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Identification of Infiltration Features

and Hydraulic Properties of Soils

Based on Crop Water Stress Derived

from Remotely Sensed Data. Remote

Sens. 2021, 13, 4127. https://doi.org/

10.3390/rs13204127

Academic Editors: Carlos Antonio Da

Silva Junior and Luciano Shozo

Shiratsuchi

Received: 31 August 2021

Accepted: 12 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668,
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Abstract: Knowledge of the spatial variability of soil hydraulic properties is important for many
reasons, e.g., for soil erosion protection, or the assessment of surface and subsurface runoff. Nowa-
days, precision agriculture is gaining importance for which knowledge of soil hydraulic properties is
essential, especially when it comes to the optimization of nitrogen fertilization. The present work
aimed to exploit the ability of vegetation cover to identify the spatial variability of soil hydraulic
properties through the expression of water stress. The assessment of the spatial distribution of satu-
rated soil hydraulic conductivity (Ks) and field water capacity (FWC) was based on a combination
of ground-based measurements and thermal and hyperspectral airborne imaging data. The crop
water stress index (CWSI) was used as an indicator of crop water stress to assess the hydraulic
properties of the soil. Supplementary vegetation indices were used. The support vector regression
(SVR) method was used to estimate soil hydraulic properties from aerial data. Data analysis showed
that the approach estimated Ks with good results (R2 = 0.77) for stands with developed crop water
stress. The regression coefficient values for estimation of FWC for topsoil (0–0.3 m) ranged from
R2 = 0.38 to R2 = 0.99. The differences within the study sites of the FWC estimations were higher for
the subsoil layer (0.3–0.6 m). R2 values ranged from 0.12 to 0.99. Several factors affect the quality
of the soil hydraulic features estimation, such as crop water stress development, condition of the
crops, period and time of imaging, etc. The above approach is useful for practical applications for its
relative simplicity, especially in precision agriculture.

Keywords: soil infiltration; field water capacity; crop water stress; machine learning; aerial remote
sensing; precision agriculture

1. Introduction

The soil hydraulic properties (hydraulic conductivity and water retention characteris-
tics) play a key role in many agro-environmental processes (e.g., nutrient leaching or soil
erosion) and soil management practices [1]. They affect the rate of water infiltration into
the soil and partitioning precipitation into surface and subsurface runoff, groundwater
recharge, evapotranspiration and soil moisture content [2]. When the rainfall intensity
exceeds the soil saturation capacity, a surface runoff mechanism and soil erosion process
are initiated [3].

Soil saturated hydraulic conductivity (Ks) describes the process of water movement in
the soil profile. It is affected by rainfall intensity, the share and continuity of macropores
and particle size distribution (the proportion of sand, silt and clay); therefore Ks tends to
be spatially and temporally variable [4,5]. More drained sandy soils have relatively high
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Ks compared to clayey soils because most pores drain shortly after rainfall or irrigation,
indicating low soil retention capacity, also known as field water capacity (FWC) [6].

The spatial heterogeneity of soil hydraulic properties directly affects crop yields via
air-filled porosity, plant available water and penetration of plant roots [7]. Implementing
soil heterogeneity into site-specific farming practices, increasing the efficiency of agri-
cultural inputs, is a prerequisite for the use of precision agriculture methods [8,9]. The
manifestation of soil heterogeneity is enhanced by plant water stress. It should be incorpo-
rated into the functional characteristics that determine an efficient management strategy
for precision agriculture [8]. Variable-rate fertilization as one of the precision agriculture
techniques is based on the delineation of ’management zones’ that express sub-areas with
homogeneous yield potential [10,11]. This strategy is mainly applied to introduce more
efficient management of nitrogen fertilizers via reducing their over-consumption, while
maintaining crop yield [12,13]. In addition, the application of locally adapted nitrogen
fertilizer rates has excellent potential to reduce nitrate leaching to ground and surface
water in areas with a high Ks and low FWC. This is highly desirable because arable land
contributes significantly to nitrate pollution in the catchment [14]. From a hydrogeological
point of view, nitrogen leaching in a basin is controlled by the functions of the so-called
slope zones [15–17]. Recharge zones located in the uppermost slope areas with a high sand
content and infiltration capacity are declared to be vulnerable to nitrate pollution [18,19].
Conversely, discharge zones in the lowest parts of slopes with a lower capacity for in-
filtration and with groundwater approaching land surface or a surface water body can
be waterlogged and their nitrate load denitrificated. Tile drainage was confirmed as an-
other factor, which amplifies nitrate leaching to surface and subsurface waters [20,21].
Topsoil variability and hydraulic properties of the subsoil root zone (extending to one
meter and deeper) are needed to estimate the risk of nitrate leaching and adopt relevant
measures [7,22].

The field measurement of Ks and FWC is demanding and costly, especially when larger
areas need to be covered. Likewise, the routine laboratory method, i.e., soil–water retention
curve, developed from volumetric water content and water potential for deriving FWC, is
difficult and time-consuming [23]. An alternative tool for finding FWC and Ks is the use
of easy-to-measure soil properties via pedotransfer functions (PTFs). Rasoulzadeh and
Fatemi [24] successfully tested the ROSETTA PTF to merge the diverse infiltration curves
toward a single-scaled curve just with particle size distribution. Abdelbaki et al. [25] estab-
lished good accuracy of many previously developed PTFs for predicting Ks using particle
size distribution, bulk density, total porosity and organic matter content. Novotný et al. [26]
developed PTFs of the FWC for the Czech Republic and Slovak Republic conditions. Simi-
larly, Saxton and Rawls [23] developed new soil water characteristic equations from the
currently available USDA soil database, using only the readily available soil texture and
organic matter variables.

Spatial assessment of soil hydraulic properties is possible by direct measurements
and subsequent interpolation of values. This approach assumes a continuous change in
soil properties between points. Haberle et al. [27,28] show that soil properties can change
abruptly, and consequently, the use of interpolation methods provides results with limited
accuracy. A suitable approach for assessing soil hydraulic properties is offered by remote
sensing (RS), which has considerable potential, especially for precision agriculture and, by
extension, for protecting surface waters from eutrophication [29,30]. Although the spatial
variability of soil hydraulic properties is very important, RS data have received relatively
little attention in this field. Most studies focus mainly on the assessment of soil moisture
or soil water content. Currently, a number of systems based on active and passive radar
remote sensing and synthetic multisource datasets are available (see [31,32]). A major
drawback of these data is the very small scale resolution, which is completely inadequate
for assessing individual soil blocks. The use of high spatial resolution multispectral satellite
data (e.g., Sentinel 2 and Landsat 8 OLI/TIRS) and very high resolution aerial and UAV
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(unmanned aerial vehicle) data seems to be more appropriate. In particular, the use of
hyperspectral [33,34] and thermal data [35–37] has great potential.

The use of optical spectral data is based on the assumption of a change in spectral
reflectance as a function of the change in soil or vegetation canopy water content due
to stand water stress. A detailed analysis of the spectral response of different soil types
with various water infiltration rate was carried out by Francos et al. [33], showing good
agreement between the spectral properties of the soil and the rate of water infiltration into
the soil. The combination of Sentinel 2 satellite data and the OPTRAM (OPtical TRApezoid
Model proposed by Sadeghi et al. [38]) model showed good agreement between spectral
data and soil moisture [39]. Furthermore, Haberle et al. [27] found good results of FWC
estimation, using an RGB index calculated from UAV multispectral data for crops affected
by long-term water deficit.

