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Abstract: Remote sensing scene classification remains challenging due to the complexity and variety
of scenes. With the development of attention-based methods, Convolutional Neural Networks
(CNNs) have achieved competitive performance in remote sensing scene classification tasks. As
an important method of the attention-based model, the Transformer has achieved great success in
the field of natural language processing. Recently, the Transformer has been used for computer
vision tasks. However, most existing methods divide the original image into multiple patches and
encode the patches as the input of the Transformer, which limits the model’s ability to learn the
overall features of the image. In this paper, we propose a new remote sensing scene classification
method, Remote Sensing Transformer (TRS), a powerful “pure CNNs→ Convolution + Transformer
→ pure Transformers” structure. First, we integrate self-attention into ResNet in a novel way, using
our proposed Multi-Head Self-Attention layer instead of 3 × 3 spatial revolutions in the bottleneck.
Then we connect multiple pure Transformer encoders to further improve the representation learning
performance completely depending on attention. Finally, we use a linear classifier for classification.
We train our model on four public remote sensing scene datasets: UC-Merced, AID, NWPU-RESISC45,
and OPTIMAL-31. The experimental results show that TRS exceeds the state-of-the-art methods and
achieves higher accuracy.

Keywords: transformers; deep convolutional neural networks; multi-head self-attention; remote
sensing scene classification

1. Introduction

With the rapid development of remote sensing technology and the emergence of
more sophisticated remote sensing sensors, remote sensing technologies have been widely
used in various fields [1–4]. As one of the core tasks of remote sensing, remote sensing
scene classification is often used as a benchmark to measure the understanding of remote
sensing scene images. The progress of remote sensing scene classification often promotes
the improvement of other related tasks, such as remote sensing image retrieval and target
detection [1,2].

The traditional remote sensing scene classification method mainly relies on the spatial
features of images [5,6]. However, the error rate is high in the complex remote sensing scene.
In recent years, many deep convolutional neural network models have made significant
progress in remote sensing scene classification with the development of deep learning. The
convolution operation can effectively obtain the local information of the image. The authors
of [7,8] proved that different features can be extracted by convolutional layers of different
depths. To aggregate global features, neural networks based on convolution operations
need to stack multiple layers [9]. He et al. [10] proposed ResNet to make Convolutional
Neural Networks(CNNs) deeper and easier to train. However, Liang et al. [11] suggested
that only relying on a fully connected layer to complete the classification ignores the
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features of different convolutional layers in CNNs. Compared with stacking more layers to
improve the accuracy of remote sensing scene classification, it is a more effective way to
establish the relationship between local information through the attention mechanism.

The self-attention-based structure proposed in Transformer [12] is dominant in natural
language processing (NLP) tasks. Self-attention can learn abundant features from long-
sequence data and establish the dependency relationship between different features. Bert
and GPT [13–16] were proposed based on Transformer architecture. Inspired by the success
of NLP, many researchers applied self-attention to computer vision tasks. Wang et al. [17]
and Ramachandran et al. [18] proposed a special attention mode to completely replace
convolution operation, but it has not been extended to modern hardware accelerators.
SENet [19], CBAM [20], SKNet [21], and Non-Local Net [22] combine self-attention with
CNNs (such as ResNet). However, convolution operations are still the core of these
methods, and self-attention is added to the bottleneck structure in the form of additional
modules. Recently, Transformer architecture applications to computer vision tasks have
shown great prospects. Dosovitskiy et al. [23] proposed the Vision Transformer (ViT). The
ViT directly inputs the image into the standard Transformer encoder, which can learn the
dependencies of different positions of the image well, but ignores the overall semantic
features of the image, and the accuracy of ViT is only close to that of CNNs. Several
works have also used the “Convolution + Transformer” structure. Touvron et al. [24] used
knowledge distillation technology to allow CNN to assist in training the ViT, but this made
training difficult. Carion et al. [25] proposed end-to-end DETR. DETR uses CNNs as the
backbone to extract features and connects with Transformers to complete object detection.
However, DETR has not been proven to be good for image classification.

Due to the lack of inductive bias [25,26], the number of images in the remote sensing
scene dataset is not enough for the Transformer to achieve good results without the Ima-
geNet1K pre-trained model. Therefore, we need to combine CNNs with Transformers. The
existing “Convolution + Transformer” models reshape the outputs of the CNN backbone
and connect them with Transformers. We believe that the existing models ignore the infor-
mation contained in the three-dimensional representations of images. Therefore, we aim to
design a Transformer capable of processing the three-dimensional matrix as a transition
module between CNNs and standard Transformers. We are surprised to find the unique
relationship between the standard bottleneck structure and the Transformer architecture
(for details, see Section 3.4). Therefore, we propose the MHSA-Bottleneck.

In this paper, we develop a remote sensing Transformer (TRS) based on ResNet50 and
Transformer architecture, which significantly boosts the remote sensing scene classification
performance and reduces the dependence of the model on convolution operation. We pro-
pose a novel “pure CNNs→ Convolution + Transformer→ pure Transformers” structure.
Different from the conventional “Convolution + Transformer” method, we do not simply
connect the CNNs and Transformers, but integrate the Transformers into CNNs. We replace
the last three bottlenecks of ResNet50 with multiple Transformer encoders and design
the MHSA-Bottleneck. We replace the 3 × 3 spatial convolutions in the bottleneck with
position-encoded Multi-Head Self-Attention rather than using the attention mechanism as
an auxiliary module to the convolution module. Our contribution is not only the successful
application of Transformers to remote sensing classification tasks, but also the provision of
a special way to understand bottleneck structure.

We summarize our contributions as follows:

(1) We apply the Transformer to remote sensing scene classification, and propose a novel
“pure CNNs→ CNN + Transformer→ pure Transformers” structure called TRS. The
TRS can well combine Transformers with CNNs to achieve better classification accuracy.

(2) We propose the MHSA-Bottleneck. The MHSA-Bottleneck uses Multi-Head Self-
Attention instead of the 3 × 3 spatial convolutions. The MHSA-Bottleneck has fewer
parameters and better effects than the standard bottleneck and other bottlenecks
improved by the attention mechanism.
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(3) We also provide a novel way to understand the structure of the bottleneck. We
demonstrate the connection between the MHSA-Bottleneck and Transformer, and
regard MHSA- Bottleneck as a 3D Transformer.

(4) We complete training on four public datasets NWPU-RESISC45, UC-Merced, AID,
and OPTIMAL-31. The experimental results prove that TRS surpasses the existing
state-of-the-art CNNs methods.

The rest of this paper is organized as follows. Section 2 introduces our related work,
and Section 3 introduces the structure and algorithm of the TRS in detail. The ablation study
and state-of-the-art comparison are shown in Section 4. Section 5 presents the conclusion
of our article.

