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Abstract: Monitoring vertical profile of leaf water content (LWC) within wheat canopies after head
emergence is vital significant for increasing crop yield. However, the estimation of vertical dis-
tribution of LWC from remote sensing data is still challenging due to the effects of wheat spikes
and the efficacy of sensor measurement from the nadir direction. Using two-year field experiments
with different growth stages after head emergence, N rates, wheat cultivars, we investigated the
vertical distribution of LWC within canopies, the changes of canopy reflectance after spikes removal,
the relationship between spectral indices and LWC in the upper-, middle- and bottom-layer. The
interrelationship among vertical LWC were constructed, and four ratio of reflectance difference
(RRD) type of indices were proposed based on the published WI and NDWSI indices to determine
vertical distribution of LWC. The results indicated a bell shape distribution of LWC in wheat plants
with the highest value appeared at the middle layer, and significant linear correlations between
middle-LWC vs. upper-LWC and middle-LWC vs. bottom-LWC (r ≥ 0.92) were identified. The
effects of wheat spikes on spectral reflectance mainly occurred in near infrared to shortwave infrared
regions, which then decreased the accuracy of LWC estimation. Spectral indices at the middle layer
outperformed the other two layers in LWC assessment and were less susceptible to wheat spikes
effects, in particular, the newly proposed narrow-band WI-4 and NDWSI-4 indices exhibited great
potential in tracking the changes of middle-LWC (R2 = 0.82 and 0.84, respectively). By taking into
account the effects of wheat spikes and the interrelationship of vertical LWC within canopies, an
indirect induction strategy was developed for modeling the upper-LWC and bottom-LWC. It was
found that the indirect induction models based on the WI-4 and NDWSI-4 indices were more effective
than the models obtained from conventional direct estimation method, with R2 of 0.78 and 0.81 for
the upper-LWC estimation, and 0.75 and 0.74 for the bottom-LWC estimation, respectively.

Keywords: leaf water content; vertical distribution; hyperspectral reflectance; wheat spikes; preci-
sion agriculture

1. Introduction

Leaf water content (LWC) in crops is closely associated with physiological processes
and morphological structure of plants [1]. In agricultural practice, proper application of
fertilizer can promote the growth of plant root, then enhance the ability of water uptakes
from soil [2,3]. Abiotic stresses (e.g., nitrogen or phosphorus stress), by contrast, generally
reduce crop water conductivity and lead to a decreased LWC [4], which would slow the
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rate of photosynthetic carbon assimilation and restrain the productivity and growth of
crops [5,6]. Therefore, accurate estimation and real time detection of LWC and its vertical
distribution with crop canopies, particularly in various functional leaf layers, is helpful
for understanding the real water status and water transfer process in plants, and making
sound decisions for effective water and fertilization management in precision agriculture.

Remote sensing technology has been successfully applied in monitoring physical
and chemical changes in crops across different scales [7–10]. The fundamental of remote
estimation is the interaction between plant chemical compositions, such as LWC, with
electromagnetic radiation [11]. Numerous research efforts focus on developing approaches
for LWC estimation based on spectral regions from red edge to SWIR [12,13]. There are
two widespread methods: (1) the use of spectral indices calculated by the reflectance of
wavebands relevant to leaf water status (e.g., water index and normalized difference water
index) [14,15], and (2) radiative transfer modeling, that simulates the light penetration
path through the canopy, based on physical laws [16]. However, in both these methods it
is generally assumed that plant canopies are vertically homogeneous. A major problem
arises from the fact that a non-uniformed vertical distribution of many leaf biochemical
parameters, including LWC, among different leaf positions has been reported for various
crops [17–20]. This would be one of the principal factors controlling the total light reflected
from the canopy [21] and influencing the sensitivity of spectral indices to leaf biochemical
parameters. Therefore, particular emphasis needs to be placed on the vertical distribution
of LWC when studying on the quantitative models for remote precision monitoring.

Few studies have been carried out to detect the vertical distribution of leaf parame-
ters within canopy using remotely sensed data. The majority of spectral measurements
are collected using ground-based spectroscopy, since the sensor is capable of viewing an
area of interest with high spectral and spatial resolutions, providing accurate information
on the underlying mechanisms of vertical leaf compositions monitoring. In this context,
researchers tried to develop estimation models for the vertical distribution of leaf vari-
ables [20,22]. Li et al. [23] investigated the contributions of different vertical layers to
canopy reflectance spectra by removing wheat tissues gradually from top to the bottom,
and concluded that the information about leaves in the bottom layer were usually failed
to be captured. However, how deep the sensors can sense is partly dependent on the
canopy deep of target of interest. Ciganda et al. [24], working on maize, reported that the
red-edge chlorophyll index (CIred edge) could sense the chlorophyll content of the upper
seven to nine leaf layers, when employing a hierarchical regression. From the results of
Luo et al. [25], leaf nitrogen (N) content of reed in the top three layers can be accurately
quantified based on canopy reflectance. The interrelationship of vertical leaf N distribution
within the canopy was simulated by a statistical method and used for the estimation of leaf
N content for the whole canopy. In addition, a physically based multiple-layer canopy re-
flectance model was proposed by Wang et al. [21], and was successfully tested in depicting
vertical profiles of leaf variables for winter wheat [26]. They suggested that the penetration
characteristics and sensitivity of spectral bands used in the spectral indices should also be
considered. Based on these results, several wavebands in the NIR and SWIR regions were
identified as effective wavelengths for building spectral indices or estimation models for
assessing the vertical leaf N distribution [20,22,27].