The methods based on thermal data allow the assessment of thermodynamic changes
of the vegetation and soil surface, depending on the change in water content and evapora-
tion of water from the surface. The advantage of these methods is their high sensitivity
to dynamic changes in the surface energy balance. Some approaches use thermal data,
e.g., the evaporation test [37], evapotranspiration modelling [40], thermal-optical trapezoid
model [41], estimation of volumetric moisture content based on thermal inertia method [35,36],
and estimation of volumetric moisture content based on temperature rising rate vegetation
dryness index—TRRVDI [42]. A common feature of these methods is the relatively compli-
cated calculation of individual parameters involving other supplementary inputs, such as
meteorological data.

Currently, we are witnessing a significant development of data analysis methods based
on the principles of artificial intelligence (AI). These are advanced methods of machine
learning (ML) or deep learning (DL). The ML methods are increasingly being used to
assess qualitative and quantitative indicators of the Earth’s surface through RS data [43].
These are various algorithms that can provide multivariate, nonlinear, nonparametric
regression or classification [43]. The ML methods have the advantage of describing com-
plex problems [44], such as the problem of assessing soil hydraulic properties using RS
(see e.g., [45,46]).

This work aimed to use crop water stress, derived from thermal and hyperspectral
aerial data, combined with ML for the spatial assessment of Ks and FWC at selected sites
with different soil properties and vegetation cover. The specific aim is to discuss the
possibilities of the approach used and its limitations.

2. Materials and Methods
2.1. Study Sites

The study sites were located in two regions in the Czech Republic with different soil
and climate conditions, in the Bohemian–Moravian Highlands and the lower Jizera River
(Figure 1). Both regions are not only agricultural areas, producing cereals and oilseed rape
as well as vegetables, potatoes and silage maize, i.e., crops causing an increased risk of
nitrate leaching [47], but also important zones of drinking water for more than a million
people living in Prague and other locations.

The Bohemian–Moravian Highlands is a hilly area with slight to moderate sloping
fields. The area belongs to the Švihov drinking water reservoir basin on the Želivka River,
which is an important source of drinking water for a large part of the Czech Republic. The
water quality in this reservoir is strongly influenced by water retention in the catchment
and the transport of substances by surface and subsurface runoff from arable land [48].

Agricultural production is focused mostly on growing cereals, silage maize, oilseed
rape, and potatoes. The local climate is classified as moderately warm, according to
Quitt [49], with a mean annual precipitation of 721 mm and air temperature of 8.2 °C.
The bedrock consists of partially migmatized paragneiss with mostly higher degrees of
weathering [50].
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Figure 1. Area of interest with highlighted study sites.

The distribution of soil types (carried out by Research Institute for Soil and Water
Conservation, Czech Republic) reflects the catchment slope zones, which are divided
into recharge zones (the uppermost slope areas), and discharge zones (the lowest slope
areas [51]). Both zones are bridged by transient zones located mainly in the middle sections
of slopes. The dominant soil types of transient and recharge zones are Eutric/Dystric
Cambisol and Eutric/Dystric Cambisol (Arenic) [52], which are texturally light (stony sandy
loam or loamy sand), quite shallow and permeable (especially Eutric/Dystric Cambisol
(Arenic)). Other shallow and permeable soils with coarse fragments can occur in the
recharge zone (Leptic Cambisol and Cambic Leptosol). More clayey soils with higher
moisture-holding capacity (e.g., Eutric/Dystric Stagnic Cambisol, Eutric/Dystric Stagnosol)
are in the discharge and discharge/transient zones, with dominating medium-deep sandy
loam and deep loams. See Table 1 for more details.

Six fields with heterogeneous soils were selected for the study. Crop cover was
represented by winter wheat (Triticum aestivum L.), pea (Pisum sativum L.) and a silage
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mixture (pea, spring wheat, red clover Trifolium pratense L.) during the RS campaigns. See
Figure 1 and Table 2 for more details.

Table 1. Basic characteristics of the study sites and number of sampling points for saturated hydraulic conductivity of soil
(Ks; cm·h−1) and field water capacity (FWC; vol. %).

Locality Soil Type a
Altitude
(m a.s.l.) Area (ha) Slope (°)

Systematic
Drainage (%)

Number of Samples
Ks FWC

Za Vaněčkovi E/DC, E/DSC, E/DCA,
E/DS 569 25.3 4.2 61 18 26 (21) b

Mokřiny E/DC, LC, E/DSC, E/DS,
CL 578 41.4 2.3 <5 – 22

Makytí E/DC 533 12.1 3.6 – 4 20

Vrcha E/DC, LC, E/DSC, CL,
E/DCA 514 26.9 4.6 – – 23

U Mouček E/DC 544 18.5 3.8 – 6 21

Kazy E/DC, E/DCA, LC, CL, CA,
LC 550 10.0 2.6 – – 11

Kochánky LFA, EFL, LRA, SRA, HP 230 15.7 1.4 – 5 21
Sojovice LFA, EFL, SRA, LRA 221 36.9 1.1 – – 35

a Note: E/DC—Eutric/Distric Cambisol, E/DSC—Eutric/Dystric Stagnic Cambisol, E/DCA—Eutric/Dystric Cambisol (Arenic),
E/DS—Eutric/Dystric Stagnosol, LC—Leptic Cambisol, CL—Cambic Leptosol, CA—Cambisols, LFA—Leptic Fluvisol (Arenic),
EFL—Eutric Fluvisol (Loamic), LRA—Leptic Regosol (Arenic), SRA—Skeletic Regosol (Arenic), HP—Haplic Phaeozems. b Note: The
number of sampling points for a depth of 0.3–0.6 m.

Table 2. Overview of dates and times of aerial imaging and crop cover at individual study sites.

Locality Date Time (UTC) a No. of Days after
Rain > 1 mm Crop LAI

Za Vaněčkovi 2017 May 11 7:15 1 Winter wheat 2.46
2017 May 28 9:50 6 Winter wheat 2.91

Mokřiny 2017 May 11 7:15 1 Winter wheat 2.73
2017 May 28 9:50 6 Winter wheat 3.49

Makytí 2017 May 11 7:15 1 Pea 0.08
2017 May 28 9:50 6 Pea 0.50

Vrcha 2018 May 27 7:10 4 Winter wheat 2.57
U Mouček 2018 May 27 7:10 4 Mixture for silage 3.74

Kazy 2018 May 27 7:10 4 Winter wheat 2.32
Kochánky 2018 May 29 7:30 6 Winter wheat 3.10
Sojovice 2018 May 29 7:30 6 Potatoes 3.23

a Note: The local daylight saving time is UTC+2.

The area along the lower Jizera River with the riverbank filtration system (Káraný
waterworks) is the source of the remaining 25% of the total drinking water supply for
Prague. Water is extracted by over 500 bore wells regularly distributed along 22 km of the
alluvium aquifer/river interface supplied by water seeping from the river and percolation
from adjacent fields with a high nitrate content of 100–250 mg·L−1 [53]. The area is used
for the cultivation of irrigated vegetables (radish, lettuce, carrot, broccoli, onion, garlic,
celery, parsley, cabbage, kohlrabi, and red beet), and early and medium potatoes. Non-
irrigated winter and spring wheat, barley, sugar beet, or maize are irregularly included in
the vegetable sequence. Soils are represented mostly by light textured soils (loamy-sand
and sandy-loam soils) with low water capacity and high spatial variability. The local
climate is classified as warm, according to Quitt [49], with a mean annual precipitation of
573 mm and air temperature of 9.5 °C.