2. Related Works
2.1. CNNs in Remote Sensing Scene Classification

CNNs have been the dominant method of image classification, since AlexNet [27]
won the ImageNet competition in 2012. The emergence of various CNNs has made a
great contribution to the improvement of image classification accuracy. These deep models
also demonstrate good performance on remote sensing datasets. Cheng et al. [28] fine-
tuned AlexNet [27], GoogleNet [29], VGGNet [9], etc., and proposed a benchmark for
remote sensing scene classification. Due to the excellent performance of the optimized
VGG-16 [30], it is often used as the backbone for feature extraction. The ResNet [10]
increases the depth of the network, reduces the model parameters, and improves the
training speed by using residual modules. EfficientNet [31] balanced the depth and width
of the network to obtain a better result. Bi et al. [32] proposed an Attention Pooling-
based Dense Connected Convolutional Neural Network (APDC-Net) as the backbone and
adopted a multi-level supervision strategy. Hu et al. [33] believed that the abundance of
prior information was an important factor that affected the accuracy of remote sensing
scene classification, and proposed to pre-train the model on ImageNet. Li et al. [34] used
different convolutional layers of a pre-trained CNN to extract information. Zhang et al. [35]
proposed the Gradient Boosting Random Convolutional Network (GBRCN), which selected
different deep convolutional neural network models for different remote sensing scenes.
The problem with the CNNs is that they can only focus on the local information of the size
of each convolution kernel. In order to solve this problem, GBNet [36] integrated layered
feature aggregation into an end-to-end network. Xu et al. [37] proposed the Lie Group
Regional Influence Network (LGRIN) which combined the lie group machine learning with
CNNs and achieved state-of-the-art.

2.2. Attention in CNNs

Although integrating multi-layer features and increasing the depth of the network
can improve the classification accuracy, it is clearly a better choice to use local information
to establish dependencies. The attention mechanism is widely used to obtain global
information of CNNs. For example, Wang et al. [38] proposed a “CNN + LSTM” model
in ARCNet, which used LSTM to replace feature fusion to establish connections between
multiple layers. Yu et al. [39] present Attention GANs. Attention GANs are optimized with
attention and input the learned features into SVM [40–42] or KNN [43–50] for classification.
There are also methods to optimize the bottleneck of ResNet with unique self-attention.
SENet [19] proposes the Squeeze-and-Excitation (SE) module to learn the relationship
between channels. The Squeeze operation in the SE module is used to obtain the channel-
level global features from the feature map. Then, the SE module performs an Excitation
operation on the global features. CBAM [20] adds spatial attention based on SENet. Non-
Local Net [22] combines the Transformer and Non-Local algorithms to capture remote
dependencies through global attention. ResNeSt [51] introduces the Split-Attention block
to realize multi-layer feature-map attention. There are three differences between the MHSA-
Bottleneck and bottleneck optimized by the above methods: (1) Compared with Non-Local
Net, the MHSA-Bottleneck uses multiple head vectors and adds position embedding.
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(2) The MHSA-Bottleneck uses Multi-Head Self-Attention instead of the 3 × 3 spatial
convolutions. SENet, CBAM, and Non-local Net are usually added to the bottleneck
structure in the form of additional modules, which increase the model parameters and
calculation cost. (3) The convolution mechanism is still the core of SENet, CBAM, Non-local
Net, and ResNeSt. The MHSA-Bottleneck deletes the 3×3 space convolutions and relies on
Multi-Head Self-Attention for learning.

2.3. Transformer in Vision

The Transformer was originally proposed by [12] for natural language processing
tasks. Self-attention was introduced in the Transformer, which has the advantage of
performing global calculations on input sequences and summarizing the information
for an update. In the fields of NLP and speech recognition, Transformers are replacing
Recurrent Neural Networks [52–55]. Recently, several works have applied the Transformer
to computer vision. Parmar et al. [56] initially used each pixel of the image as the input of
the Transformer, which greatly increased computational cost. Child et al. [57] proposed
Sparse Transformers which are scalable modules suitable for image processing tasks. Vision
Transformer [23] divided a picture into multiple patches as input of the model, and the size
of each patch was 16× 16 or 14× 14. However, the ViT ignores the overall semantic features
of the image and requires additional datasets to assist training [58]. Bello et al. [59] proposed
a combination of CNNs and Transformers. DETR [25] used Transformers to further process
the 2D image representation output by CNNs. Tokens-to-Token (T2T) ViT [60] designed a
deep and narrow structure for the backbone, and proposed a “Tokens-to-Token module”
to model local information. DieT [24] used the T2T for reference and uses knowledge
distillation [61,62] to improve the original ViT. The PVT [25] combines convolution and
the ViT to make it more suitable for downstream tasks. The Swin Transformer [63] uses
window attention to combine global and local information, and it is one of the best models.
However, the Swin Transformer and PVT still lack inductive bias and need a large number
of datasets to complete training. Recently, many researchers have applied Transformer to
remote sensing tasks. MSNet [64] proposes a network fusion method for Remote Sensing
Spatiotemporal Fusion. Bazi et al. [65] use the structure of the ViT to remote sensing scene
classification. Xu et al. [66] combine the Swin Transformer and UperNet for remote sensing
image segmentation. These methods all migrate the existing Transformer structure to
remote sensing tasks, and the lack of inductive bias is not resolved.

3. Methodology
3.1. Overview of TRS

The design of the TRS is based on ResNet50 architecture, which consists of four
parts: the stem unit, standard bottleneck, MHSA-Bottleneck, and Transformer encoder.
Figure 1 demonstrates the overall architecture of the TRS. First, we used CNNs (stem unit
+ bottleneck) and the MHSA-Bottleneck to learn the 3D representation of input images.
Then, we added position embedding and class token to the representation and passed it to
the Transformer encoders. Finally, a linear classifier is used to complete the classification.
The details of the model are described in Table 1.
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Table 1. The details of the TRS model.

Stage Output ResNet50 TRS

S1 112 × 112 7 × 7, 64, stride 2 7 × 7, 64, stride 2

S2 56 × 56

3 × 3 max pool, stride 2 3 × 3 max pool, stride 2

1 × 1, 64
3 × 3, 64 ×3

1 × 1, 256

1 × 1, 64
3 × 3, 64 ×3

1 × 1, 256

S3 28 × 28
1 × 1, 128

3 × 3, 128 ×4
1 × 1, 512

1 × 1, 128
3 × 3, 128 ×4

1 × 1, 512

S4 14 × 14
1 × 1, 256

3 × 3, 256 ×6
1 × 1, 1024

1 × 1, 256
MHSA, 256 ×9

1 × 1, 1024

S5
7 × 7 1 × 1, 512

3 × 3, 512 ×3
1 × 1, 2048

Transformer
Encoder ×12197 × 768

S6 1 × 1 Average pooling
Fc.softmax Fc.softmax

3.2. Stem Unit

CNNs usually start from a stem unit that can quickly reduce image resolution. Similar
to ResNet50, TRS starts with a 7 × 7 convolution kernel, stride-2, and three zero-padding
layers. As the Transformer has strict restrictions on the input data, different convolution
operations were selected for images in different sizes. For example, when the resolution of
the remote sensing image was 600 × 600, we used two 7 × 7 convolution kernels with the
stride of 5 and 1, respectively, as the stem unit.

3.3. Transformer Architecture

We only chose the Transformer encoder as a component of the TRS. As shown in
Figure 2, the overall Transformer encoder architecture consists of three parts: Multi-Head
Self-Attention, position embedding, and the feed-forward network.



Remote Sens. 2021, 13, 4143 6 of 24
Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 2. The overall architecture of Transformer encoder. We use absolute position embedding in 
Transformer encoder. 