For the case of LWC, a bell-shaped vertical trend of LWC distribution has been reported
in wheat canopies [23,28]. However, there have been few studies concentrating on the
challenging issue of detecting vertical distribution of LWC within canopies based on
reflectance data and spectral indices derived [28], especially for the canopy after head
emergence stage. Studies have demonstrated that the reflectance of crop canopies could be
changed by the emergence of crop spikes at the late growth stages [29,30], which would
increase the uncertainty for estimation of LWC vertical distribution. Nevertheless, how
wheat spikes affect canopy reflectance across the full spectral regions and the assessment
of vertical profile of LWC in crop canopies are still poorly understood. Deep knowledge
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of these mechanisms issues would facilitate to develop a suitable retrieval strategy, and
consequently improve the accuracy of estimation of vertical LWC distribution.

The objectives of this study were (1) to investigate the vertical profile of LWC within
winter wheat canopies and identify the interrelationship of LWC among the different
vertical layers; (2) to analyze the effects of wheat spikes on canopy spectral reflectance
and the performance of published water-related spectral indices in quantifying the ver-
tical LWC in wheat; (3) to estimate vertical distribution of LWC within canopies using a
newly proposed indirect induction method, then compare its prediction ability with the
conventional estimation method.

2. Materials and Methods
2.1. Field Experiments

The field experiments were conducted at the National Experiment Site for Precision
Agriculture (40◦10.6′N, 116◦26.3′E), Beijing, China (Figure 1). This site has a sub-humid
continental monsoon climate, with a mean annual rainfall of 507.7 mm and a mean annual
temperature of 13.8 ◦C. Experiment 1 (Exp. 1) was conducted in 2007. Nine winter
wheat cultivars were planted with a density of 3 × 106 plants ha−1 and a row spacing
of 25 cm, which included Lumai21, Jing411, Jingken49, Jing9843, Jingdong12, 9158, 6211,
I-93, Laizhou3279. Nitrogen fertilizer as urea was applied at the pre-planting and the
stem elongation stages; 345 kg ha−1 compound fertilizer consists of 15% nitrogen, 15%
phosphorus and 15% potassium were used prior to sowing. Each cultivar was planted in
a plot with an area of 45 × 10.8 m2. Experiment 2 (Exp. 2) was conducted in 2017. Two
cultivars of Lunxuan167 and Jingdong18 were investigated. Four N fertilization rates were
applied for all cultivars: 0 (N0), 150 kg ha−1 (N150), 300 kg ha−1 (N300), and 450 kg ha−1

(N450). Each cultivar was grown in plots of 15 m × 9 m size, on a silty clay loam soil.

Figure 1. The location of the study area.

Canopy spectral measurement and sampling dates were selected during the late
growth periods of wheat, i.e., 9 May (Head emergence, Z54), 19 May (Heading, Z59) and
29 May (Milk-filling, Z73) in Exp.1, 9 May (Head emergence, Z54) and 27 May (Milk-filling,
Z73) in Exp. 2. It should be noted that, in Exp. 2, in order to focus on investigating the
effects of wheat spikes on canopy spectral reflectance and vertical distribution of LWC
estimate, for each plot, wheat spikes were removed from the plant after accomplishing
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spectral measurement for the entire canopy under the premise of ensuring that all other
conditions remained unchanged.

2.2. Canopy Spectral Reflectance Measurement

An ASD FieldSpec 3 spectrometer (Analytical Spectral Devices, Boulder, CO, USA)
was used to measure the canopy spectral reflectance, with a 25◦ field-of-view fiber optics. It
records the spectral radiance between 350 and 1050 nm with a sampling interval of 1.40 nm
and a resolution of 3 nm, and between 1000 and 2500 nm with a sampling interval of 2 nm
and a resolution of 10 nm. The measurements were performed under clear sky conditions
between 10:00 am and 14:00 pm (Beijing local time).

Within each plot, three subplots with an area of 1 m × 0.6 m (4 rows × 0.6 m long, 0.6
m2) were randomly selected, canopy spectral reflectance was measured at a height of about
1 m above wheat canopies from the nadir direction. Notably, in Exp. 2, after collecting
spectral reflectance of entire canopy, all of wheat spikes in the subplot were carefully cut
off, and the spectral reflectance of the remaining canopy without spikes was measured.
Each spectral measurement of the two experiments was preceded by a dark current mea-
surement and a white reference measurement was taken before and after canopy spectral
measurement, using a 99% white Spectralon® (Labsphere, Inc., North Sutton, NH, USA)
reference panel. Ten scans were determined and averaged to obtain the spectral reflectance
of the entire canopy or canopy without spikes for each subplot. Three averaged subplots’
spectra were used to represent the reflectance of entire canopy or canopy without spikes
for each plot.

2.3. Vertical Leaf Water Content Distribution Measurement

All samples of wheat in each subplot within the footprint of canopy reflectance
acquisitions, were harvested by cutting off the plants at the soil level, and immediately
placed in black plastic bags and kept cool until they were brought back to determine LWC
in the laboratory. To quantify vertical profiles of LWC within wheat canopy, we divided
the plant into three vertical layers according to various functions of leaves, as shown in
Figure 2. The top first leaf (i.e., flag leaf) was assigned to the upper-layer, since its important
role in contributing to the major part of photosynthesis of canopy and significantly to grain
yield and quality at the late growth stages [31], and the top second leaf was assigned to
the middle-layer. In addition, the top third and the leaves below were assigned to the
bottom-layer, in consideration of the fact that they were proven to be more sensitive to
nutrient and water deficiency [32] and leaves below the top third began to senesce during
the milk-filling period, mainly consisting of the yellow and withered leaves, which was
particularly pronounced for the N0 treatment.

Figure 2. The schematic diagram of vertical division of leaves within wheat canopy.