The area of interest is mainly built by marine sediments of the Bohemian Cretaceous
Basin; the watercourse valleys are filled with Pleistocene (Quaternary) fluvial and alluvial
sediments that have resulted in the high spatial variability of soil texture. Often, a sharp
difference could be observed on the scale of only one to two meters. Several soil types [52]
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were identified at the study sites: Eutric Fluvisol (Loamic), Leptic Fluvisol (Arenic), Leptic
Regosol (Arenic), Skeletic Regosol (Arenic), and Haplic Phaeozems (see Figure 2 for spatial
distribution). The texture ranged from loam to sandy loam and sandy soil with skeletons,
especially in the subsoil. The spatial variability of soil types corresponds to the great
variability of the moisture-holding capacity of the topsoil and subsoil [28]. The two
experimental sites near the villages Sojovice (three field blocks) and Kochánky in the lower
Jizera River region were monitored (Figure 1). Winter wheat was grown in the years of
aerial data acquisition at the Kochánky site, and irrigated potatoes were grown on part of
Sojovice field blocks.

Figure 2. Spatial distribution of soil types within the study sites.

2.2. Measurements of Saturated Soil Hydraulic Conductivity and Determination of Field
Water Capacity

Values of saturated soil hydraulic conductivity (Ks; cm·h−1) were measured on the
soil surface (after removing the top layer of about 3–5 cm) with three to six pressure
infiltrometers designed by the Research Institute for Soil and Water Conservation (Czech
Republic) at each measuring point. For further analysis, the median of the measured values
was calculated for each point. Measuring points for Ks with different soil permeability
and fertility were selected in the fields of Za Vaněčkovi, Makytí, U Mouček and Kochánky,
which were measured after winter wheat or corn (Zea mays L.) harvests (Za Vaněčkovi 2017
and 2018), and when winter wheat was grown (Makytí, U Mouček and Kochánky in 2020).

Infiltrometers were based on the principle of Mariott’s bottle and they were connected
with an OMEGA OM-PL420 data logger. A capacitive sensor (CLM type with a rod
electrode and reference tube) was used to measure the level change in the infiltrometer
storage tank. The sensor is connected to the data logger and the logged data correspond
directly to the values of the measured water level in the storage tank. The water level was
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measured between the minimum and maximum levels, marked by lines on the body of the
infiltrometer tank, every 20 s. Data evaluation was performed based on the two- and three
parametric Philip’s equations [54]. The Ks values from both equations were averaged.

To determine the FWC (the maximum amount of water that a particular soil can
hold after drainage of the water contained in the macropores; vol. %), soil samples were
taken from the topsoil (0–0.3 m) and subsoil (0.3–0.6 m) layers in all fields in Bohemian–
Moravian Highlands and lower Jizera River (Table 1) and were analyzed for the particle
size distribution by the pipette method [55]. A fine particle size fraction (Fp, %) <0.01 mm
was used for calculating the FWC with a simple PTF [26]:

FWC = 6.66 + 1.03 · Fp − 0.008 · Fp
2 (1)

The values of FWC were reduced, according to coarse fragments content (>2 mm).

2.3. Remote Sensing Data

Airborne hyperspectral optical and thermal data were used to analyze soil infiltration
properties and FWC. Images were acquired using CASI-1500, SASI-600 and TASI-600
hyperspectral sensors (ITRES Ltd., Calgary, AB, Canada). A summary of the dates and
time of imaging at each site is shown in Table 2. All images were acquired in cloudless
weather.

The aerial thermal images acquired with the TASI-600 thermal hyperspectral sensor
were obtained with a spectral data resolution of 110 nm in the range of 8–11 µm. A total of
32 spectral bands were recorded. The spatial resolution was 5 m. The data were used to
calculate the surface temperature layer. The aerial hyperspectral images obtained by the
CASI-1500 optical hyperspectral scanner were taken with a spectral resolution of 10 nm
data in the range 380–1050 nm. A total of 72 spectral bands were recorded. The spatial
resolution ranged from 2 m to 2.5 m depending on the imaging date. For analyses, the data
were resampled to a resolution of 5 m. Using a SASI-600 optical hyperspectral scanner,
images were acquired with a spectral resolution of 15 nm data in the range 950–2450 nm. A
total of 100 spectral bands were recorded. The data were acquired at a spatial resolution
of 5 m. All the aerial data were provided by the Global Change Research Institute, Czech
Academy of Science (CzechGlobe) at the L2 processing level. The data provider performed
all the necessary geometric and radiometric corrections of the data (for more details see
https://olc.czechglobe.cz/en/main-page/, accessed on 20 May 2021).

The digital terrain model (DMT), the height of the crop cover and the meteorological
data were used as additional data for the calculation of individual variables.

The digital terrain model and digital surface model (DMS) were created from LiDAR
data acquired for all the areas of interest during the aerial campaigns. A Riegl LMS Q780
sensor with a spatial resolution of 0.5 points per square meter was used for imaging. The
data were provided by CzechGlobe again. The DMT and DMS were obtained with the
LasTools (https://rapidlasso.com/lastools/, accessed on 20 May 2021), using the lascanopy
tool. The DMT was created by filtering the point cloud values to the 1% quantile level of
the individual point values with a resolution of 5 × 5 m. The DMS was created using a
99% quantile filter for 5 × 5 m resolution. The height of crop cover was determined as the
difference between the DMS and DMT. The DMT and crop cover height layers were used
to calculate energy fluxes and crop water stress index.

Meteorological data (air temperature and relative humidity at 2 m, global radiation
and air velocity at 2 m) were measured at the areas of interest, using automatic weather
stations. The air temperature layer in the area of interest was calculated based on the
assumption of an adiabatic surface temperature change of 0.65 °C per 100 m of altitude,
using the DMT and the measured air temperature value by the automatic weather station.
The wind speed was assumed to be spatially constant for each site.

The estimation of Ks and FWC was based on the assumption of a relationship between
the hydraulic soil properties and the expression of crop water stress. Crop water stress can
be identified using the so-called crop water stress index (CWSI; [56,57]), which is based

https://olc.czechglobe.cz/en/main-page/
https://olc.czechglobe.cz/en/main-page/
https://rapidlasso.com/lastools/
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on the assumption of a change in the surface energy balance. The CWSI index attempts to
relativize this change in relation to the ability of the environment to accept water vapor.
The CWSI index was calculated as follows [56]:

CWSI = 1 − ∆ + γ∗

∆ + γ
(

1 + rc
ra

) , (2)

where ∆ is the slope of the temperature gradient with respect to the moisture gradient
(K·kPa−1), γ is the psychrometric constant (kPa·K−1), rc represents the resistance of the
vegetation to water vapor transfer (s·m−1), and ra is the aerodynamic resistance of the
surface to heat and momentum transfer (s·m−1). The γ∗ is the modified psychrometric
constant (kPa·K−1) calculated using the following formula [56]:

γ∗ = γ

(
1 +

rcp

ra

)
, (3)

where rcp is the resistance of the vegetation to water vapor transport under conditions of
potential evaporation from the surface (s·m−1).

The calculation of the aerodynamic surface resistance for heat and momentum transfer
ra is based on the Monin–Obukhov theory of similarity [58,59] with respect to the aerody-
namic surface roughness [60]. The aerodynamic resistance of the surface was calculated
based on the following relation [61]:

ra =

[
ln
(

z−d
z0m

)
− Ψm(ς)

][
ln
(

z−d
z0h

)
− Ψh(ς)

]
U · κ2 , (4)

where z is the height above the surface corresponding to the mixing layer; d is the effective
height of the vegetation (m); z0m and z0h are the aerodynamic roughness of the vegetation
for the transfer of water vapor, heat and momentum; U is the wind speed converted,
according to the logarithmic law for the height z (m·s−1); and κ is the Kármán constant.
The values of Ψh(ς) and Ψm(ς) are the stability coefficients for heat and momentum
transfer in the atmospheric boundary layer calculated as a function of its stability [62]. The
individual parameters of the equation were calculated by an iterative procedure given by
Brutsaert [63].