Multi-Head Self-Attention: Multi-Head Self-Attention is an important component for 
modeling the relationship between feature representations in the Transformer. As shown 
in Table 1, the output of Stage4 (S4) was I = (14, 14, 1024). We put I into a convolution 
kernel with a kernel size of 1 × 1 to get I’= (14, 14, d). We added the class token to I’ and 
flattened the first two dimensions. Then, we obtained N d-dimensional vectors as the in-
put of the Transformer encoder (N = 14×14 + 1). M = (N, d) denotes the input of the Trans-
former. The self-attention layer, as proposed in [14] which uses the query, key and value 
matrix (QKV) to train the associative memory. The calculation method of the QKV matrix 
is shown as follows: 𝑄 = 𝑀 𝑊  𝐾 = 𝑀 𝑊  𝑉 = 𝑀 𝑊 , 

(1) 

where WQ, WK, and WV are trainable matrices. We use the inner product to match the Q 
matrix and the K matrix, and used d1/2 to complete the normalization. Then, we used the 
Softmax function to process the normalized inner product result. The output of self-atten-
tion is expressed as: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥( √ )𝑉, (2) 

The authors of [14] proved that multiple attention heads can learn detailed infor-
mation and improve classification performance. Multi-Head Self-Attention involves di-
viding Q, K, and V into several attention heads. We set the number of attention heads as 
h, d’ = d/h. We used h heads of size (N, d’) for calculation according to (2). Finally, we 
remapped the output matrix to (N, d). 

Position Embedding: The self-attention structure in the Transformer cannot capture 
the order of the input sequence. Thus, we used position embedding to supplement the 
position information of the remote sensing image [14]. Since different functions should be 
used to complete position encoding in different dimensions, we used the Cosine function 
and the Sine function to calculate the absolute position according to the odd and even 
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Multi-Head Self-Attention: Multi-Head Self-Attention is an important component for
modeling the relationship between feature representations in the Transformer. As shown in
Table 1, the output of Stage4 (S4) was I = (14, 14, 1024). We put I into a convolution kernel
with a kernel size of 1 × 1 to get I’= (14, 14, d). We added the class token to I’ and flattened
the first two dimensions. Then, we obtained N d-dimensional vectors as the input of the
Transformer encoder (N = 14 × 14 + 1). M = (N, d) denotes the input of the Transformer.
The self-attention layer, as proposed in [14] which uses the query, key and value matrix
(QKV) to train the associative memory. The calculation method of the QKV matrix is shown
as follows:

Q = M×WT
Q

K = M×WT
K

V = M×WT
V ,

(1)

where WQ, WK, and WV are trainable matrices. We use the inner product to match the Q
matrix and the K matrix, and used d1/2 to complete the normalization. Then, we used
the Softmax function to process the normalized inner product result. The output of self-
attention is expressed as:

Attention(Q, K, V) = So f tmax(
QKT
√

d
)V, (2)

The authors of [14] proved that multiple attention heads can learn detailed information
and improve classification performance. Multi-Head Self-Attention involves dividing Q,
K, and V into several attention heads. We set the number of attention heads as h, d’ = d/h.
We used h heads of size (N, d’) for calculation according to (2). Finally, we remapped the
output matrix to (N, d).

Position Embedding: The self-attention structure in the Transformer cannot capture the
order of the input sequence. Thus, we used position embedding to supplement the position
information of the remote sensing image [14]. Since different functions should be used to
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complete position encoding in different dimensions, we used the Cosine function and the
Sine function to calculate the absolute position according to the odd and even dimensions
of the vector, respectively. The specific calculation method of position embedding is
as follows:

PE(pos, 2i) = sin( pos
λ2i/d )

PE(pos, 2i + 1) = cos( pos
λ2i/d ),

(3)

which meets pos∈N, i∈d. λ is a hyperparameter that controls the wavelength of the periodic
function. Position embedding was added to the Q and K matrices.

Feedforward networks (FNN): FNN is composed of two fully connected layers: FC1
and FC2. FC1 changes the input dimension from (N, d) to (N, 4d), and FC2 changes the
dimension from (N, 4d) back to (N, d). Gaussian Error Linear Units (GeLU) [67] are used as
the activation function of FC1. GeLU combines dropout, Zoneout, and ReLU [68]:

GeLU(x) = xδ(x), (4)

where δ(x) is the probability function of the normal distribution. Assume that δ(x) conforms
to the standard normal distribution, and the approximate calculation formula of GeLU [67]
is as follows:

GeLU(x) = 0.5x(1 + tanh(

√
2
π

(
x + 0.44715x3

)
), (5)

We used the dropout function to process the output of FC2, and the dropout rate was
0.1. The Layer norm [69] was used for normalization in the Transformer. We performed
the normalization operation after the Multi-Head Self-Attention and FNNs, respectively.
In the TRS, we replaced the last three bottlenecks of ResNet50 with multiple Transformer
encoders. Finally, the fully connected layer, activated by a Softmax function, was used to
predict the categories of the remote sensing scenes.

3.4. MHSA-Bottleneck Architecture

As shown in Figure 3, the MHSA layer was used to replace the 3 × 3 spatial con-
volutions in the bottleneck. The Transformer can only take a two-dimensional matrix as
an input, which ignores the three-dimensional relationships that exist in the matrix. To
address this problem, we designed the MHSA-Bottleneck for three-dimensional matrices
as an intermediate structure between the CNNs and Transformer encoders. The latest
work [70] in the field believes that excessive use of Batch Normalization (BN) [71] will affect
the independence of training samples in the batch, so we replaced the BN with Group Nor-
malization [72]. We used the 1 × 1 convolution to obtain the Q, K, and V matrices. We find
that the absolute position embedding of Formula (2) does not perform well in the position
embedding of a three-dimensional matrix. Therefore, we used the relative position-coding
in [18]. The attention calculation formula is shown in (6), and the architecture of the MHSA
layer is shown in Figure 4.

Attention(Q, K, V, P) = So f tmax(
QP + QK + KP√

d
)V, (6)

where P is the relative position embedding matrix.
We used the MHSA-Bottleneck to replace 6 bottlenecks in ResNet50. We do not

replace all bottleneck spatial convolutions with MHSA layers because we found that the
performance of self-attention in extracting image edge features and semantic features was
not as good as the CNNs in the experiments. The specific experimental results are shown
in Section 4.
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encoder. Conv1×1 is used to change the dimension of the matrix and increase the nonlinearity of the
feature map.

In addition, the relationship between the MHSA-Bottlenecks and Transformers is
another important contribution. As shown in Figure 5, we believe that the stacked
MHSA-Bottlenecks can be regarded as a Transformer encoder that can process three-
dimensional matrices:

(1) We regard conv1 and conv2 in Figure 5 as FNNs in the Transformer architecture. Both
FNNs and convolutional layers were used to increase a certain dimension of the input
matrix by 4 times, and then compress it to its original size.

(2) Both the MHSA-Bottleneck and Transformer architecture used residual connections.
The specific differences can be found in Figure 5.

(3) The Layer Norm was used in the Transformer, and the Group norm was used in the
MHSA-Bottleneck.



Remote Sens. 2021, 13, 4143 9 of 24
Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 5. The detailed architecture of Transformer encoders and MHSA-Bottlenecks. MHSA-Bottle-
necks have almost the same type of components as Transformer encoders. 

4. Experiments 
In this section, we introduce the datasets, training details, and evaluation protocol 

used in the experiment. We perform a comprehensive ablation study from three aspects 
and then provide state-of-the-art comparisons. 

4.1. Dataset Description 
UC-Merced Dataset: UC-Merced Dataset is one of the most classic datasets in remote 

sensing scene classification tasks, containing 2100 remote sensing scene images. UC-
Merced consists of 21 types of remote sensing scenes. Each type contains 100 pictures, and 
the resolution of each picture is 256 × 256. UC-Merced was first proposed in [73], and the 
author used the data again in [74]. The dataset is collected by the U.S. Geological Survey. 

Aerial Image Dataset: Aerial Image Dataset (AID) dataset [75] is collected from 
Google Earth by Wuhan University. AID has a total of 10,000 remote sensing scene images 
covering 30 remote sensing scene categories, which is a large-scale dataset. 