For each subplot, leaves belonging to the same vertical layer were cut from the stems
and weighed immediately to obtain the fresh weight (FW) using analytical balance. Then
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they were dried at 105 ◦C for 30 min in an oven and subsequently dried at 80 ◦C until
constant weight, dry weight (DW) of leaves were recorded after weighing. Leaf water
content (LWC) (%) was calculated using the method of weight ratio [33]. The LWC in a
given vertical layer of three subplots were finally averaged to represent the LWC in the
corresponding layer of the plot.

LWC (%) =
FW − DW

FW
× 100% (1)

2.4. Published Spectral Indices

A set of 15 published spectral indices related to leaf water variables of different plants
were explored to evaluate the effects of wheat spikes on their performance in vertical
distribution of LWC estimation (Table 1).

Table 1. Published spectral indices used in this study.

Spectral Index Formula Reference

Water index (WI) WI = R900
R970

[14]

Normalized difference water index (NDWI) NDWI = R860−R1240
R860+R1240

[15]

Moisture stress index (MSI) MSI = R1600
R820

[34]

Water band index (WBI) WBI = R970
R900

[35]

WBI/normalized difference vegetation index
(WBI/NDVI) WBI/NDVI = R970

R900
/ R800−R680

R800+R680
[14]

Normalized difference infrared index (NDII) NDII = R850−R1650
R850+R1650

[36]

Reciprocal of moisture stress index (RMSI) RMSI = R860
R1650

[36]

Simple ratio water index (SRWI) SRWI = R860
R1240

[16]

Maximum difference water index (MDWI) MDWI = Rmax1500−1750−Rmin1500−1750
Rmax1500−1750+Rmin1500−1750

[37]

Composite water index (CWI) CWI = R1660 × R1820 [13]

Leaf water index (LWI) LWI = R1300
R1450

[38]

Normalized different water stress index
(NDWSI) NDWSI = R850−R970

R850+R970
[39]

Novel image-derived index (NIDI) NIDI = R1529
R1416

[40]

Floating-position water band index (FWBI1) FWBI1 = R900
Rmin930−980

[41]

Floating-position water band index (FWBI2) FWBI2 = R920
Rmin960−1000

[42]

2.5. Construction of New RRD Type of Spectral Indices

Differences in vegetation canopy geometry and illumination angles during the spectral
measurements could cause the confounding effects of scattering that are unrelated to leaf
biochemical parameters [43]. The theory of multiple signal correction (MSC) was proposed
for separating the biochemical light absorption (e.g., LWC) from the physical light scatter
for NIR data [44]. For an individual spectrum or sample, the MSC model was expressed as
follows:

Rik = ai + biRk + eik i = 1, . . . , n; k = 1, . . . , λw (2)

where Rik represents spectral reflectance for sample i at wavelength k; ai and bi represent the
additive and multiplicative effects for sample i respectively; Rk represents the “standard”
value at wavelength k, which is usually expressed by the average value of all samples at
wavelength k; eik represents residual with respect to all other effects in the spectrum that
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cannot be modeled by ai and bi for sample i at wavelength k. After the transposition, the
scatter corrected spectrum Rik, corrected was calculated by:

Rik, corrected = (Rik − ai)/bi (3)

Equations (2) and (3) suggest that the derivation of the relationship between spectral
reflectance and leaf biochemical content requires to eliminate the variations due to the ad-
ditive offset and the multiplicative effect. However, the extract values of scatter coefficients
ai and bi are not unique, they depend on different sample datasets of Rk used [43].

In this study, the ratio of reflectance difference (RRD) type of indices was explored,
which is formulated as:

RRD =
Rλ1 − Rλ3

Rλ2 − Rλ4
(λ1 6= λ3, λ2 6= λ4) (4)

From the formation of RRD, it is obvious that the scatter coefficients ai and bi will be
eliminated, thus be insensitive to the sample datasets. Therefore, it can be expressed in
Equation (5) as well.

RRD =
Rλ1,corrected − Rλ3,corrected

Rλ2,corrected − Rλ4,corrected
(λ1 6= λ3, λ2 6= λ4) (5)

Because of the excellent performance of the published WI and NDWSI indices in
estimating the vertical LWC profile over other spectral indices tested (see Section 3.3),
inspired, we optimized them to construct four new RRD type of spectral indices from three
or four narrow spectral bands, referred to as WI-3 and WI-4, NDWSI-3 and NDWSI-4,
which were defined by the following equations:

WI − 3 =
R900 − Rλ3

R970 − Rλ3
(6)

WI − 4 =
R900 − Rλ3

R970 − Rλ4
(7)

NDWSI − 3 =
(R850 − Rλ3)− (R970 − Rλ3)

(R850 − Rλ3) + (R970 − Rλ3)
(8)

NDWSI − 4 =
(R850 − Rλ3)− (R970 − Rλ4)

(R850 − Rλ3) + (R970 − Rλ4)
(9)

where 850 nm, 900 nm and 970 nm are the existing wavebands in the WI or NDWSI indices,
λ3 and λ4 are the third or/and forth wavebands in the four new RRD type of spectral
indices. To find the optimum λ3 and λ4 in each index for estimating vertical distribution of
LWC, we calculated the spectral reflectance of every band, or all two bands combinations,
from 400–2500 nm, to combine with the reflectance of existing bands, respectively, and then
correlated with the LWC in the middle-layer. The λ3 in the WI-3 and NDWSI-3, or the λ3
and λ4 in the WI-4 and NDWSI-4 were consequently selected by the values of coefficient
of determination (R2). All the calculations were implemented using MATLAB 8.3 (The
MathWorks, Inc., Nat-ick, MA, USA). From our result, λ3 = 1350 nm for WI-3, λ3 = 1200 nm
for NDWSI-3, λ3 = 825 nm and λ4 = 1013 nm for WI-4 and NDWSI-4, so the four new
narrow-band spectral indices were:

WI − 3 =
R900 − R1350

R970 − R1350
(10)