The surface resistance value for water vapour transfer rc was calculated using the
following formula:

rc =

[(
∆ + γ

Ω
− ∆

)
1
γ
− 1
]

ra, (5)

where Ω is the so-called decoupling coefficient or also the relative evaporation (rel., [64]).
The value of rcp (s·m−1) was derived from the assumption that rcp is equal to rc for potential
evaporation. In this case, the value of rcp can be calculated using the following formula:

rcp =
(Es − ea)ρcp

γ · LEp
− ra, (6)

where Es is the saturated water vapor pressure at stand level (kPa), ea is the air water vapor
pressure (kPa), and LEp is the latent heat flux of evaporation for potential evaporation
(W·m−2, [56]).

Because the expected more rapid development of crop water stress in areas with
higher infiltration ability affects crop cover development, we used the spectral vegetation
index MSAVI (modified soil adjusted vegetation index; [65]) as an additional variable to
estimate Ks and FWC calculated according to the following equation:

MSAVI = 0.5 ·
(

2RNIR + 1 −
√
(2RNIR + 1)2 − 8(RNIR − RRED)

)
. (7)
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The MSAVI index is significantly correlated with the vegetation production character-
istics, such as canopy height [66], leaf area index and aboveground biomass amount [65].
The surface moisture can vary significantly among dates and sites, and for this reason,
we used the normalized difference moisture index (NDMI; [67]), which is significantly
correlated with surface moisture, as an additional variable to estimate the FWC. The NDMI
was calculated using the following relationship:

NDMI =
RNIR − RSWIR
RNIR + RSWIR

, (8)

where Rband is a spectral reflectance (rel.) in particular spectral band. The spectral bands
selected for this study were 670 nm (red band; RED), 860 nm (near infrared band; NIR)
and 1610 nm (shortwave infrared band; SWIR). The wavelength used for the red band
corresponds to a spectral region that is essentially insensitive to chlorophyll a content [68].
The magnitude of reflectance in the NIR spectral domain is governed by structural discon-
tinuities encountered in the leaf and plants, and spectral reflectance in the SWIR domain
is related especially to water absorption [69]. In our case, the selection of spectral bands
with the wavelength in 670, 860 and 1610 nm corresponds closely to central wavelengths
of the Sentinel 2 MSI and Landsat 8 OLI satellite bands. See https://sentinels.copernicus.
eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument (accessed on 20 May
2021) and https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview (accessed on 20
May 2021) for more details.

The leaf area index (LAI, m2·m−2) was calculated as a proxy value for each study site
based on the following relationship [70]:

LAI =
LAI1 + LAI2

2
, (9)

where

LAI1 =

{
11 · SAVI3 SAVI > 0; SAVI ≤ 0.817
6 SAVI > 0.817

(10)

and

LAI2 =

{
− ln 0.61−SAVI

0.51
0.91 SAVI > 0; SAVI ≤ 0.61

6 SAVI > 0.61
(11)

SAVI is the soil adjusted vegetation index [71]:

SAVI =
(1 + L) · (RNIR − RRED)

L + RNIR + RRED
, (12)

where L is a constant (L = 0.5). The LAI was measured directly using Plant Canopy Meter
Li-2000 (Li-COR, Ltd.) at the study sites of Za Vaněčkovi, Mokřiny, Kazy and Vrcha for
each sampling point on the date of aerial data acquisition. The mean values of LAI were
used for these sites (see Table 1). The MSAVI and SAVI spectral indices were calculated
from the CASI-1500 data; the NDMI spectral index was calculated from the CASI-1500 and
SASI-600 data.

The SEBCS for QGIS [72] was used for the calculation of the variables.
The MSAVI, NDMI and CWSI index values were extracted for each sampling point,

using zonal statistics calculation. For each point, median values were calculated for a circle
with a radius of 5 m. The reason for using the median was to limit the impact of outliers in
the source data.

2.4. Ks and FWC Estimation from Aerial Data

The estimation of the spatial distribution of Ks and FWC is based on the assumption
of the relationship between the observed characteristics and the expression of stand water
stress. Our hypothesis was that areas with higher infiltration rate will develop water stress

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-overview
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earlier than areas with a lower infiltration rate. In this case, the FWC is an indirect indicator
of soil infiltration capacity. Here, we assume that soils with greater skeleton content, and
therefore lower FWC, will exhibit greater infiltration capacity.

A nonlinear model based on the machine learning method of support vector regression
(SVR; [73,74]) was used to estimate the Ks and FWC at the study sites. The SVR method
was used, due to the assumption of a nonlinear relationship between the variables. The
e1071 package [75] in the R platform for statistical computing [76] was used for model
building.

The radial basis kernel (RBF) was used for the SVR model. The model was tuned with
a variable insensitive-loss function epsilon in the range of 0 to 1.0 with step 0.1 and with
the cost of constraints violation in the range 22 to 29 with step 2n+1, where n is an exponent
from the previous calculation step. The gamma parameter was set as 1/number of values
in the dataset. See the e1071 package documentation [75] for more details. The best model
was chosen for the prediction of the estimated data based on spectral indices CWSI, MSAVI
and NDMI.

The estimated values of Ks and FWC using the SVR model were related to the mea-
sured data, using a linear regression method. The bias of the estimated values was calcu-
lated using the root mean square error (RMSE) according to the following equation:

RMSE =

√
1
n

n

∑
i=1

(Pi − Oi)2, (13)

where n is a number of values in the dataset, Pi is the predicted data, and Oi is the
observed data.

2.5. Statistical Analysis

The statistical analysis was performed to compare the Ks and FWC values and FWC
values measured in two different soil profiles at the study sites. A simple linear regression
method was used for the evaluation. The normality of the data was tested, using the
Shapiro–Wilk test.

Comparison of the Ks and FWC field values with the results estimated from aerial
data was performed, using the simple linear regression method.

All statistical tests were performed in R platform for statistical computing [76] at the
probability level of α = 5%.

3. Results
3.1. Measured Data of Ks and FWC

The measured values of Ks and FWC showed considerable variability depending on
the soil conditions of the study sites. The FWC values also varied between the monitored
topsoil and subsoil. Values of Ks ranged from 2.5 to nearly 49 cm·h−1 at each site. While
predominantly low Ks values were observed at the Za Vaněčkovi site (x̄ = 10.5, sd = 8.5),
a wide range of values, including high values (x̄ = 23.5, sd = 16.2), was observed in the
variable soils of the Kochánky site (deep loamy humic vs. shallow sandy and skeletal). At
the U Mouček and Makytí sites, the mean Ks values were 14.5 and 18.8 with a standard
deviation of 4.9 and 8.3, respectively. An overview of the distribution of Ks values is shown
in Figure 3a).

The highest mean FWC values with high variability for topsoil were found at the
sites in the lower Jizera River areas (x̄ = 27.0, sd = 7.2 and x̄ = 25.8, sd = 4.7 for Kochánky
and Sojovice, respectively). In contrast, low FWC values were recorded at the sites in the
Bohemian–Moravian Highlands. Except for the site Za Vaněčkovi (x̄ = 25.6, sd = 3.2) with
high soil variability and systematic drainage, here, the FWC values for topsoil had rather
less variance. A summary of the distribution of values is shown in Figure 3b). The FWC
values for the subsoil layer were lower than those for the topsoil layer, given some soils’
greater skeletal or sand content. The values were again higher in the Lower Jizera River
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area than in the Bohemian–Moravian Highlands. An overview of the distribution of values
is shown in Figure 3b).