NWPU-RESISC45 Dataset: NWPU-RESISC45 (NWPU) [9] is created by Northwest-
ern Polytechnical University which is a large-scale dataset. NWPU consists of 31,500 im-
ages with 256 × 256 pixels. The dataset covers a total of 45 remote sensing scene categories, 
each with 700 images. 

OTIMAL-31 Dataset: OPTIMAL-31 [38] is also collected from Google Earth by Wu-
han University. OPTIMAL-31 is a relatively small dataset composed of complex remote 
sensing scenes. There are 1860 images in total. Each type contains 60 pictures and the res-
olution of each picture is 256 × 256.  

4.2. Training Details 

Figure 5. The detailed architecture of Transformer encoders and MHSA-Bottlenecks. MHSA-
Bottlenecks have almost the same type of components as Transformer encoders.

4. Experiments

In this section, we introduce the datasets, training details, and evaluation protocol
used in the experiment. We perform a comprehensive ablation study from three aspects
and then provide state-of-the-art comparisons.

4.1. Dataset Description

UC-Merced Dataset: UC-Merced Dataset is one of the most classic datasets in remote
sensing scene classification tasks, containing 2100 remote sensing scene images. UC-Merced
consists of 21 types of remote sensing scenes. Each type contains 100 pictures, and the
resolution of each picture is 256 × 256. UC-Merced was first proposed in [73], and the
author used the data again in [74]. The dataset is collected by the U.S. Geological Survey.

Aerial Image Dataset: Aerial Image Dataset (AID) dataset [75] is collected from Google
Earth by Wuhan University. AID has a total of 10,000 remote sensing scene images covering
30 remote sensing scene categories, which is a large-scale dataset.

NWPU-RESISC45 Dataset: NWPU-RESISC45 (NWPU) [9] is created by Northwestern
Polytechnical University which is a large-scale dataset. NWPU consists of 31,500 images
with 256 × 256 pixels. The dataset covers a total of 45 remote sensing scene categories,
each with 700 images.

OTIMAL-31 Dataset: OPTIMAL-31 [38] is also collected from Google Earth by Wuhan
University. OPTIMAL-31 is a relatively small dataset composed of complex remote sensing
scenes. There are 1860 images in total. Each type contains 60 pictures and the resolution of
each picture is 256 × 256.
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4.2. Training Details

The training equipment we used is shown in Table 2. All experiments are trained
for 80 epochs. We used Adam as our optimizer. Since we adopt distributed training on a
4 × NVIDIA TITAN XP GPUs, we set the initial learning rate to 0.0004 (0.0001 × 4), weight
decay is 0.00001. We reshape UC-Merced, NWPU, and OPTIMAL-31 into 224 × 224 sizes,
and set the batch size to 64. We reshape AID into 600 × 600, and set the batch size to 16. We
use 12 Transformer encoders instead of the last three bottlenecks in ResNet50, the number
of Multi-Head Self-Attention heads in Transformers is also 12. The number of heads in
MHSA-Bottleneck is set to 6, the hyper-parameter λ of absolute position embedding is set
to 10,000, and d is set to 384.

Table 2. Experimental environment.

Operation System Ubuntu 20.04 Server

CPU 2 × Intel(R) Xeon(R) E5-2690 v4 @ 2.60GHz

Memory 256 GB

Framework PyTorch 1.7

GPU 4 × NVIDIA TITAN XP

For UC-Merced, we set the training ratio to 50% and 80%. For AID, we set the
training ratio to 20% and 50%. For NWPU, we set the training ratio to 10% and 20%.
For OPTIMAL-31, we set the training ratio to 80%. Training code will be available at:
https://github.com/zhangjrjlu/TRS, accessed on 14 October 2021.

4.3. Comparison with CNNs State-of-the-Art

The main purpose of this paper is to demonstrate that optimizing CNNs with Trans-
formers can improve the performance of the network. Therefore, we do not compare TRS
with traditional handcrafted features. We use overall accuracy as our evaluation metric,
and all results of comparison experiments are obtained from other researchers. At the same
time, we only use the ImageNet1K pre-trained parameters in S1, S2 and S3 of the model.

UC-Merced Dataset: The experimental results are shown in Table 3. The “-” in Table 3
means that the model did not complete the experiment under 50% for training or 80% for
training. This representation method is applicable to the experimental results of all datasets,
and will not be explained hereafter. When the training ratio is 50%, Xu et al. [37] designed
lie group features and proposed a new pooling method to improve the training effect,
which obtained an accuracy of 98.61 ± 0.11%. Our TRS achieves 98.76 ± 0.23% accuracy,
which is 0.15% higher than Xu’s method. When the training ratio is 80%, our method
achieves 99.52 ± 0.17% accuracy, which is 0.54% higher than EfficientNet-B3-aux [76]
and 0.55% higher than Concourlet CNN [77]. ResNeXt101 + MTL [78] uses multitask
learning and achieves an accuracy of 99.11 ± 0.25%, but it is still 0.41% lower than our
method. ARCNet + VGGnet16 introduced multi-layer LSTMs and optimized them for the
UCMerced dataset to achieve an accuracy of 99.12 ± 0.40%. TRS is 0.40% higher than
ARCNet + VGGnet16, which not only proves the effectiveness of our method but also
proves that the performance of Transformers is better than LSTMs. The confusion matrices
of the results on UC-Merced test set are shown in Figure 6.

https://github.com/zhangjrjlu/TRS
https://github.com/zhangjrjlu/TRS
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Table 3. Classification accuracy on UC-Merced Dataset.

Method
Top1

50% for Training 80% for Training

VGGNet [75] 94.14 ± 0.69 95.21 ± 1.20
GoogleNet [75] 92.70 ± 0.60 94.31 ± 0.89

D-CNN with AlexNet [75] - 97.42 ± 1.79
D-CNN with VGGNet-16 [75] - 96.67 ± 0.94

APDCNet [32] 95.01 ± 0.43 97.05 ± 0.43
SRSCNN [79] 97.88 ± 0.31 98.13 ± 0.33

EfficientNet-B0-aux [76] 98.01 ± 0.45 -
EfficientNet-B3-aux [76] 98.22 ± 0.49 -

MobileNet V2 [80] 97.88 ± 0.31 98.13 ± 0.33
ResNeXt-101 [81] - 98.96 ± 0.31

Contourlet CNN [77] - 98.97 ± 0.21
SE-MDPMNet [82] 98.57 ± 0.11 98.95 ± 0.12

LiG with RBF kernel [83] 98.32 ± 0.13 98.92 ± 0.35
Xu’s method [37] 98.61 ± 0.22 98.97 ± 0.31

ResNeXt101-MTL [78] - 99.11 ± 0.25
ARCNet-VGGNet16 [38] 96.81 ± 0.14 99.12 ± 0.40

TRS (ours) 98.76 ± 0.13 99.52 ± 0.17

AID Dataset: The image resolution of AID is 600× 600, which tests the performance of
the model more than the UC-Merced dataset. The experimental results are shown in Table 4.
At 20% AID training ratios, TRS achieves 95.54± 0.18% accuracy, which is 0.8% higher than
the second-best Xu’s method [37] and 0.86% higher than SE-MDPMNet [82]. In the case of
50% AID training ratios, our method achieves an accuracy of 98.48 ± 0.06%. TRS is 0.83%
higher than Xu’s method, 1.12% higher than Concourlet CNN [76], and 1.34% higher than
SE-MDPMNet. The experimental results prove that TRS also has an outstanding ability
to understand high-resolution images. The confusion matrices of the results on AID test
set are shown in Figure 7. It can be seen from Figure 7a that TRS has low classification
accuracy for the “desert” scene. The reason for low accuracy is that TRS regards the part of
“desert” as “beach”.