WI − 4 =
R900 − R825

R970 − R1013
(11)

NDWSI − 3 =
R850 − R970

R850 + R970 − 2R1200
(12)
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NDWSI − 4 =
(R850 − R825)− (R970 − R1013)

(R850 − R825) + (R970 − R1013)
(13)

2.6. Data Analysis

The datasets collected in Exp. 2 were used to explore the influences of wheat spikes on
spectral reflectance and the accuracy of vertical LWC estimation, while datasets collected
in Exp. 1 and 2 were used for modeling. The values of coefficients of determination (R2)
between LWC in vertical layers and published spectral indices, derived from spectral
reflectance of the entire canopy with or without spikes, were calculated, which were
referred to as R2

entirecanopy and R2
canopywithout spikes, respectively. A relative variation rate (Rv,

%) was used to compare the performance of each spectral index with respect to vertical
LWC before and after spike removal, which was formulated as Equation (14). A higher Rv
of R2 suggests a higher degree of variations in spectral indices, i.e., effects of spikes, on
vertical LWC estimation.

RV o f R2 (%) =
R2

canopy without spikes − R2
entire canopy

R2
entire canopy

(14)

where Rv of R2(%) indicates the change of the accuracy of estimation models for LWC in
a given vertical layer before and after spike removal. The Rv of R2(%) > 0 represents an
increase in model accuracy after removing spikes, whereas the Rv of R2(%) < 0 represents a
decrease.

Linear regression was used to model the relationship between spectral indices and
LWC in different vertical layers using the SPSS 18.0 software (SPSS Inc., Chicago, IL,
USA). In this study, we proposed an indirect induction method to establish models for
LWC in the upper- and bottom-layer, by considering the effects of wheat spikes and the
interrelationship of vertical LWC within canopies. Their estimation model was as follows:{

y = m× yMiddle−LWC + n
yMiddle−LWC = a× SI + b

(15)

where y indicates the LWC in the upper-layer or the bottom-layer, coefficients m and n
indicate the slope and intercept of relationship between middle-LWC and upper-LWC,
or middle-LWC and bottom-LWC; yMiddle-LWC indicates the LWC in the middle-layer, SI
indicates the spectral indices used, coefficients a and b indicate the slope and intercept of
estimation model for middle-LWC.

The validity of models was assessed based on leave-one-out cross-validation ap-
proach. Apart from R2 and root mean square error (RMSE) were employed to test the
performance of the models in vertical LWC prediction, the relative error (RE) and Nash–
Sutcliffe efficiency (NSE, calculated as Equation (16)) were used to evaluate the predictive
ability of models, which were classified into four and three categories respectively by
researchers [45,46], as shown in Table 2.

NSE = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (16)

where yi and ŷi are the measured and estimated LWC in a given vertical layers, yi is the
mean of the measured LWC in a corresponding layer.

Table 2. Classification of predictive ability of models evaluated by the RE and NSE.

Excellent Good Fair Unsuitable

RE <10% 10%–20% 20–30% >30%

NSE ≥0.9 0.5–0.8 - 0.1–0.4
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3. Results
3.1. Vertical Variation of LWC within Wheat Canopies

The vertical profiles of LWC within wheat canopies across different growth stages
and different N rates are presented in Figure 3a,b. We can observe that the LWC in the
three vertical layers were all gradually decreased after the head emergence stage of wheat.
However, for each vertical layer, the treatments with higher N rates (i.e., N300 and N450)
had higher LWC in comparison to those with lower N rates (i.e., N0 and N150), although
the differences between N300 and N450 were not distinctive, indicating that appropriate
application of N fertilizer could improve the LWC to a certain extent. However, for all
treatments, there was a similar vertical distribution pattern of LWC, showing great vertical
heterogeneity within canopies. Leaves in the middle layer had the largest LWC among the
three layers of wheat, while the LWC in the upper layer were slightly lower or higher than
that in the bottom layer. Moreover, the middle-LWC was strongly and linearly related to
the upper-LWC and bottom-LWC, with correlation coefficient of 0.95 and 0.92, respectively
(Figure 3c,d).

Figure 3. Vertical profiles of LWC within wheat canopies (a) at different growth stages; (b) under
different N treatments at the head emergence stage (Z54), error bars represent standard deviation of
vertical LWC measurements; the relationships between (c) the middle-LWC vs. the upper-LWC and
(d) the middle-LWC vs. the bottom-LWC for both experiments.

3.2. Effects of Wheat Spikes on Canopy Spectral Reflectance

To inspect the effects of wheat spikes on spectral reflectance, we compared spectral
reflectance of the entire canopy and the canopy without spikes over spectral range from 400
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to 2500 nm at different growth stages and N rates (Figure 4). Note that the noises caused
by the effect of water vapor in the air above the canopy in the spectral reflectance values,
ranged from 1360–1370 nm, 1830–1920 nm and 2440–2500 nm, were removed.

Figure 4. Spectral reflectance of the entire wheat canopy and the canopy without spikes (a) at different growth stages under
the N300 treatment, and (b) under different N treatments at the milk-filling stage (Z73).

As shown in Figure 4a,b, wheat spikes had a remarkable effect on canopy spectra.
Judging by the response of canopy reflectance to spikes removal in different spectral re-
gions, the largest changes occurred in the NIR and SWIR regions (730–2500 nm), where the
reflectance values of canopy without spikes were generally higher than those of the corre-
sponding entire canopy at the same growth stage and N treatment, and little variation was
observed in the visible region (400–730 nm). Through carefully examining the reflectance
spectra in Figure 4, we were able to detect that spectral reflectance in the 800–1250 nm,
1400–1780 nm and 2000–2350 nm ranges strongly responded to the removal of spikes,
which included the sensitive spectral bands utilized to calculate leaf water-related spectral
indices in Table 1. In addition, the comparable extents of differences of canopy reflectance
before and after spikes removal were shown between the two late growth stages under the
same N treatment (Figure 4a), whereas bigger extents of differences appeared among N
fertilization treatments (Figure 4b). Compared to the higher N treatments, reflectance of
canopy without spikes under the N0 treatment was considerably different from the original
reflectance in visible and SWIR (1400–2500 nm) regions. However, among different N rates,
the amplitudes of the differences in reflectance before and after spikes removal within NIR
high plateau from 730 to 1300 nm were not distinct, except for the N450 with relatively
small difference being observed.