Figure 3. Summary of the distribution of values of (a) saturated soil hydraulic capacity (Ks) and (b) field water capacity
(FWC) measured at the study sites. The short horizontal lines indicate the measured values; the long horizontal line
indicates the arithmetic mean of the values.

An inverse relationship is expected between Ks and FWC, i.e., the lower the FWC, the
higher the water infiltration rate into the soil. The analysis of the relationship between
Ks and FWC for topsoil confirmed a significant relationship between the two variables;
however, the relationship showed a low level of correlation (R2 = 0.17, F1,31 = 6.4, p < 0.05).
The relationship between the Ks and FWC was not significant for the subsoil layer or the
whole soil profile studied. The logarithmic transformation of the data was used because
the Ks values did not show a normal distribution (Shapiro–Wilk test: W = 0.87, p < 0.05).
The resulting relationship is shown in Figure 4a).

Figure 4. Relationship between (a) field water capacity (FWC, vol. %) for topsoil and saturated soil hydraulic conductivity
(Ks, cm·h−1), and (b) between FWC (vol. %) of subsoil (0.3 to 0.6 m) and topsoil (0 to 0.3 m). The 95% confidence interval is
marked by grey lines.

Analysis of the relationship between the FWC values measured in the topsoil (0–0.3 m)
and subsoil (0.3–0.6 m) showed a significant regression relationship (R2 = 0.38, F1,180 = 112.6,
p < 0.05), shown in Figure 4b).
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3.2. Estimation of Ks and FWC Data from Aerial Imaging

The analysis of the relationship between the measured and modelled Ks values based
on the aerial data for the site of Za Vaněčkovi showed that the regression coefficient value
was only R2 = 0.46 (F1,16 = 13.4, p < 0.05, RMSE = 6.62) for the imaging term of 11 May
2017, compared to the high value of R2 = 0.96 on 28 May 2017 (F1,16 = 402.8, p < 0.05,
RMSE = 1.61). The reason for the difference between the two dates was the different
saturation of the soil profile, and therefore, the root zone of the stands, with water at the
time of imaging (see below). Because the assumption of stand water stress development
was not met for 11 May 2017, these data were excluded from a further Ks analysis. The
regression relationship was not calculated separately for the other sites, due to the low
number of measurements. However, the combination of data from the Za Vaněčkovi,
U Mouček, Makytí and Kochánky sites showed good agreement between measured and
estimated data (R2 = 0.77, F1,31 = 103.8, p < 0.05, RMSE = 4.95). The regression relationship
is shown in Figure 5.

Figure 5. Relationship between measured and predicted data of saturated soil hydraulic conductivity
(Ks, cm·h−1) by the SVR model based on aerial data. The 95% confidence interval is marked by
grey lines.

The regression coefficient values for the relationship between the measured FWC
values for the soil depth of 0–0.3 m and the aerial data varied considerably between the
sites. The regression coefficient values ranged from 0.38 to 0.99. Low regression coefficient
values were obtained for the aerial data from 11 May 2017. The exception here was the
Makytí site, which showed high regression coefficient values in 2017 for both observed
dates (R2 = 0.99 and R2 = 0.97). In 2018, low values of R2 were found for irrigated potato at
the Sojovice site (R2 = 0.42), for winter wheat crop at the Kochánky site (R2 = 0.43) and for
the U Mouček site (R2 = 0.38), where the crop consisted of a cereal–leguminous mixture for
silage. The values of the regression coefficient were around 0.8 at the sites Vrcha and Kazy.
A detailed overview of the values is shown in Table 3 and in Figure 6a).
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Figure 6. Regression relationship between measured and predicted data of field water capacity (FWC, %) for topsoil (a) and
subsoil layer (b) for each study sites. Statistical description of the results is given in Tables 3 and 4.

The regression coefficient values for comparing the measured FWC values and the
aerial data for the subsoil show a different character. Low values of R2 remain for 11 May
2017, for the sites Za Vaněčkovi (R2 = 0.35) and Makytí (R2 = 0.46). In contrast, a strong
relationship was found for the Mokřiny site (R2 = 0.81). Low regression coefficients were
also found for irrigated potatoes at the Sojovice site (R2 = 0.43) and Za Vaněčkovi and
Makytí sites (R2 = 0.12 and 0.36, respectively) for the date of 28 May 2017. In the case
of the Za Vaněčkovi site, the result is even inconclusive. Low values of the regression
coefficient were also found for the sites U Mouček (R2 = 0.36) and Vrcha (R2 = 0.50). High
values of the regression coefficient were found for the Mokřiny site for both imaging dates
(R2 = 0.81 for 11 May 2017 and even R2 = 0.99 for 28 May 2017, respectively) and at the
Kazy (R2 = 0.81) and Kochánky (R2 = 0.84) sites. The RMSE values are higher than for
topsoil in most cases. A summary of the results comparing measured and estimated FWC
values for the 0.3–0.6 m soil layer is shown in Table 4 and in Figure 6b).

Table 3. Results of regression analyses of the relationship between the modeled and measured values of topsoil field water
capacity (FWC; vol. %) for particular study sites, dates of aerial data acquisition and crops.

Locality Date Crop R2 F df p-Level a RMSE

Za Vaněčkovi 11 May 2017 Winter wheat 0.49 23.47 24 *** 2.25
28 May 2017 Winter wheat 0.80 98.20 24 *** 1.41

Mokřiny 11May 2017 Winter wheat 0.52 21.44 20 *** 2.06
28 May 2017 Winter wheat 0.82 91.25 20 *** 1.25

Makytí 11 May 2017 Pea 0.99 1609.0 18 *** 0.22
28 May 2017 Pea 0.97 498.20 18 *** 0.40

Vrcha 27 May 2018 Winter wheat 0.83 102.60 21 *** 1.31

U Mouček 27 May 2018 Mixture for
silage 0.38 11.45 19 ** 2.17

Kazy 27 May 2018 Winter wheat 0.78 31.06 9 *** 1.17
Kochánky 29 May 2018 Winter wheat 0.43 14.05 19 *** 2.04
Sojovice 29 May 2018 Potatoes 0.42 24.06 33 *** 3.81

a Note: ***—p < 0.001, **—p < 0.01, *—p < 0.05, .—p < 0.1, n.s.—not significant.

Examples of the graphical output computed from the above models for Ks and FWC
are shown in Figure 7. The image shows that both Ks and FWC varied considerably at
the sites. In the Bohemian–Moravian Uplands, the study sites are very heterogeneous,



Remote Sens. 2021, 13, 4127 14 of 25

representing areas with increased infiltration capacity, mainly in the upland parts and
in areas with shallow soil. In contrast, the soils in the lower Jizera area are composed of
the fluvial and alluvial sediments with different skeleton content. The distribution of the
modeled values largely corresponds to the delineation of soil types (Figure 2), but the
spatial variability of soils is expressed at a more detailed scale.

Table 4. Results of regression analyses of the relationship between modeled and measured values of bottom soil layer field
water capacity (FWC; vol. %) for particular study sites, dates of aerial data acquisition and crops.