Table 4. Classification accuracy on AID Dataset.

Method
Top1

20% for Training 50% for Training

VGGNet [75] 86.59 ± 0.29 89.64 ± 0.36
GoogleNet [75] 83.44 ± 0.40 86.39 ± 0.55

SPPNet [75] 87.44 ± 0.45 91.45 ± 0.38
MobileNet [80] 88.53 ± 0.17 90.91 ± 0.18

EfficientNet-B0-aux [76] 93.96 ± 0.11 -
EfficientNet-B3-aux [76] 94.19 ± 0.15 -

GBNet [36] 90.16 ± 0.24 93.72 ± 0.34
GBNet + global feature [36] 92.20 ± 0.23 95.48 ± 0.12

ResNet50 [10] 92.39 ± 0.15 94.96 ± 0.19
DenseNet-121 [84] 93.76 ± 0.23 94.73 ± 0.26
MobileNet V2 [80] 94.13 ± 0.28 95.96 ± 0.27

Contourlet CNN [77] - 97.36 ± 0.45
LiG with RBF kernel [83] 94.17 ± 0.25 96.19 ± 0.28
ResNeXt-101 + MTL [78] 93.96 ± 0.11 96.89 ± 0.18

SE-MDPMNet [82] 94.68 ± 0.07 97.14 ± 0.15
Xu’s method [37] 94.74 ± 0.23 97.65 ± 0.25

TRS (ours) 95.54 ± 0.18 98.48 ± 0.06
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NWPU-RESISC45 Dataset: Compared with AID and UC-Merced, NWPU has more
remote sensing scenes and is more difficult to train. The experimental results are shown in
Table 5. At 10% NWPU training ratios, TRS achieves 93.06 ± 0.11% accuracy, which is 1.15%
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higher than Xu’s method and ResNeXt101 + MTL, and 1.26% higher than SE-MDPMNet [82].
In the case of 20% training ratios, TRS achieves an accuracy of 95.56 ± 0.20%, which is 1.13%
higher than Xu’s method and 1.35% higher than ResNeXt101 + MTL [78]. The confusion
matrices of the results on NWPU test set are shown in Figure 8.

Table 5. Classification accuracy on NWPU-RESISC45 Dataset.

Method
Top1

10% for Training 20% for Training

AlexNet [75] 76.69 ± 0.19 76.85 ± 0.18
VGGNet [75] 76.47 ± 0.18 79.79 ± 0.65

GoogleNet [75] 76.19 ± 0.38 78.48 ± 0.26
SPPNet [75] 82.13 ± 0.30 84.64 ± 0.23

D-CNN with AlexNet [75] 85.56 ± 0.20 87.24 ± 0.12
D-CNN with VGGNet-16 [75] 89.22 ± 0.50 91.89 ± 0.22

DenseNet-121 [84] 88.31 ± 0.35 90.47 ± 0.33
ResNet50 [10] 86.23 ± 0.41 88.93 ± 0.12

MobileNet [80] 80.32 ± 0.16 83.26 ± 0.17
MobileNet V2 [80] 90.16 ± 0.12 93.00 ± 0.18

EfficientNet-B0-aux [76] 89.96 ± 0.27 -
EfficientNet-B3-aux [76] 91.08 ± 0.14 -

Fine-tune EfficientNet [31] 89.93 ± 0.19 91.16 ± 0.23
Contourlet CNN [77] 85.93 ± 0.51 89.57 ± 0.45

LiG with RBF kernel [83] 90.23 ± 0.11 93.25 ± 0.12
ResNeXt-101 [81] 91.18 ± 0.29 93.68 ± 0.31

SE-MDPMNet [82] 91.80 ± 0.07 94.11 ± 0.03
ResNeXt-101 + MTL [78] 91.91 ± 0.18 94.21 ± 0.15

Xu’s method [37] 91.91 ± 0.15 94.43 ± 0.16

TRS (ours) 93.06 ± 0.11 95.56 ± 0.20

OPTIMAL-31 Dataset: OPTIMAL-31 only contains 60 images for each category, which
is a huge challenge for the learning ability and generalization of the model. As shown in
Table 6, GBNet [36] integrates different layers of information and achieves 91.40 ± 0.27%
with a training ratio of 80%. GBNet achieved an accuracy of 93.28 ± 0.27% after adding
the global feature. Our method achieves 95.97 ± 0.13% accuracy. It is 1.88% higher than
GBNet + Global feature [36] and 2.46% higher than ARCNet-VGGNet16. The confusion
matrix of OPTIMAL-31 is shown in Figure 9.

Table 6. Classification accuracy on OPTIMAL-31 Dataset.

Method
Top1

80% for Training

Fine-tune AlexNet [85] 81.22 ± 0.19
Fine-tune VGGNet [85] 87.15 ± 0.45

Fine-tune GoogleNet [85] 82.57 ± 0.12
ARCNet-ResNet34 [38] 91.28 ± 0.45

GBNet [36] 91.40 ± 0.27
ARCNet-VGGNet16 [38] 92.70 ± 0.35

GBNet + global feature [36] 93.28 ± 0.27
EfficientNet-B0-aux [76] 93.97 ± 0.12
EfficientNet-B3-aux [76] 94.51 ± 0.75

TRS (ours) 95.97 ± 0.13
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4.4. Comparison with Other Attention Models

In this section, we compare TRS with other models that use attention to optimize
ResNet50. As shown in Table 7. Our TRS is 3.52% and 6.65% higher than the standard
ResNet50 on AID and NWPU, respectively. Our method is 1.77% and 2.06% higher than
ResNeSt, which is known as the best-improved version of ResNet.

Table 7. Comparison with other attention models.

Methods AID 50% NWPU 20%

ResNet50 [10] 94.96 88.93
SENet-50 [19] 95.38 91.26

CBAM + ResNet50 [20] 95.01 90.79
Non-Local + ResNet50 [21] 95.87 93.17

ResNeSt50 [51] 96.71 93.52

TRS (ours) 98.48 95.58

We visualized Class Activation Mapping (CAM) [86] and Guided-Backpropagation
(GB) [87]. Interpretability is an important evaluation criterion for deep models. We use
Grad-CAM to visualize CAM and GB to prove that TRS is interpretable, and compare
the visualized results with SENet [19], Non-local Net [21], and ResNeSt [51]. Class ac-
tivation mapping shows how each pixel of the image affects the output of the model.
Guided-Backpropagation shows the features extracted by the model. We selected 10 remote
sensing scene classes: (a) Airplane, (b) Baseball diamond, (c) Basketball court, (d) Bridge,
(e) Church, (f) Freeway, (g) Lake, (h) Roundabout, (i) Runway, (j) Thermal power station.
The experimental results shown in Figure 10 demonstrate that TRS has more powerful
performance than several other attention models. The experimental results also explain
why TRS has higher remote sensing scene classification accuracy from the perspective
of interpretability.
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Figure 10. Visualize CAM and GB. According to the visualization results of CAM and GB, compared with SENet, Non-Local
NN and ResNeSt, TRS can better focus on the important features of remote sensing scene images, especially in scenes
(a) Airplane, (b) Baseball diamond, (c) Basketball court, (d) Bridge, (e) Church, (f) Freeway, (g) Lake, (h) Roundabout,
(i) Runway, (j) Thermal power station. This also explains why TRS has better classification performance.