3.3. Effects of Wheat Spikes on Relationships between Published Spectral Indices and LWC in
Vertical Layers

Given that the wheat spikes contributed differently to canopy spectral reflectance
over 400 to 2500 nm (Figure 4), they might have different effects on the estimation ac-
curacy of LWC in different vertical layers. The R2

entire canopy and R2
canopy without spikes of

linear regression analyses for the relationships between published spectral indices and
LWC in the upper-, middle- and bottom-layer are summarized in Table 3. In general,
for all vertical layers, the values of R2

entire canopy were all lower than the corresponding
R2

canopy without spikes, except for the CWI and NIDI, suggesting that the presence of wheat
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spikes negatively affects the accuracy of spectral indices in assessing the vertical LWC varia-
tion. This may present a convincing evidence for the decreased accuracy of leaf biochemical
estimation models when the data obtained after the heading stage were pooled [47]. To
further quantify the attenuation influence of spikes on LWC estimation in each vertical
layer, we calculated the Rv between R2

entire canopy and R2
canopy without spikes of each spectral

index for the three vertical layers. The results are shown in Figure 5. An important infor-
mation revealed by Figure 5 is that the spikes had significant, but different, effects on the
sensitivity of spectral indices to changes in the vertical LWC within canopies, depending
on the vertical layers. Specifically, for almost all spectral indices, the Rv of R2 in the middle
layer yielded the smallest values compared with the upper- and bottom-layer, apart from
the WBI/NDVI, LWI and NDII, whose Rv of R2 in the middle layer ranked the second
place. These results indicated that the assessment of middle-LWC was less susceptible to
the effect of spikes, whereas the estimation of upper-LWC or bottom-LWC was relative
strongly influenced.

Table 3. The R2
entire canopy and R2

canopy without spikes between published spectral indices and the LWC in different vertical
layers. Colors correspond to the level of performances of spectral indices, from light blue for minimum R2 value to red for
maximum R2 value.

Spectral Index R2
entire canopy R2

canopy without spikes

Upper-Layer Middle-Layer Bottom-Layer Upper-Layer Middle-Layer Bottom-Layer
WI 0.39 0.47 0.29 0.53 0.61 0.4

NDWI 0.36 0.44 0.28 0.53 0.61 0.4
MSI 0.32 0.4 0.28 0.46 0.55 0.39
WBI 0.38 0.47 0.29 0.52 0.6 0.4

WBI/NDVI 0.36 0.41 0.28 0.39 0.48 0.36
NDII 0.34 0.41 0.3 0.48 0.56 0.39
RMSI 0.36 0.45 0.31 0.53 0.6 0.39
SRWI 0.37 0.45 0.32 0.55 0.62 0.4

MDWI 0.27 0.38 0.24 0.4 0.49 0.32
CWI 0.46 0.38 0.44 0.11 0.17 0.09
LWI 0.29 0.39 0.25 0.41 0.49 0.27

NDWSI 0.44 0.5 0.37 0.58 0.65 0.41
NIDI 0.32 0.34 0.26 0.08 0.12 0.06

FWBI1 0.38 0.5 0.33 0.57 0.63 0.42
FWBI2 0.38 0.48 0.33 0.56 0.63 0.44

Figure 5. The relative variation rate (Rv) of R2 of relationships between published spectral indices
and LWC in the upper-, middle- and bottom-layer before and after removing spikes.
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In addition, we further compared the performances of spectral indices in LWC deter-
mination in different vertical layers before spikes removal, based on datasets from Exp.1
and 2. As presented in Table 4, almost all published spectral indices achieved the best R2

in the relationship with respect to the middle-LWC, whereas the weakest relationships
were found in the bottom layer. In consideration of the significant relationships between
middle-LWC vs. upper-LWC and middle-LWC vs. bottom-LWC (Figure 3c,d), it was
expected that the LWC in the upper and bottom layers could be indirectly assessed by the
remote estimation model of middle-LWC at the late stage of wheat, as a result, reducing the
variability due to the wheat spikes and improving vertical LWC estimates within canopies.

Table 4. The R2 between published spectral indices derived from spectral reflectance of the entire
canopy and the LWC for the three vertical layers by using datasets from Exp. 1 and 2. Colors
correspond to the level of performances of spectral indices, from light blue for minimum R2 value to
red for maximum R2 value.

