first and second principal components.
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Table 2. Classification accuracy of the combinations of preprocessing and model for reflectance
spectra from six Amaranthus sp.

Model Preprocessing Average Accuracy
(%±SD) Run Time (ms)

Support Vector
Machine

Raw spectra 98.0 ± 0.008 * 11,535
Normalization (Area) 91.3 ± 0.014 19,456

Standard Normal Variate 98.8 ± 0.006 13,116
Derivative

(Savitzky-Golay) 99.7 ± 0.006 ** 11,535

Generalized Linear
Model

Raw spectra 74.5 ± 0.013 * 15,239
Normalization (Area) 93.0 ± 0.012 2568

Standard Normal Variate 92.5 ± 0.012 1727
Derivative

(Savitzky-Golay) 98.0 ± 0.008 ** 1541

Decision Tree

Raw spectra 85.5 ± 0.010 * 6878
Normalization (Area) 72.8 ± 0.012 5334

Standard Normal Variate 89.6 ± 0.012 ** 6714
Derivative

(Savitzky-Golay) 89.0 ± 0.030 3469

Naive Bayes

Raw spectra 71.0 ± 0.023 * 756
Normalization (Area) 78.3 ± 0.010 465

Standard Normal Variate 89.0 ± 0.013 ** 452
Derivative

(Savitzky-Golay) 87.5 ± 0.026 444

Key: *; Raw spectra **; Preprocessing method with the best accuracy.

3.3. Significance of Preprocessing and Selection of Optimal Classification Model

The effects of preprocessing and various modeling algorithms on spectral datasets ob-
tained from six Amaranthus sp. were statistically analyzed (Table 3). The mean percentage of
classification accuracy of each modeling method in combination with different preprocessing
methods shows the significant modeling for the discrimination of Amaranthus sp. after the
cross-validation (Table 3). Among them, the combination of the Generalized Linear Model
and the preprocessing Savitzky-Golay was found to be significant. It was proven that using
Savitzky-Golay preprocessing together with Support Vector Machine yielded the highest
mean percentage of classification of 99.7%. ANOVA statistical analysis in Table 4 represents
the effects of preprocessing and modeling approaches on species classification accuracy. The
effects of preprocessing in the discrimination of Amaranthus sp. found to be very significant
at p ≤ 0.05 (p-value of 0.0045) and the effects of modeling approaches were also analyzed
to be very significant at p ≤ 0.05 (p-value of 0.0039). However, the combination of prepro-
cessing and different models used together, there was no significance with p ≥ 0.05 (p-value
of 0.0549). Table 5 shows the confusion matrix that confirms through the degree of error
in the discrimination of different Amaranthus sp., also suggests that using Savitzky-Golay
smoothing combined with Support Vector Machine was the most effective method for the
classification. Among the six Amaranthus sp. except A. lividus, all five species (A. patulus,
A. spinosus, A. viridis, A. retroflexus, and A. powellii) showed perfect scores (percentage of
correct classification: 100%). In the case of A. lividus, when the accuracy of the spectrum was
verified with this combination, there was only one misclassified instance with A. retroflexus.

Table 3. Means of percentage of correctly classified six Amaranthus sp. from four different preprocessing and four different
classification model using reflectance spectra.

Model

Species Accuracy (% ± SE)

Raw Spectra Normalization
(Area)

Derivative
(Savitzky-Golay) SNV Significance

Naive Bayes 66.8 ± 9.7 ab 77.1 ± 7.1 85.0 ± 6.8 c 86.5 ± 8.5 ns
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Table 3. Cont.

Model

Species Accuracy (% ± SE)

Raw Spectra Normalization
(Area)

Derivative
(Savitzky-Golay) SNV Significance

Generalized Linear Model 54.2 ± 18.1 B b 90.2 ± 5.0 A 98.3 ± 0.8 A ab 94.2 ± 3.0 A *
Decision Tree 85.5 ± 3.0 ab 69.7 ± 15.1 86.8 ± 4.3 bc 93.7 ± 3.5 ns

Support Vector Machine 98.5 ± 0.8 a 95.0 ± 3.5 99.7 ± 0.6 a 99.4 ± 0.6 ns
significance * ns * ns

ns; not significant, *; significant with the p ≤ 0.05; Different alphabetical small and capital letters shows the significance of the value in the
order of column and row respectively.