Locality Date Crop R2 F df p-Level a RMSE

Za Vaněčkovi 2017 May 11 Winter wheat 0.35 10.26 19 ** 4.31
2017 May 28 Winter wheat 0.12 2.71 19 n.s. 4.95

Mokřiny 2017 May 11 Winter wheat 0.81 85.78 20 *** 1.75
2017 May 28 Winter wheat 0.99 1996.0 20 *** 0.37

Makytí 2017 May 11 Pea 0.46 15.34 18 ** 2.72
2017 May 28 Pea 0.36 10.59 18 ** 3.64

Vrcha 2018 May 27 Winter wheat 0.50 21.01 21 *** 3.56

U Mouček 2018 May 27 Mixture for
silage 0.36 10.59 19 ** 3.64

Kazy 2018 May 27 Winter wheat 0.81 37.19 9 *** 2.19
Kochánky 2018 May 29 Winter wheat 0.84 95.37 19 *** 2.66
Sojovice 2018 May 29 Potatoes 0.43 24.63 33 *** 5.89

a Note: ***—p < 0.001, **—p < 0.01, *—p < 0.05, .—p < 0.1, n.s.—not significant.

Figure 7. An example of spatial distribution of (a,b) saturated soil hydraulic conductivity (Ks,
cm·h−1) and field water capacity (FWC, %) for topsoil (c,d) and bottom soil layer (e,f) calculated by
the SVR model based on aerial data.
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The FWC images for the two depths studied show a similar pattern to the Ks outputs.
However, the values are inverse; low FWC values correspond to elevated Ks values and vice
versa. The FWC values in both the topsoil and subsoil show a similar spatial distribution;
however, some differences are evident. As can be seen from the example for the Kochánky
site (Figure 7c,e), the spatial differences of values are in some cases smaller in the topsoil
layer. In contrast, larger differences of FWC in the field blocks are evident in the subsoil.
It should be noted that the observed differences are site specific, e.g., there is a higher
variability of values in the topsoil at the Vrcha site.

4. Discussion

The presented approach shows a relatively simple way of evaluating the spatial
variability of hydraulic properties of soils, using remote sensing data usable in practice.
However, the quality of the evaluation and estimation depends on several factors.

4.1. Data and Their Quality

The crucial factor is the quality of the data used to calibrate the proposed models.
In this work, two different approaches were used to evaluate the hydraulic properties of
soils in situ. A direct measurement was used for the Ks, and estimation of FWC was based
on a simple PTF for soil hydrolimits (water content defined for specific values of water
potentials). The Ks is an indicator of the infiltration capacity of the soil, respectively, the
upper limit of the rate of water infiltration into the soil [77]. The infiltration rate is an
essential property of the soil that has a clear connection with the manifestations of plant
water stress, the amount of leached nitrates, or other nutrients from agricultural (including
tile-drained) soils, and with an intensity of water erosion [78–80]. The problem of the
practical use of direct in situ measurement of the Ks is technical, time, management and
financial complexity. The accuracy of the Ks measurement is disputable, due to the impact
of several factors affecting the measurement, e.g., spatially heterogeneous occurrence of
preferential pathways (via macropores, cracks and fissures) significantly affected by previ-
ous soil moisture and biological activity (biopores), concentrated runoff pathways, local
soil heterogeneity of skeletal content, organic matter and porosity, agrotechnical treatment
(soil tillage) and also the compaction of subsoil due to the agricultural machinery [81–83].

The use of the FWC represents, in comparison with the determination of the Ks, a
relatively more straightforward approach for the evaluation of hydraulic properties of
soils. The determination of the FWC based on the PTF derived from the content of clay
particles shows good agreement with the direct measurement of the FWC based on the
measurement of soil moisture and soil water potential for several soil types [26]. However,
the quality of the FWC estimate is also affected by the above effects. The method of using
the PTF was successfully used, for example, by Haberle et al. [27] for the relationships
between soil spatial variability and crop growth influenced by soil water stress.

The indirect proportion between the Ks and FWC is based on the assumption that
skeletal and sandy soils with high non-capillary porosity have a lower level of FWC and, at
the same time, a higher ability to infiltrate water into the soil profile, compared to heavier
and more compacted soils [84,85]. With the increasing content of sand, skeleton and
stones, the ability of the soil to retain water decreases during rainfall events, the soil profile
quickly saturates with water (especially by the presence of macropores and biopores), and
water drains away by shallow subsurface runoff [86,87]. Although the relationship found
between the Ks and FWC for the topsoil layer shows an expected trend, the observed
dependence between the variables is weak (see Figure 4a)). This result may be due to
the above effect of local soil heterogeneity, in particular, a change in pore structure and
preferential flow, which causes a significant variance of the Ks values (incl. extreme values)
for a relatively small FWC range (see Figure 4a), [88]). As shown by Haberle et al. [28]
for the lower Jizera river area, soil vulnerability to leaching given by texture (loamy-sand
and sandy-loam soil) and the resulting low water capacity is amplified by high spatial
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variability of soil properties, which is often manifested visually by water stress impacts,
when non-irrigated crops are grown in the area.

The differences between the hydropedological properties of both areas and the topsoil
and subsoil layer are mainly due to the soil profile’s pedogenesis. In the area of the
Bohemian–Moravian Highlands, there are various soil types with medium to high Ks and
lower FWC. This is related to the fact that the topsoil water-retaining layer (a horizon) is
relatively shallow (max. 30–40 cm), with a low to medium humus content, lighter in grain
size distribution with a skeleton content of 2–10%, which grows into the subsoil (up to 30%),
thereby reducing the FWC. The decrease in the Ks of some parts of the upper horizons of
the Za Vaněčkovi, Mokřiny and Vrcha localities was due to the relief, the texturally heavier
substrate and periodically stagnant water, which led to the formation of the Eutric/Dystric
Stagnic Cambisol or Eutric/Dystric Stagnosol with an impermeable subsoil Ks [89]. The
infiltration capacity of the soil is also limited by the mica content in the Mokřiny locality.
Disruption of the soil profile in the locality Za Vaněčkovi is a significant factor due to
artificial mixing during the tile drainage building in 1977. Collection and conduit drains
were installed at depths of 1.0 m and 1.1 m, respectively, and the spacing of collection
drains was 13 m or 20 m apart [18,90].

The situation is different in the area of the lower Jizera river. The local soils were
created by alluvial activity based on sediment loads with diverse structure, while the
deposition of individual layers can be very variable [53,91]. Therefore, there are soils with
strongly different properties, and consequently, the Ks and FWC range is wider than in
the Bohemian–Moravian Highlands (Figure 3). There are soils that are very deep, humus
rich, on loess or river sediments, without skeleton, with a high FWC and medium Ks
(Eutric Fluvisol (Loamic) and Haplic Phaeozem); texturally light, dry, humus-rich soils
on sandy river terraces with a low skeleton content (Leptic Fluvisol (Arenic); and soils
that are very shallow (dry), with low humus content on gravelly-sandy fluvial terraces
with low FWC and high Ks (Leptic Regosol (Arenic) and Skeletic Regosol (Arenic)). The
presence of organic alluvial sediments in the Eutric Fluvisol (Loamic) subsoil reduced the
FWC differences between the topsoil and subsoil. In the case of both areas, soil tillage is
also important, such as the temporary homogenization of the surface by plowing and the
different compaction of the subsoil by the travel of agricultural machinery.