Spectral Index Upper-Layer Middle-Layer Bottom-Layer
WI 0.56 0.58 0.54

NDWI 0.47 0.47 0.45
MSI 0.40 0.42 0.38
WBI 0.55 0.58 0.54

WBI/NDVI 0.42 0.49 0.44
NDII 0.42 0.44 0.41
RMSI 0.41 0.41 0.40
SRWI 0.46 0.47 0.45

MDWI 0.47 0.50 0.46
CWI 0.01 0.05 0.03
LWI 0.45 0.46 0.44

NDWSI 0.59 0.61 0.58
NIDI 0.33 0.38 0.30

FWBI1 0.56 0.56 0.52
FWBI2 0.53 0.54 0.50

3.4. Estimation of Vertical LWC Distribution of Wheat Using a Method of Indirect Induction

As illustrated in Table 4 and Figure 5, the best behaviors in terms of both sensitivity
to LWC changes of the middle layer and less sensitivity to wheat spikes effects, were
shown by the NDWSI, WI, WBI and FWBI1 (which were indicated in bold in Table 4).
These indices yielded R2 values larger than 0.56, while Rv of R2 values less than 30%.
Since the formulas and band combinations of the WI, WBI and FWBI1 showed remarkable
consistency (Table 1), we used the WI as a representation. Given the fact that both the
additive and multiplicative effects exist in canopy reflectance measurements across different
wheat cultivars over growth stages, the WI and NDWSI were optimized by adding the
third or/and forth wavebands to construct the four new RRD type of indices, expecting
to reduce those effects on LWC estimation based on the MSC theory. Reflectance of each
waveband or a large number of two-band combinations over the range of 400–2500 nm,
were tested as the Rλ3 or Rλ3 and Rλ4 combination in WI-3, NDWSI-3, WI-4 and NDWSI-4
equations (i.e., Equations (6)–(9)), then related to the middle-LWC. The R2 value was used
to evaluate which waveband or band combination should be selected to develop the best
performing RRD type of indices (Figure 6). As shown in Figure 6a,b, in the selection of the
third waveband used in the WI-3 and NDWSI-3, the high significance area all appeared
in NIR region. It was worth noting that there are two peaks, λ3 = 1350 nm in the WI-3
and λ3 = 1200 nm in the NDWSI-3, achieving the highest R2 values for determination of
middle-LWC.



Remote Sens. 2021, 13, 4125 12 of 20

Figure 6. The R2 curves between middle-LWC vs. (a) the WI-3 and (b) NDWSI-3 indices when using each waveband over
400–2500 nm as the third band (λ3); R2 contour maps between middle-LWC vs. (c) the WI-4 and (d) NDWSI-4 indices when
using all possible combinations over 400–2500 nm as the third (λ3) and forth bands (λ4).

In the selection of the third and fourth band combination used in the WI-4 and NDWSI-
4, R2 contour maps of the two four-band RRD indices showed similar patterns (Figure 6c,d).
The indices that consisted of red-NIR region or NIR-NIR region as λ3 and λ4, i.e., WI-4
indices with λ3: 685–700 nm and λ4: 1450–1500 nm, λ3: 770–850 nm and λ4: 1000–1110 nm,
as well as λ3: 1415–1425 nm and λ4: 1480–1525 nm; NDWSI-4 indices with λ3: 620–700 nm
and λ4: 1450–1490 nm, λ3: 790–895 nm and λ4: 1000–1115 nm, as well as λ3: 1415–1425 nm
and λ4: 1480–1540 nm, revealed high determination of coefficients relating to the middle-
LWC (R2 > 0.65). Maximum R2 appeared in λ3 = 825 nm and λ4 = 1013 nm for both the
WI-4 and NDWSI-4 indices.

Figure 7 shows the comparisons of performances of the optimal RRD type of in-
dices and the corresponding published spectral indices in the middle-LWC estimation.
The WI-3 ((R900 − R1350)/(R970 − R1350)) and WI-4 ((R900 − R825)/ (R970 − R1013)) out-
performed the WI with increase of R2 values by 10% and 41%, while the NDWSI-3
((R850 − R970)/ (R850 + R970 − 2R1200)) and NDWSI-4 (((R850 − R825)− (R970 − R1013))/
((R850 − R825) + (R970 − R1013))) were superior over the NDWSI with increase of R2 val-
ues by 3% and 38%, respectively. Being more effective than the three-band RRD indices,
the two four-band RRD indices reduced the saturation of spectral indices to some degree
and increased the accuracy of LWC estimation, where the WI-4 and NDWSI-4 explained
82% and 84% of the variation in middle-LWC at the late stages.
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Figure 7. Scattering plots of relationships between the optimal RRD type of indices/the corresponding published spectral
indices and the middle-LWC for the entire canopy. Subplots (a–c) show the relationships between the WI, WI-3, WI-4 and
middle-LWC respectively, subplots (d–f) show the relationships between the NDWSI, NDWSI-3, NDWSI-4 and middle-LWC
respectively.

Since the significant and linear relationships between middle-LWC vs. upper-LWC and
middle-LWC vs. bottom-LWC (Figure 3c,d), along with the distinct sound behaviors of the
WI-4 and NDWSI-4 indices which were clearly identifiable in Figure 7 with respect to the
middle-LWC, we developed estimation models through a method of indirect induction for
the upper-LWC and bottom-LWC respectively as follows:{

yUpper−LWC = 1.6105× yMiddle−LWC − 43.908
yMiddle−LWC = a× SI + b

(17)

{
yBottom−LWC = 0.7447× yMiddle−LWC + 12.276
yMiddle−LWC = a× SI + b

(18)

where yUpper−LWC, yBottom−LWC and yMiddle−LWC indicate the LWC in the upper-, bottom-
and middle-layer, respectively; SI indicates the WI-4 or NDWSI-4 index, which were
formulated as Equations (11) and (13); coefficients a and b indicate the slope and intercept
of estimation model based on the WI-4 or NDWSI-4, as shown in Figure 7c,f.