Table 4. Analysis of variance of percentage of correctly classified six Amaranthus sp. from four
different preprocessing and four different classification model using reflectance spectra.

Source df SS MS F-Value p-Value

Preprocessing (P) 3 0.480118 0.160039 4.7 0.0045
Model (M) 3 0.491706 0.163902 4.82 0.0039

P × M 9 0.600699 0.066744 1.96 0.0549
Error 80 2.722771 0.034035
Total 95 4.295294

df: degree of freedom, SS: sum of squares, MS: mean sum of squares.

Table 5. Confusion matrix of species discrimination using different preprocessing methods and models.

RAW/SVM A. patulus A. spinosus A. lividus A. viridis A. retroflexus A. powellii Average
Accuracy (%)

A. patulus 86.21 0.00 6.90 0.00 0.00 6.90 86
A. spinosus 0.00 100.00 0.00 0.00 0.00 0.00 100
A. lividus 0.00 0.00 100.00 0.00 0.00 0.00 100
A. viridis 0.00 0.00 0.00 100.00 0.00 0.00 100

A. retroflexus 0.00 0.00 0.00 0.00 98.78 1.22 99
A. powellii 0.95 0.00 0.00 0.95 0.00 98.10 98

SG/SVM A. patulus A. spinosus A. lividus A. viridis A. retroflexus A. powellii Average
Accuracy (%)

A. patulus 100.00 0.00 0.00 0.00 0.00 0.00 100
A. spinosus 0.00 100.00 0.00 0.00 0.00 0.00 100
A. lividus 0.00 0.00 96.55 0.00 3.45 0.00 97
A. viridis 0.00 0.00 0.00 100.00 0.00 0.00 100

A. retroflexus 0.00 0.00 0.00 0.00 100.00 0.00 100
A. powellii 0.00 0.00 0.00 0.00 0.00 100.00 100

Normalization
/SVM A. patulus A. spinosus A. lividus A. viridis A. retroflexus A. powellii Average

Accuracy (%)

A. patulus 55.56 2.78 0.00 13.89 0.00 27.78 56
A. spinosus 3.13 95.31 0.00 0.00 0.00 1.56 95
A. lividus 0.00 0.00 87.88 0.00 3.03 9.09 88
A. viridis 0.00 0.00 0.00 100.00 0.00 0.00 100

A. retroflexus 0.00 0.00 0.00 0.00 100.00 0.00 100
A. powellii 3.74 0.00 0.00 0.00 4.67 91.59 92

SNV/SVM A. patulus A. spinosus A. lividus A. viridis A. retroflexus A. powellii Average
Accuracy (%)

A. patulus 92.86 0.00 0.00 7.14 0.00 0.00 93
A. spinosus 0.00 76.83 17.07 2.44 3.66 0.00 77
A. lividus 0.00 0.00 100.00 0.00 0.00 0.00 100
A. viridis 0.00 0.00 0.00 100.00 0.00 0.00 100

A. retroflexus 0.00 0.00 0.00 0.00 100.00 0.00 100
A. powellii 0.00 0.00 1.72 0.00 0.86 97.41 97
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4. Discussion