The quality of aerial data is also a major problem for evaluating the area distribution
of the Ks and FWC. Although complex preprocessing is performed on the data by the
provider, various random errors and inaccuracies can occur, especially for thermal data.
The median of the values for a circular segment with a radius of 5 m was calculated to
reduce the effect of random errors and extreme values for each sampled site. Although
random errors in the RS data are problematic, the imaging date and time are much more
significant. The degree of plant water stress development is a fundamental prerequisite for
evaluating soil hydraulic properties of the locality. Here, it is important to choose a term
that ensures reduced water availability in the soil for plants, i.e., preferably a few days after
the last major atmospheric precipitation. As the overview in Table 3 shows, the resulting
model of the FWC estimate for the topsoil is much better for 28 May 2017 (Za Vaněčkovi
and Mokřiny sites), which was characterized by significantly lower availability of soil water
for plants, compared to 11 May 2017. In the previous 14 day period, the total precipitation
period was 9 mm, compared to 31 mm before the first date, with one day after the last
precipitation for the first date and six days for the second (see Table 2). Due to the strong
development of water stress of crops, there was a perfect agreement between the model and
the measured data on 27 May 2018 (localities Vrcha, Kazy), when the sum of precipitation
from 1 April 2018 to 26 May 2018 was only 30 mm, four days after the last precipitation
(see Table 2). The use of irrigation systems that mask the hydropedological properties of
soils is problematic in this regard; see, for example, the Sojovice locality (see Table 3). The
reason for the worse FWC estimate in the topsoil layer in Kochánky was probably a sudden
spatial change (in the order of 1–2 m; see [28]) of soil hydraulic properties and thus the
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impact of water stress on vegetation. The effects of drought here were mainly influenced
by subsoil, as confirmed by the high R2 values (see Table 4 and Figure 6b)).

The choice of imaging time is also important for evaluating crop water stress as one
of the indicators of soil hydraulic properties. Too early imaging can be affected by dew
occurrence. Dew trapped on the vegetation canopy can mask the manifestation of water
stress (wet surface), and directly saturates the water needs of the stand [92]. Dew may also
impact transpiration suppression due to the increased leaf wetness duration (especially
plants with larger leaves) and the decreased leaf temperature [93]. Vuollekoski et al. [94]
showed a potential for large-scale dew harvesting (yearly cumulative yield as high as
100 l·m2) in water-stressed areas (e.g., coastal regions of northern Africa and the Arabian
Peninsula). The effect of evaporation of interception water (primarily in the upper leaves
of the plants) is also significant, the intensity of which largely depends on the exposure of
individual parts of soil blocks [93]. This problem is significant in temperate and probably
also in tropical areas [95,96]. In most cases, the available time for aerial imaging is signifi-
cantly limited by cumulus clouds forming in the morning and at noon. These are mainly
the months when the vegetation cover reaches the maximum growth and the water cycle is
effectively closed [97–101]. The formation of cumulus clouds largely forced the dates and
times of imaging chosen in the present study in the area of interest. The weather limitation
is, in this case, a significant disadvantage for the proposed method of monitoring the soil
hydraulic properties. On the other hand, the situation in different geographical areas may
differ significantly.

The choice of a suitable imaging date is also important when it comes to the devel-
opment of the vegetation cover of the area. As expected, the stand should be developed
with sufficient leaf area, connected and developed with maximum water demand [102]. A
stand with a developed root system should also identify spatial differences in the hydrope-
dological properties of subsoil and water availability [85]. Likewise, Kroener et al. [103]
reported that water uptake by roots was affected greatly by the hydraulic properties of the
rhizosphere so that the reduced hydraulic conductivity mitigated the effects of drought
stress. However, lower Ks was a good indicator of low-yielding zones [7]. The density
of a vegetation is then important to limit the influence of the soil surface on the spectral
information of the scanned space. The Ks and FWC values for the topsoil layer showed a
good agreement of the measured and modeled values in the areas where the vegetation
was dense for most of the evaluated sites (see Figure 6a) and Table 3). A surprising result
was a very high correlation of the modeled and measured FWC values for the topsoil
layer of the Makytí locality, which had minimal vegetation cover at the time of imaging
(in both terms). The high correlation may be the effect of the spectral manifestation of the
soil surface and the spatial heterogeneity of dry surface heating; however, this hypothesis
needs to be verified.

The development of vegetation cover is essential for identifying hydropedological
properties of the soil not only in the topsoil layer, but also in the subsoil. In this respect,
in addition to soil properties (soil compaction, gleying, etc.), the development of the root
system and the depth to which it extends are crucial. If the vegetation cover was limited
(Makytí locality), a low correlation was found between the measured and modeled FWC
values. The connection between the deeper soil layer and the surface that the plants are
intended to show was not provided. Similarly, using deep-rooting plants, such as clover
(U Mouček locality), can be problematic. Clover can obtain water from great depths (up
to 2 m), so by its manifestation, they can effectively mask the lack of water in topsoil and
shallow subsoil [104]. Due to the shallow subsoil of the U Mouček locality (35–55 cm),
the more developed root system of the cereal–leguminous mixture will likely be more
important, compared to monoculture [105].

The evaluation of areas with winter wheat showed, in most cases, a relatively high
correlation for the measured and modeled FWC values in the subsoil layer. An exception is
the Za Vaněčkovi locality, where the low correlation was probably due to a very complicated
pedological situation. The results of FWC prediction for subsoil layer summarise Table 4
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and Figure 6b). A large part of the land is systematically drained (61% of the area), and
part of it are Eutric/Dystric Stagnic Cambisols and Eutric/Dystric Stagnosol (see Figure 2).
Systematic drainage means, in addition to the actual change in the infiltration capacity of
the soil, also a change in the composition of the soil profile, which, due to the mixing of
soil layers during the deposition of drainage pipes, led to the formation of an anthroposoil
(see [18] for more details).

4.2. Estimation of Ks and FWC Data from Aerial Imaging

The presented approach to estimating the Ks and FWC using RS data is based on the
simple assumption that the development of crop water stress is defined by the rate of water
infiltration into the soil. We can say that the higher the rate of infiltration, the faster the soil
profile dries out and the faster the crop water stress occurs. Plant water stress is manifested
by physiological changes, in the short term mainly by reducing transpiration and changing
the energy balance of its surface [56,106]. The definition of the intensity of plant water
stress is based on the change of temperature manifestation of the canopy, depending on
the change in the energy exchange between the plants and the atmosphere, using the
CWSI. The CWSI is a commonly used indicator, e.g., for irrigation purposes [107–110]. A
significant advantage of the CWSI is the possibility of determination based on the spatial
change of the temperature gradient within the observed space [57,111–115], so no further
detailed supplementary data are needed. The calculation method is straightforward, and
the agreement with the approach based on the theoretical basis, which was used in this
work, is usually very good [111,112]. In this regard, this approach is easy to use in practice,
without the need to know the physical nature of the derivation of the CWSI.

Although the hypothesis of a relationship between the CWSI and soil hydraulic
properties is justified, data analysis has shown that the CWSI alone for the Ks and FWC
estimation is insufficient. Other crop properties play an important role in the estimation of
the hydraulic features. It is mainly the amount of crop biomass, its density, health status, or
surface moisture. For this reason, the MSAVI and NDMI vegetation spectral indices were
used in the prediction models. The MSAVI vegetation index makes it possible to describe
the amount and state of biomass of the monitored stand [65,66]. The NDMI vegetation
index significantly correlates with the vegetation surface moisture [67]. In both cases, the
indices were used as covariates, making it easier to describe the complexity of the process
by the model. The procedure of the ad hoc definition of the model variables was chosen.
In contrast, when it comes to creating the smallest possible parsimony model, the approach
of the so-called forward selection of variables was used, which was gradually added to the
model. The minimum size of the model was chosen, given the amount of data used, among
other things.