4.5. Comparison with Other Transformers

We also compared the TRS with other Transformers. The experimental results are
shown in Tables 8 and 9. TRS has obvious advantages over other excellent Transformers.
The experimental results show that the ViT [23] based on global attention does not show
strong performance for remote sensing scene classification, but the ViT-Hybrid [23] does
well. The Swin Transformer [63] uses windows to complete local and global attention, and
achieves better results than CNNs. However, the TRS achieves higher accuracy than the
Swin Transformer. For the experiments of these Transformers, our code was based on the
Timm package (https://github.com/rwightman/pytorch-image-models, accessed on 14
October 2021), and we used the ImageNet1k pretrained model.

https://github.com/rwightman/pytorch-image-models
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Table 8. Comparison with other Transformers on UC-Merced and AID.

Method
UC-Merced AID

50% for Training 80% For Training 20% for Training 50% for Training

ViT-Base [23] 93.57 95.81 91.16 94.44
ViT-Large [23] 94.00 96.06 91.88 95.13

ViT-Hybrid [23] 98.16 99.03 92.39 96.20
DeiT-Base [24] 97.93 98.56 93.41 96.04

PVT-Medium [26] 96.42 97.28 92.84 95.93
PVT-Large [26] 96.91 97.70 93.69 96.65
T2T-ViT-19 [60] 96.88 97.70 92.39 95.42

V16_21k [84] 98.14 - 94.97 -
Swin-Base [63] 98.21 98.91 94.86 97.80

Swin-Large [63] 98.68 99.14 95.09 98.46

TRS (ours) 98.76 99.52 95.54 98.48

Table 9. Comparison with other Transformers on NWPU and OPTIMAL-31.

Method
NWPU OPTIMAL-31

10% for Training 20% for Training 80% for Training

ViT-Base [23] 87.59 90.87 89.73
ViT-Large [23] 89.16 91.94 91.14

ViT-Hybrid [23] 89.22 91.97 91.99
DeiT-Base [24] 91.86 93.83 93.09

PVT-Medium [26] 90.51 92.66 91.80
PVT-Large [26] 90.59 92.72 92.45
T2T-ViT-19 [60] 90.38 92.98 92.08

V16_21k [84] 92.60 - 95.07
Swin-Base [63] 91.80 94.04 93.64

Swin-Large [63] 92.67 95.52 95.11

TRS (ours) 93.06 95.56 95.97

4.6. Training, Testing Time and Parameters

Training and testing time can intuitively reflect the efficiency of the model. Acc. in
the table refers to overall accuracy, and FLOPs refer to floating-point operations. All
experiments are performed on an NVIDIA GTX 2080Ti GPU. To compare the time it takes
to train and test each model for an epoch, we use tqdm package. As shown in Table 10, the
time it takes for TRS to train and test an epoch is very close to ResNet-101, nevertheless, the
former’s accuracy is higher than the latter. Compared with models whose accuracy is close
to ours, the training and testing time of Swin-Base are 5 seconds and 0.9 seconds slower
than TRS, respectively; the training and testing times of ViT-Hybrid are 6.9 seconds and
2.9 seconds lower than our model. We also show the parameters and FLOPs of the models.
The weight parameters and FLOPs of TRS are 46.3M and 8.4G, respectively, which surpass
ResNet-101 by only 0.3M and 0.8G, respectively. However, the weight parameters and
FLOPs of TRS decrease by 41.7M and 7G compared with Swin-Base, which ranks second
in accuracy.
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Table 10. Compare training and testing time and Parameters with other models.

Methods
UC-Merced 50%

Acc. Train (s/epoch) Test (s/epoch) Parameters (M) FLOPs (G)

ResNet-101 [10] 92.47 11.1 3.9 46.0 7.6
ResNet-152 [10] 92.95 12.5 4.3 60.0 11.0

ResNeXt-101 [81] - 21.2 7.2 84.0 32.0
SE-Net [19] 95.38 24.7 11.6 146.0 42.0

ViT-Base [23] 93.57 13.4 5.8 86.4 17.5
ViT-Hybrid [23] 98.16 19.3 7.2 112.0 21.3

PVT-Medium [26] 96.42 13.6 4.5 62.6 10.1
Swin-Base [63] 98.21 16.4 5.2 88.0 15.4

TRS (ours) 98.76 11.4 4.3 46.3 8.4

5. Discussion
5.1. Ablation Study

In the ablation study, we explored how the components of the TRS affect the per-
formance of the model. In order to obtain more convincing results, we chose to conduct
ablation experiments on two datasets with different resolutions, AID and NWPU. The
training ratios of AID and NWPU were 50% and 20%, respectively.

5.1.1. Number of Encoder Layers and Self-Attention Heads

We changed the number of encoder layers and self-attention heads to evaluate the
importance of the Transformer architecture. The experimental results are shown in Table 11.
When there was no encoder layer, we used the GlobalAvgPooling to process the output
of Stage3 (S3) in Table 1, and used the fully connected layer for scene classification. We
found that the classification accuracy on AID and NWPU decreased by 7.01% and 9.26%,
respectively, without the Transformer encoder. When using three encoder layers, the
accuracy of the TRS was 0.67% and 1.66% higher than ResNet50, respectively. TRS achieves
the best accuracy when the number of Transformer encoders is 12. At the same time, TRS
achieves the best accuracy when the number of Multi-Head Self-Attention heads is 12. The
experimental results show that the Transformer architecture is effective in remote sensing
scene classification.

Table 11. Ablation study on transformer architecture.

Transformer Encoder Layers Heads AID 50% NWPU 20%

0 0 91.47 86.32
3 12 96.63 91.59
6 12 97.25 93.21
9 12 98.36 95.33
12 1 95.96 94.89
12 6 98.43 95.50
12 12 98.48 95.58

5.1.2. MHSA-Bottleneck Architecture

We also conducted an ablation study on the arrangement of the MHSA-Bottleneck in
the TRS. For comparison, several structures are shown in Figure 11, and the experimental
results are shown in Table 12. The accuracy of the TRS (a) was 2.28% and 3.61% lower
than TRS (d), respectively. The results demonstrate the importance of using our proposed
MHSA-Bottleneck as an intermediate structure between CNNs and Transformer encoders.
In TRS (b), all bottlenecks were replaced by the MHSA-Bottleneck, the accuracy was lower
than TRS (a). This shows that relying only on self-attention to learn the relationship between
features cannot achieve good results, and the combination of CNNs’ feature extraction
ability and self-attention has better performance. We also test the number of self-attention
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heads and standardized methods of the MHSA-Bottleneck. The experimental results are
shown in Table 13.
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Table 12. Comparison of classification accuracy between four different architectures.

Architecture AID 50% NWPU 20%

ResNet50 94.96 88.93
TRS (a) 96.20 91.97
TRS (b) 95.69 89.94
TRS (c) 97.31 94.52
TRS (d) 98.48 95.58

Table 13. Ablation study on MHSA-Bottleneck architecture.

Heads Norm AID 50% NWPU 20%

1 Group norm 93.25 88.04
6 Batch norm 98.26 95.41
6 Group norm 98.48 95.58
12 Batch norm 98.01 94.85
12 Group norm 98.13 95.39

5.1.3. Position Embedding

There are two ways of our position embedding: absolute position embedding and
relative position embedding. We tried a combination of these two encoding methods, and
the results of the experiment are shown in Table 14. Without position embedding, the
accuracy of TRS is 4.52% and 2.33% lower than the ResNet50, respectively. Therefore,
position embedding is required. The accuracy of using relative position embedding or
absolute position embedding in Transformers is almost the same, while the accuracy of
using relative position embedding in MHSA-Bottleneck is higher than that of absolute
position embedding.