3.5. Validation of Vertical LWC Distribution Models

To validate the predictive ability and acceptability of the estimation models of vertical
LWC described in Section 3.4, the estimated LWC in the middle-, upper- and bottom-layer,
derived from models based on the WI-4, NDWSI-4 and the best performing published ND-
WSI, were compared to the measured LWC in the corresponding vertical layers (Figure 8).
It can be observed that for all plots, all REs were less than 30%, NSEs were larger than
0.5, and almost all scatters fell into the 95% confidence intervals of prediction, confirming
the acceptability of all models tested. The WI-4 and NDWSI-4 predictions for the LWC
in the three vertical layers exhibited advantages over the published NDWSI (R2 < 0.6),
which had led to very higher coefficients of determination (R2 ≥ 0.74). Specifically, for the
middle-layer, we have found a very consistent agreement between LWC values measured
and those estimated by WI-4 and NDWSI-4, with R2 and NSE values higher than 0.8, and
REs lower than 10%. The NDWSI-4 models performed the best in estimating the LWC
in the top two layers, which explained 83% and 81% the variations in middle-LWC and
upper-LWC, respectively. For the bottom layer, the WI-4 and NDWSI-4 produced similar
result, with R2 of 0.75 and 0.74. However, the NDWSI-4 estimate was more preferable, since
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it generated lower RMSE and RE values, as well as larger NSE, expressing distribution of
scattering points being closer to the one-to-one line than the WI-4 estimate.

Figure 8. Validation of estimation models derived from the WI-4, NDWSI-4 and NDWSI for the middle-LWC (green point),
the upper-LWC (blue diamond) and the bottom-LWC (black star). The black solid lines indicate linear fits, black dash lines
indicate 1:1 line, red dash lines indicate the 95% confidence intervals of prediction.

In order to evaluate whether the indirect induction method proposed in this study has
merit in vertical LWC prediction, we compared it with the conventional direct estimation
method. Linear estimation models between the upper-LWC and WI-4 and NDWSI-4, as
well as between the bottom-LWC and WI-4 and NDWSI-4, were directly developed without
taking into account the spikes effects and internal relationship of LWC among vertical
layers. The model validations based on the two methods for the upper and bottom layers
are shown in Figure 9. The most encouraging result is that, for the two layers, all LWC
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models established by the indirect induction method outperformed the models developed
by the direct estimation, indicated by the increase in R2 from 0.66 to 0.78 and from 0.77 to
0.81 for the models based on the WI-4 and NDWSI-4 for the upper-LWC, while the increase
in R2 from 0.68 to 0.75 and from 0.67 to 0.74 for the bottom-LWC, respectively.

Figure 9. Comparison of validation models between measured LWC and estimated LWC in the upper-layer (blue diamond
and red diamond) and bottom-layer (black star and red star) using the indirect induction and direct estimation methods.
The four subplots in the first line are validation results based on the WI-4 for the upper- and bottom-layer, whereas the four
subplots in the second line are validation results based on the NDWSI-4 for the upper- and bottom-layer.

4. Discussion

After the head emergence stage of winter wheat, wheat spikes grow out and the
canopies become more and more dense, literature shows that leaf biochemical variables
based on remote sensing technique perform well in the early stage, however, it tends to
produce uncertainty or error during the reproductive stage [48], and then could result in
more difficulties to monitor their vertical profile within canopies. Thus, it is vital to fully
understand the effects of spikes on canopy reflectance and the detection degree of leaf
information in different vertical layers by remotely sensed data, then to derive spectral
indices to estimate vertical leaf biochemical parameters. In this work, we explored the
remote estimation of the vertical distribution of LWC, considering the effects of spikes,
using field data of winter wheat. From the chemical analyses determined in the laboratory,
the variation trend in LWC, with higher values in the middle leaves than in the upper
and bottom leaves across different growth phases and N rates, was in agreement with the
results of Li et al. [23]. This is mostly because water is transported from the bottom shaded
leaves to the top sunlit leaves, in an effort to provide materials to reach the maximum total
canopy photosynthesis, but the top leaves (i.e., the fully expanded flag leaves) exhibited
less LWC due to being more directly exposed to solar irradiance and consume more water
through evapotranspiration [28].

The effects of spikes and other plant components (e.g., stem) on canopy spectral
characteristics have gradually attracted attention, relevant researches have been conducted
using wavelengths lower than 1000 nm [30,49]. However, spectral discrepancies across
the whole spectrum required concern for an improved understanding of the interaction
between spectral reflectance and leaf biochemical parameters across the canopy vertical
profile. In this study, we investigated canopy spectral characteristics, before and after
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spikes removal, from 400 nm to 2500 nm, across different N rates, wheat cultivars and
growth stages. Our results showed that the values of reflectance for the entire canopy were
largely lower than those for the canopy without spikes at NIR and SWIR regions, which
was similar to the findings of Haboudane et al. [8] and He et al. [50]. Based on the theory
reported in literature, that a beam of radiation becomes diffuse as it passes through the
crop canopy, and when it encounters different geometric structures of plant tissues, it will
be scattered at each refractive discontinuity [51], the results from our study could be mainly
explained by the fact that the emergence of spikes changed the original canopy structures,
resulting in changes of the radiation path and light distribution within wheat canopies,
and consequently influenced the multiple scattering effects of canopy reflectance, thereby
inducing a decrease in spectral reflectance.

In comparison to the visible region, the emerged spikes had larger effects on the
canopy reflectance ranged from NIR to SWIR (730–2500 nm), expressing larger variations
in these regions (Figure 4). It should be noted that the reflectance of wavebands sensitive to
leaf water or water stress were included as well. These bands were usually employed in leaf
water-related spectral indices, in turn, led to the significant differences in their performances
in estimating the vertical LWC before and after removing spikes. Gutierrez et al. [30] and
He et al. [50] found that the spike effects could alter and make weaker relationships
between spectral indices and crop variables (e.g., crop yield and LAI), our results showed
similarities and differences with such findings through the controlled experiment for either
remaining or removing wheat spikes. The appearance of spikes decreased the accuracy of
the vertical distribution of LWC estimation, but there were differences in the degrees of the
effects depending on the vertical layers, since the superior insensitivity of middle-LWC
estimation to the spike effects were revealed, compared to the upper- and bottom-LWC
estimation (especially for the NDWSI, WI, WBI and FWBI1 in Table 3). In addition, better
correlation between spectral indices and the middle-LWC than the other two layers shown
in this work (Table 4) were consistent with the results of Liu et al. [28], this provides an
evident for differences of ability of the nadir remote sensing data in detecting vertical
LWC. By comparing the finding reported in Li et al. [32], that the reflectance of leaves
positioned in the upper layer contributed relative more to the reflected light gathered by
sensors, the result of this study is probably because the spikes negatively affected the LWC
information acquisition of upper leaves after head emergence stage, thus tending to obtain
lower estimation accuracy than the middle-LWC.