The amount of data used is one of the critical indicators when using machine learning
methods. However, the SVR method used is one of the less sensitive methods applied
to handle the used amount of data. As Al-Anazi and Gates [116] show, the sensitivity
of the SVR models, particularly with the usage of the RBF kernel, is relatively low with
respect to the size of the sample populations. In this work, the number of samples taken to
determine the FWC for the individual sites was around 20; for the determination of the Ks,
data from 31 measurement points were used. The number of values used in this study was
considered sufficient for evaluating the spatial variability of soil hydraulic properties, given
the realistic time, technical and economic possibilities of sampling for laboratory analyses
at the monitored sites. An exception is the Kazy site, where only 11 samples were taken to
determine the FWC, which can be considered a limit value. The resulting R2 values may
probably overestimate the real result in the case of a small volume of calibration data.

In comparison with published works, the presented results provide a comparable esti-
mate of the observed characteristics of soil hydraulic properties, e.g., Ambrosone et al. [39]
report R2 = 0.73 for the linear method to determine soil water content, using multispectral
data from the Sentinel 2 satellite and the OPTRAM model [117], and R2 = 0.8 for the nonlin-
ear method. Francos et al. [33] performed a detailed analysis of the spectral characteristics
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of soils in relation to the infiltration rate. The results showed a very good agreement
between laboratory and spectral data; however, the result varied according to the different
types of soils and their physical properties. Haberle et al. [27] showed a very good agree-
ment between the FWC and the RGB index derived from multispectral UAV images for
the localities in the lower Jizera area (localities Kochánky and Sojovice). The values of the
regression coefficient ranged between around 0.8 and 0.9, depending on the examined soil
layer. It should be noted that the very high spatial resolution of the used images, which
were able to capture sudden spatial changes of the spectral properties of the stand and
soil properties, played a significant role in the evaluation. Methods based on thermal
spatial data provided similar results as in previous cases, e.g., Boulet et al. [37], using the
evaporation test, showed very good agreement with the data measured in situ. Similarly,
Maltese et al. [36,118] described a very good agreement between soil bulk moisture values
and values derived using the thermal inertia method.

The present method eliminates some of the limitations of the above approaches.
In monitoring soil without vegetation cover using optical spectral data, the structural
properties of soils and the content of color elements, such as hematite or goethite, can play
an important role, which can significantly affect the spectral information [33]. Evaluation
of soil hydraulic properties using spectral vegetation indices (e.g., the RGB index, [27]) may
have only a limited possibility to identify short-term changes in the stand water regime.
This approach is suitable for monitoring the manifestation of long-term changes. Methods
based on evaluating the thermal properties of the stand and the soil surface, such as the
evaporation test or the thermal inertia method, are approaches that are very sensitive to
short-term changes in the soil hydraulic properties. The disadvantage is the need to obtain
supplementary data (e.g., meteorological data) during imaging and usually a complicated
calculation method. In addition, in determining the thermal inertia, it is necessary to
perform imaging repeatedly during the day (for more details, see [35,36,118]).

The advantage of the presented method is the relative simplicity of calculating the
commonly used spectral vegetation indices and the CWSI without requiring a large amount
of supplementary data. Furthermore, since it is a method based on thermal data, the
method is sensitive to short-term changes in the water regime of the stand. The nonlinear
regression method allows a fairly good estimate of complex hydraulic soil properties, which
are determined and influenced by several factors. The SVR method then provides the
possibility to evaluate soil hydraulic properties, even based on a relatively small number
of soil samples taken and analyzed, thereby increasing the efficiency of the spatial analysis
of the studied areas. Due to its relative simplicity, the present method can be a suitable
tool for evaluating the spatial variability of soil hydraulic properties and can, therefore, be
applied in precision agriculture and protection of surface waters against the leaching of
nutrients, especially nitrates.

5. Conclusions

Estimating soil hydraulic characteristics (the Ks and FWC) by the SVR, using a combi-
nation of the CWSI and vegetation indices obtained from aerial imaging, showed a good
agreement with the measured data for most study sites. The analysis showed a good agree-
ment between the measured and estimated Ks values for the observed areas (R2 = 0.77). In
the case of the evaluation of only the area of Za Vaněčkovi, the regression coefficient value
was even R2 = 0.96. Comparison of measured and estimated FWC values showed good
results for the topsoil, while slightly worse results were found for the subsoil. In the first
case, the values of the regression coefficient ranged from R2 = 0.38 to R2 = 0.99, and in the
second case, from R2 = 0.12 to R2 = 0.99. The results showed the specific response of the
individual study areas. Therefore, it is necessary to evaluate each study area separately to
evaluate the hydraulic properties of soils.

Several factors influence the resulting relationship between the measured values of
soil hydraulic properties and the values estimated from RS data. Of particular importance
for the assessment is the state of development of the water stress of the vegetation. As
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expected, stand water stress, expressed as the CWSI, is the main indicator of soil hydraulic
properties. On the other hand, other stand properties, such as stand biomass (defined by
the MSAVI spectral index) and possibly stand moisture (expressed by the NDMI index),
need to be considered to assess the soil properties.

The quality of the RS data and the quality and quantity of the ground measurement
data are important conditions for evaluating the soil hydraulic features. In the case of Ks,
the number of measurements on individual fields is limited mainly by the measurements’
complexity and time, technical and financial requirements. The imaging timing also
appears to be crucial, with the optimal period being that of fully developed vegetation
cover. The possibility of assessing areas without vegetation cover remains an open question.
The time of imaging is also important for the use of RS data. Too early imaging may be
influenced by dew, which may mask the expression of water stress in the crop cover. The
soil environment also plays an important role, which can significantly affect the assessment
outcome, e.g., the crop, previous and current agronomy, and drainage.

An issue for the assessment of soil properties is the spatial resolution of the sensors
used. In the present work, data with a spatial resolution of 5 × 5 m were used. This
resolution is probably sufficient for soil assessment in most cases. On the other hand,
as shown by Haberle et al. [27,28], soil properties can change suddenly within units of
meters. In this perspective, UAV technology with a very high resolution appears to be
potentially applicable in practice. Alternatively, a combination of satellite (e.g., Sentinel 2)
and UAV thermal data could be used in practical applications. The disadvantage of the
proposed approach is the need for a combination of optical data in the visible and infrared
spectral domain and thermal data. The problem is that most of the available systems
do not provide complete data for estimating soil hydraulic properties, or only data with
the insufficient spatial resolution are available, e.g., Landsat and MODIS. On the other
hand, the application of commonly used spectral vegetation indices is an advantage of the
proposed method.

The use of artificial intelligence methods (ML and DL) brings the possibility of analyz-
ing (not only) soil hydraulic properties without the need for a priori knowledge of complex
relationships between the biophysical manifestation of the surface (vegetation) and the
soil hydraulic properties. This approach opens up new opportunities for the research and
understanding of the relationships between soil, vegetation and atmosphere. Precision
agriculture and its strategies are an important area of the application of AI methods in
this respect.
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16. Duffková, R.; Fučík, P.; Jurkovská, L.; Janoušková, M. Experimental evaluation of the potential of arbuscular mycorrhiza to
modify nutrient leaching in three arable soils located on one slope. Appl. Soil Ecol. 2019, 143, 116–125. [CrossRef]
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nitrate-nitrogen and phosphorus load assessments for small tile-drained catchments. Water 2017, 9, 712. [CrossRef]
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27. Haberle, J.; Kurešová, G.; Křížová, K.; Lukáš, J.; Svoboda, P.; Raimanová, I.; Stehlík, M. Maps of spatial variability of soil water
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