Table 14. Comparison of classification accuracy between two position embedding methods.

Transformer MHSA-Bottleneck AID 50% NWPU 20%

None None 90.44 86.60
Abs Abs 95.73 93.16
Rel Rel 98.48 95.53
Abs Rel 98.48 95.58

Given these ablation experiments, we came to the conclusion: Transformer encoders,
MHSA-Bottlenecks, and position embedding all contributed to the performance of TRS.
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5.2. Application Scenarios

A transformer is a great way to learn Global information which is the current develop-
ment trend of remote sensing image tasks. However, the current work believes that local
information must be combined to obtain better results. Our proposed model uses CNNs to
extract Local information and uses Transformer to extract Global information. Through
the results of Table 10, we can get a conclusion: the parameters of the existing models
are redundant for remote sensing scene classification tasks, and there is no need to make
the model larger to improve the performance. We believe that using a limited number of
parameters to obtain better performance is a better solution to improve the classification
effect of remote sensing scenes, and TRS has outstanding performance in this regard.

At the same time, our model can not only be used for remote sensing scene classifica-
tion, but also provide rich features for downstream tasks. Downstream tasks can obtain
image features at different resolutions as the input of FPN [88], and the current method
of applying Transformer to remote sensing scene classification cannot do this well, such
as [25,57,89]. We can input the features extracted from TRS S2-S5 into FPN to complete
downstream tasks.

6. Conclusions

In this paper, we proposed the TRS, a new design for remote sensing scene classifica-
tion based on the Transformer. We successfully used the Transformer for remote sensing
scene classification for the first time, and proposed a novel "pure CNNs→ Convolution
+ Transformer→ pure Transformers" structure. We designed the MHSA-Bottleneck and
proposed to replace spatial convolution with the Multi-Head Self-Attention. At the same
time, we provided a new idea to understand MHSA-Bottleneck as a Transformer that pro-
cesses three-dimensional matrices. We also replaced the bottleneck with multiple standard
Transformer encoders. The experimental results of the four public datasets demonstrate
that the TRS is robust, surpasses previous work, and achieves state-of-the-art.

We hope that we can not only apply the Transformer encoder to remote sensing
scene classification, but also that the transformer decoder and transformer encoder can be
combined and applied to other remote sensing tasks. In further works, we will attempt to
apply the complete Transformer architecture (encoder + decoder) to remote sensing tasks.

Author Contributions: J.Z. and J.L. completed the investigation. J.Z. and H.Z. designed and imple-
mented the method, and wrote the paper. J.L. and H.Z. contributed to the analysis of the experimental
results All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Provincial Science and Technology Innovation Special
Fund Project of Jilin Province, grant number 20190302026GX, Natural Science Foundation of Jilin
Province, grant number 20200201037JC.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, M.; Liu, D.; Qian, K.; Li, J.; Lei, M.; Zhou, Y. Lunar crater detection based on terrain analysis and mathematical morphology

methods using digital elevation models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3681–3692. [CrossRef]
2. Ye, F.; Xiao, H.; Zhao, X.; Dong, M.; Luo, W.; Min, W. Remote sensing image retrieval using convolutional neural network features

and weighted distance. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1535–1539. [CrossRef]
3. Li, J.; Benediktsson, J.A.; Zhang, B.; Yang, T.; Plaza, A. Spatial technology and social media in remote sensing: A survey. Proc.

IEEE 2017, 105, 1855–1864. [CrossRef]
4. Luo, F.; Huang, H.; Duan, Y.; Liu, J.; Liao, Y. Local geometric structure feature for dimensionality reduction of hyperspectral

imagery. Remote Sens. 2017, 9, 790. [CrossRef]
5. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
6. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

http://doi.org/10.1109/TGRS.2018.2806371
http://doi.org/10.1109/LGRS.2018.2847303
http://doi.org/10.1109/JPROC.2017.2729890
http://doi.org/10.3390/rs9080790
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1109/TPAMI.2002.1017623


Remote Sens. 2021, 13, 4143 22 of 24

7. Wang, G.; Fan, B.; Xiang, S.; Pan, C. Aggregating rich hierarchical features for scene classification in remote sensing imagery.
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 4104–4115. [CrossRef]

8. Yang, S.; Ramanan, D. Multi-scale recognition with DAG-CNNs. In Proceedings of the IEEE International Conference on
Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 1215–1223.

9. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the ICLR
2015: International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

11. Liang, Y.; Monteiro, S.T.; Saber, E.S. Transfer learning for high resolution aerial image classification. In Proceedings of the 2016
IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 18–20 October 2016; pp. 1–8.

12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2021;
pp. 5998–6008.

13. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

14. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Askell, A. Language models are few-shot learners. In
Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2020; Volume 33, pp. 1877–1901.

15. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K.N. Bert: Pre-training of deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1, pp. 4171–4186.

16. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv
2019, arXiv:1907.11692.

17. Wang, H.; Zhu, Y.; Green, B.; Adam, H.; Yuille, A.L.; Chen, L.-C. Axial-deeplab: Stand-alone axial-attention for panoptic
segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 108–126.

18. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. In
Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32,
pp. 68–80.

19. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

20. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

21. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519.

22. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.

23. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Gelly, S. An image is worth 16 × 16 words:
Transformers for image recognition at scale. In Proceedings of the ICLR 2021: The Ninth International Conference on Learning
Representations, Virtual Event, 3–7 May 2021.

24. Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.; Yan, S. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. arXiv 2021, arXiv:2101.11986.

25. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.

26. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Shao, L. Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. arXiv 2021, arXiv:2102.12122.

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

28. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105,
1865–1883. [CrossRef]

29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

30. Yu, Y.; Liu, F. Aerial scene classification via multilevel fusion based on deep convolutional neural networks. IEEE Geosci. Remote
Sens. Lett. 2018, 15, 287–291. [CrossRef]

31. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Crete, Greece, 24–26 May 2019; pp. 6105–6114.

32. Bi, Q.; Qin, K.; Zhang, H.; Xie, J.; Li, Z.; Xu, K. APDC-Net: Attention pooling-based convolutional network for aerial scene
classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1603–1607. [CrossRef]

33. Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution
remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]

http://doi.org/10.1109/JSTARS.2017.2705419
http://doi.org/10.1145/3065386
http://doi.org/10.1109/JPROC.2017.2675998
http://doi.org/10.1109/LGRS.2017.2786241
http://doi.org/10.1109/LGRS.2019.2949930
http://doi.org/10.3390/rs71114680


Remote Sens. 2021, 13, 4143 23 of 24

34. Li, E.; Xia, J.; Du, P.; Lin, C.; Samat, A. Integrating multilayer features of convolutional neural networks for remote sensing scene
classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5653–5665. [CrossRef]

35. Zhang, F.; Du, B.; Zhang, L. Scene classification via a gradient boosting random convolutional network framework. IEEE Trans.
Geosci. Remote Sens. 2015, 54, 1793–1802. [CrossRef]

36. Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote sensing scene classification by gated bidirectional network. IEEE Trans. Geosci. Remote
Sens. 2019, 58, 82–96. [CrossRef]

37. Xu, C.; Zhu, G.; Shu, J. A Lightweight and Robust Lie Group-Convolutional Neural Networks Joint Representation for Remote
Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2021, 1–15. [CrossRef]

38. Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans.
Geosci. Remote Sens. 2018, 57, 1155–1167. [CrossRef]

39. Yu, Y.; Li, X.; Liu, F. Attention GANs: Unsupervised deep feature learning for aerial scene classification. IEEE Trans. Geosci.
Remote Sens. 2019, 58, 519–531. [CrossRef]

40. Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [CrossRef]
41. Joachims, T. Transductive inference for text classification using support vector machines. In Proceedings of the International

Conference on Machine Learning (ICML), Bled, Slovenia, 27–30 June 1999; Volume 99, pp. 200–209.
42. Gómez-Chova, L.; Camps-Valls, G.; Munoz-Mari, J.; Calpe, J. Semisupervised image classification with Laplacian support vector

machines. IEEE Geosci. Remote Sens. Lett. 2008, 5, 336–340. [CrossRef]
43. Ma, B. A new kind of parallel K_NN network public opinion classification algorithm based on Hadoop platform. Appl. Mech.