Compared with the estimation of crop biochemical variables at the leaf or canopy
scales, the estimation of their vertical distribution within canopies is challenging, especially
during growth periods after spikes appearance. Some studies have attempted to explore a
multi-angular remote sensing technology and conduct a great deal of work for enhancing
the vertical variables retrieval [19,52]. Although this approach can provide more informa-
tion on canopy vertical structure by viewing from different angles than that only from a
single nadir direction, there are still shortcomings. For instance, complex operation and
time-consuming operation of multi-angle spectral measurements [53], as well as the added
uncertainty resulting from view angle effects on spectral indices [54]. Jacquemoud et al. [55]
reported that the accuracy of vegetation parameters estimation depends largely on the
retrieval technique. In this study, we tried to detect the vertical distribution of LWC within
wheat canopies based on canopy reflectance obtained from the nadir observation, using a
new method of indirect induction. Firstly, by consideration of the efficacy of remote sensing
in detecting vertical LWC and the wheat spikes effects on the estimation of LWC in each
vertical layer, we identified the most effective leaf layer (i.e., the middle layer) in which the
spectral indices not only achieved the highest sensitive to the corresponding LWC but also
less susceptible to the emergence of spikes, and developed the estimation model for this
layer based on the MSC theory. Subsequently, accompanied with the significant internal
relationship of LWC among vertical layers, the LWC in the remaining layers were indirectly
deduced by the estimation model of the above effective layer. In the vertical LWC determi-
nation, our optimized three- or four-narrow-band spectral indices, WI-3, WI-4, NDWSI-3
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and NDWSI-4, presented substantially better behavior in detecting the LWC across all the
treatments than the original indices, in particular for the WI-4 and NDWSI-4 (R2 higher
than 0.81 in middle-LWC assessment). These four new spectral indices were designed by
adding one or two NIR bands into the WI and NDWSI on the basis of RRD formulation.
Their advantage probably relies on the compensation of additive and multiplicative effects
resulted from different canopy structures, anisotropic multiply scattering and soil back-
ground by using the MSC method, because the effects are common in the measurements
of canopy spectral reflectance but have nothing to do with leaf biochemical parameters,
i.e., LWC in this study. Similarly, the formula of RRD was also used by researchers to
develop spectral indices, such as the modified SR (mSR705 = (R750 − R445)/(R705 − R445))
and modified NDVI (mND705 = (R750 − R705)/(R750 + R705 − 2R445)), the MERIS terres-
trial chlorophyll index (MTCI = (R754 − R709)/(R709 − R681)), the structure-insensitive
pigment index (SIPI = (R800 − R445)/(R800 − R680)) and the modified difference ratio
(MDR = (R1271 − R410)/(R1342 − R410)) [7,56–58], they all have been proven to be an im-
provement in terms of sensitivity to leaf pigment and leaf water contents when applied
across a wide range of plant species, leaf structures and growth stages. From the com-
parison results between methods of the indirect induction and the conventional direct
estimation (Figure 9), we concluded that the newly proposed approach contributed to
achieve the higher potential of canopy spectra obtained from the nadir direction in mon-
itoring vertical profiles of LWC after head emergence of wheat. Due to the limitation of
samples, this method needs to be further studied by more experimental data and crop
cultivars with different geometry types in the future. Although an increasing number of
optical satellite images are freely available, the use of space-based imaging spectroscopy
to quantify the vertical LWC distribution within crop canopies is still relatively challeng-
ing, because of the limited spatial and spectral resolutions. However, the application of
narrow-band spectral indices to detect leaf biochemical parameter details has been an
intended goal for studies of canopy physiology and ecology, our results provides support
for the selection of spectral bands to design future sensors, and eventually to advance the
identification and mapping of the vertical LWC from satellite data.

5. Conclusions

This study shows that leaf water content (LWC) within winter wheat canopies tended
to be higher in the middle layer and lower in the upper and bottom layers, the middle-
LWC yielded very strong correlations with the upper-LWC and bottom-LWC after head
emergence stage. The effects of wheat spikes on canopy reflectance were analyzed. We
found that the presence of spikes had significant effects on the reflectance in NIR to
SWIR spectral regions, with the water absorption bands included. In addition, the spikes
effects negatively impacted on the estimation of LWC in the vertical layers. However,
LWC in the middle layer was identified to be the most highly sensitive to almost all
earlier proposed water-related spectral indices and be more resistant to wheat spikes
effects, showing an advantage over the upper and bottom layers. This implied the po-
tential of applying middle-LWC estimation models to extend the determination of LWC
also in the other layers. Based on the results, a method of indirect induction was pro-
posed to establish models of vertical distribution of LWC, by considering the effects
of wheat spikes. The narrow-band WI-4 ((R900 − R825)/ (R970 − R1013)) and NDWSI-4
(((R850 − R825)− (R970 − R1013))/ ((R850 − R825) + (R970 − R1013))) indices were devel-
oped based on the multiply signal correction theory and achieved the highest sensitivity in
capturing variations in the middle-LWC. Importantly, the prediction accuracy of LWC in
the upper and bottom layers was shown to be improved by the indirect models derived
from these two indices, compared to the direct estimation. Future studies on more crop
or vegetation species will be of importance for validating and improving the method
developed here.
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