Field spectroscopy has been widely used for the effective discrimination of plant
species in fields and forests. The main issue in this is distinguishing the derivation of
spectral response among the different species [33,34]. Presently, NIR spectroscopy with
the combination of machine learning approaches has solved the issues. Generally, the
Vis-NIR spectra might have substantial noise from the instrument and the environment. To
reduce noise and to obtain proper results, preprocessing methods are highly useful [35].
Fernández-Cabanás et al., [36] noted that the selection of a suitable spectral preprocessing
is not easy because several different mathematical transformations are likely to be used.
Different preprocessing methods lead to different prediction results. As shown in Figure 4,
the preprocessed spectra with three preprocessing methods (normalization, Savitzky-Golay
and standard normal variate) effectively reduced the influence of noise and enhanced the
resolution and characteristics of spectra in comparison with the raw spectra. The best
preprocessing choice for spectral analysis should be performed based on a combination of
statistical testing and model prediction with regards to the objective of the study [37].
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Model selection is an important part of mathematical modeling which is often per-
formed based on the complexities of the developed models and their prospective appli-
cation [9,38]. Support Vector Machine can be well applied to high-dimensional data, and
there is no limit to the value of each attribute [39]. This method produced classification
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accuracies similar to ours for the classification of cotton leaf through image analysis [40]
and also for the detection of tomato [41] and guava [42] plant disease through leaf analysis.
Bergo et al., [43] used NIRs and PLS-DA to distinguish between Swellenia macrophylla
and Carapa guianensis. Soares-Filho et al., [44] were successful in classifying six look-alike
Amazon species of mahogany using a handheld NIRs instrument. Buitrago et al., [45]
selected the wavelengths that most effectively distinguish 19 species from infrared spectra
using the fresh leaf spectrum. Hadlich et al., [16] identified 11 species in the Amazon forest
using Vis-NIR spectra from the outer or inner shells of the trees collected by the handheld
spectrometer in the field. This study confirmed that discrimination and classification of
Amaranthus sp. in the field using portable Vis-NIR spectroscopy is possible in combination
with different machine learning techniques. Previously, the discrimination of Amaranthus
sp. would have been successfully performed with biochemical and DNA-based meth-
ods [4,46,47] but in this study, Vis-NIR spectroscopy proved capable of discriminating six
Amaranthus sp. This is particularly important because the method is speedy and affordable.
In addition, the plant has recently been rediscovered as a promising food crop, mainly
due to its resistance to heat, drought, diseases and pests, and the high nutritional value of
both seeds and leaves [48]. For example, the gluten-free seeds have a nutty flavor and are
high in protein and calcium, while the leaves are reported to be rich in antioxidants and
phytochemicals, depending on the species [49].

The species accuracy (71~99.7%) obtained from the Amaranthus spectrum dataset
achieved a very high level of classification goal considering the growth stage of the plant,
other measurement locations, and the measurement location of leaves on the plant. Changes
in spectral properties related to the biochemical composition and structure of leaves, which
depend on many factors such as the leaf developmental position or the leaf microclimate
position on the plant species and plant body, are known to be powerful factors that induce
spectra differentiation [50]. Due to changes in cell wall composition such as polysac-
charides, proteins, and phenolic compounds, all of which can show significant changes
throughout the plant growth period [51,52]. There are often spectral differences between
different growth stages of the same species, but research suggests that plant species can be
distinguished if the differences in spectral signatures between plant species are sufficiently
large [15]. Early studies of plants using diffuse reflectance measurements suggested that
plant cuticles and underlying cell walls determine spectral features [19,53]. Consequently,
various symbionts, parasites, and epiphylls are found in and on plant tissue. In addition,
these can modify the spectral signature. Discriminant functions graphs based only on
young samples always show greater separation of species than graphs from adults, which is
thought to be due to shared biotic contaminants, suggesting that some convergence occurs
in mature plants [15]. Castro-Esau et al., [54] suggested that leaves of the same species, but
of different age and health, will vary widely in their spectral reflectance properties, and that
the internal leaf structure affects leaf reflectance in the near-infrared region. However, some
plant species show spectral differences depending on the developmental stage, while others
show the opposite. Therefore, it can be said that more research is needed to determine
whether the morphological and chemical changes according to the developmental stage
are the same phenomenon in plant species.

5. Conclusions

The results of this study demonstrated that Vis-NIR spectroscopy has the capability
to discriminate Amaranthus sp. with a notable accuracy, up to 99.7%. A combination of
Savitzky-Golay and Support Vector Machine yielded high reliability in the development
of a varietal classification model, suggesting the possibility of Amaranthus sp. remote
field analysis using Vis-NIR. Through this study, it can be said that the possibility of
developing a technology that can classify Amaranthus sp. easily, quickly, and accurately
even at the young stage of plants is possible and is recommended to be explored. In future
studies, we recommend using Vis-NIR spectroscopy in combination with the appropriate
preprocessing and models that can be helpful in the development and maintenance of plant
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libraries through species identification and discrimination. The study can be expanded
for multiple applications in botany, such as the early diagnosis of certain plant diseases to
reduce postharvest losses and also for guaranteed quality assurance in the food industries.
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