Mater. 2014, 644, 2018–2021.
44. La, L.; Guo, Q.; Yang, D.; Cao, Q. Multiclass Boosting with Adaptive Group-Based kNN and Its Application in Text Categorization.

Math. Probl. Eng. 2012, 2012, 1–24. [CrossRef]
45. Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.S.; Zhang, L. Bag-of-visual-words scene classifier with local and global features for high

spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. Lett. 2016, 13, 747–751. [CrossRef]
46. Yao, W.; Loffeld, O.; Datcu, M. Application and evaluation of a hierarchical patch clustering method for remote sensing images.

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 2279–2289. [CrossRef]
47. Zhao, B.; Zhong, Y.; Zhang, L. A spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing

imagery. ISPRS J. Photogram. Remote Sens. 2016, 116, 73–85. [CrossRef]
48. Zhao, L.; Tang, P.; Huo, L. Feature significance-based multibag-of-visual-words model for remote sensing image scene classifica-

tion. J. Appl. Remote Sens. 2016, 10, 035004. [CrossRef]
49. Wu, H.; Liu, B.; Su, W.; Zhang, W.; Sun, J. Hierarchical coding vectors for scene level land-use classification. Remote Sens. 2016,

8, 436. [CrossRef]
50. Li, Y.; Tao, C.; Tan, Y.; Shang, K.; Tian, J. Unsupervised multilayer feature learning for satellite image scene classification. IEEE

Trans. Geosci. Remote Sens. Lett. 2016, 13, 157–161. [CrossRef]
51. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Smola, A. Resnest: Split-attention networks. arXiv 2020, arXiv:2004.08955.
52. Romera-Paredes, B.; Torr, P.H.S. Recurrent instance segmentation. In Proceedings of the European Conference on Computer

Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 312–329.
53. Olah, C. Understanding LSTM Networks. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs

(accessed on 1 October 2015).
54. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

55. Stewart, R.; Andriluka, M.; Ng, A.Y. End-to-end people detection in crowded scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2325–2333.

56. Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4055–4064.

57. Child, R.; Gray, S.; Radford, A.; Sutskever, I. Generating long sequences with sparse transformers. arXiv 2019, arXiv:1904.10509.
58. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection. In

Proceedings of the ICLR 2021: The Ninth International Conference on Learning Representations, Virtual Event, 3–7 May 2021.
59. Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention augmented convolutional networks. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 3286–3295.
60. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation

through attention. In Proceedings of the International Conference on Machine Learning, Virtual Event, 18–24 July 2021;
pp. 10347–10357.

61. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
62. Abnar, S.; Dehghani, M.; Zuidema, W. Transferring inductive biases through knowledge distillation. arXiv 2020, arXiv:2006.00555.
63. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. arXiv 2021, arXiv:2103.14030.
64. Li, W.; Cao, D.; Peng, Y.; Yang, C. MSNet: A Multi-Stream Fusion Network for Remote Sensing Spatiotemporal Fusion Based on

Transformer and Convolution. Remote Sens. 2021, 13, 3724. [CrossRef]

http://doi.org/10.1109/TGRS.2017.2711275
http://doi.org/10.1109/TGRS.2015.2488681
http://doi.org/10.1109/TGRS.2019.2931801
http://doi.org/10.1109/TGRS.2020.3048024
http://doi.org/10.1109/TGRS.2018.2864987
http://doi.org/10.1109/TGRS.2019.2937830
http://doi.org/10.1007/BF00994018
http://doi.org/10.1109/LGRS.2008.916070
http://doi.org/10.1155/2012/793490
http://doi.org/10.1109/LGRS.2015.2513443
http://doi.org/10.1109/JSTARS.2016.2536143
http://doi.org/10.1016/j.isprsjprs.2016.03.004
http://doi.org/10.1117/1.JRS.10.035004
http://doi.org/10.3390/rs8050436
http://doi.org/10.1109/LGRS.2015.2503142
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://doi.org/10.3390/rs13183724


Remote Sens. 2021, 13, 4143 24 of 24

65. Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision Transformers for Remote Sensing Image Classification.
Remote Sens. 2021, 13, 516. [CrossRef]

66. Xu, Z.; Zhang, W.; Zhang, T.; Yang, Z.; Li, J. Efficient Transformer for Remote Sensing Image Segmentation. Remote Sens. 2021,
13, 3585. [CrossRef]

67. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
68. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814.
69. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
70. Brock, A.; De, S.; Smith, S.L. Characterizing signal propagation to close the performance gap in unnormalized ResNets. In

Proceedings of the ICLR 2021: The Ninth International Conference on Learning Representations, Virtual Event, 3–7 May 2021.
71. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
72. Wu, Y.; He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,

8–14 September 2018; pp. 3–19.
73. Yang, Y.; Newsam, S. Geographic image retrieval using local invariant features. IEEE Trans. Geosci. Remote Sens. 2012, 51, 818–832.

[CrossRef]
74. Zhang, R.; Isola, P.; Efros, A.A. Colorful image colorization. In Proceedings of the European Conference on Computer Vision,

Amsterdam, The Netherlands, 11–14 October 2016; pp. 649–666.
75. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene

classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]
76. Bazi, Y.; Al Rahhal, M.M.; Alhichri, H.; Alajlan, N. Simple yet effective fine-tuning of deep CNNs using an auxiliary classification

loss for remote sensing scene classification. Remote Sens. 2019, 11, 2908. [CrossRef]
77. Liu, M.; Jiao, L.; Liu, X.; Li, L.; Liu, F.; Yang, S. C-CNN: Contourlet convolutional neural networks. IEEE Trans. Neural Netw. Learn.

Syst. 2020, 32, 2636–2649. [CrossRef]
78. Zhao, Z.; Luo, Z.; Li, J.; Chen, C.; Piao, Y. When self-supervised learning meets scene classification: Remote sensing scene

classification based on a multitask learning framework. Remote Sens. 2020, 12, 3276. [CrossRef]
79. Liu, Y.; Zhong, Y.; Fei, F.; Zhu, Q.; Qin, Q. Scene classification based on a deep random-scale stretched convolutional neural

network. Remote Sens. 2018, 10, 444. [CrossRef]
80. Pan, H.; Pang, Z.; Wang, Y.; Wang, Y.; Chen, L. A new image recognition and classification method combining transfer learning

algorithm and mobilenet model for welding defects. IEEE Access 2020, 8, 119951–119960. [CrossRef]
81. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 1492–1500.
82. Zhang, B.; Zhang, Y.; Wang, S. A lightweight and discriminative model for remote sensing scene classification with multidilation

pooling module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2636–2653. [CrossRef]
83. Pour, A.M.; Seyedarabi, H.; Jahromi, S.H.A.; Javadzadeh, A. Automatic detection and monitoring of diabetic retinopathy using

efficient convolutional neural networks and contrast limited adaptive histogram equalization. IEEE Access 2020, 8, 136668–136673.
[CrossRef]
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