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Abstract: Vehicle pose estimation is essential in autonomous vehicle (AV) perception technology.
However, due to the different density distributions of the point cloud, it is challenging to achieve
sensitive direction extraction based on 3D LiDAR by using the existing pose estimation methods. In
this paper, an optimal vehicle pose estimation network based on time series and spatial tightness
(TS-OVPE) is proposed. This network uses five pose estimation algorithms proposed as candidate
solutions to select each obstacle vehicle’s optimal pose estimation result. Among these pose esti-
mation algorithms, we first propose the Basic Line algorithm, which uses the road direction as the
prior knowledge. Secondly, we propose improving principal component analysis based on point
cloud distribution to conduct rotating principal component analysis (RPCA) and diagonal principal
component analysis (DPCA) algorithms. Finally, we propose two global algorithms independent of
the prior direction. We provided four evaluation indexes to transform each algorithm into a unified
dimension. These evaluation indexes’ results were input into the ensemble learning network to
obtain the optimal pose estimation results from the five proposed algorithms. The spatial dimension
evaluation indexes reflected the tightness of the bounding box and the time dimension evaluation
index reflected the coherence of the direction estimation. Since the network was indirectly trained
through the evaluation index, it could be directly used on untrained LiDAR and showed a good pose
estimation performance. Our approach was verified on the SemanticKITTI dataset and our urban
environment dataset. Compared with the two mainstream algorithms, the polygon intersection over
union (P-IoU) average increased by about 5.25% and 9.67%, the average heading error decreased
by about 29.49% and 44.11%, and the average speed direction error decreased by about 3.85% and
46.70%. The experiment results showed that the ensemble learning network could effectively select
the optimal pose estimation from the five abovementioned algorithms, making pose estimation more
accurate.

Keywords: autonomous vehicles; vehicle pose estimation; time and spatial dimensions; 3D LiDAR

1. Introduction

The continuous development of autonomous vehicles (AVs) has led to higher require-
ments for perception accuracy [1,2]. In perception technology, 3D object detection is one of
its main research directions [3] that has received extensive attention from both industry and
academia [4]. Although image-based 3D object detection has been significantly improved
with the development of deep learning [5–9], it is difficult to provide accurate obstacle
object depth information for images. Therefore, the access of depth information still relies
on 3D point cloud data in actual applications [10].
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Object detection based on the 3D point cloud falls into two categories: traditional
methods and deep learning methods. In recent years, various deep learning methods [11,12]
have continuously refreshed the detection accuracy rankings for the KITTI dataset [13].
However, these methods have still not been able to eliminate dependence on the dataset [14].
Better application effects necessitate ever-increasing reliance on the large-scale dataset.

In contrast, the adaptability of traditional methods is much better. In the traditional
object detection pipeline of the 3D point cloud, it is generally necessary to first perform
ground segmentation with the original point cloud [15] and then perform clustering
processing with the point cloud data [16]. The object detection task is finally completed
after estimating the pose of each obstacle according to the clustering results [17]. Its
generalization performance is better for different hardware devices. As such, we were only
interested in the obstacle vehicle pose estimation based on the 3D point cloud in this study.

1.1. Challenge of Pose Estimation

Although pose estimation is only a small part of the traditional 3D point cloud
processing process, it is significant for the accuracy of object tracking algorithms because it
is used as the input of the tracking algorithm [18]. The fluctuation error of pose estimation
can cause the tracking algorithm to be unable to effectively track an obstacle’s trajectory.
The fluctuation of pose estimation often depends on the distribution form of the obstacle
3D point cloud, which is fundamentally affected by the point cloud acquisition method.

All point cloud data scanned by Light Detection and Ranging (LiDAR) are obtained
by measuring the running time and position of the reflected light [19]. The observation
time, angle, distance between vehicles, and mutual occlusion relationship change in real
time during a vehicle’s driving [20–22], as shown in Figure 1. Therefore, obstacle vehicle
pose estimation based on the 3D point cloud is still a challenging task.

Figure 1. Point cloud scanning results of the same dynamic obstacle. When the obstacle vehicle
gradually approaches our LiDAR observation point, the obstacle vehicle’s point cloud becomes dense.
Otherwise, the point cloud becomes sparse. The obstacle vehicle shows L-shape, I-shape, C-shape,
and other forms during this process. The variability of the point cloud’s distribution makes pose
estimation challenging.

1.2. Related Work

The current pose estimation algorithms for 3D point clouds based on traditional
methods fall into two categories: pose estimation algorithms based on specific point cloud
distribution shapes and global pose estimation algorithms.

1.2.1. Methods Based on Point Cloud Distribution Shapes

The pose estimation algorithms based on the distribution shape of a specific point
cloud are generally classified into L-shape, I-shape, C-shape, and E-shape [23,24]. Since the
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L-shape has appeared most often in the distribution of 3D point clouds [25], many methods
have used this feature to estimate the pose of obstacle vehicles. MacLachlan et al. [26] used
the linear features of 3D point clouds to estimate the pose of obstacle vehicles. They first
used the weighted least squares algorithm to remove outliers and proposed an obstacle
pose estimation method using two linear features of straight-line fitting and right-angle
fitting. The concept of the L-shape was not proposed in their article clearly. Still, the
article was the beginning of L-shape pose estimation. Shen et al. [27] used point cloud
scanning to iterate all possible corner points according to clockwise or counterclockwise
timing characteristics. By incrementally constructing the problems and performing Eigen
decomposition on the sub-matrix, the complexity could be reduced to as low as about nine
times that of fitting a single pair of orthogonal lines. Following reductions of LiDAR price
and the accuracy requirements of AVs [28], more and more vehicles have adopted multiple
LiDAR splicing arrangements [29]. Zhang et al. [30] proposed an efficient search-based
method for pose estimation to solve this problem; it relied on search-based algorithms to
find the most suitable rectangle and then iterated all possible directions of the rectangle.
Iteration enabled the authors to find the optimal direction via the minor square error of the
rectangle containing all the scanning points in this direction, with which they fitted the
rectangle. Qu et al. [31] also proposed a search-based L-shape pose estimation method that
did not require a point cloud scanning sequence. They decomposed the L-shape fitting
problem into two steps: L-shape vertex searching and L-shape corner point localizing.
The three key points, which consisted of searched vertexes and localized the corner point,
reflected the L-shape feature. Their algorithm [31] could effectively detect the best L-shape
that fitted the 2D LiDAR data. Kim et al. [32] proposed an iterative endpoint fitting method
to extract L-shape features from a 3D point cloud. They used the minimum and maximum
clustering angle points as the endpoints of the baseline and iterated other point clouds as
the breaking point. The final pose estimation bounding box was determined by extracting
the farthest point from the baseline as the L-shaped corner point. These methods [31,32]
were based on the assumption that all point clouds present a complete L-shape. In practice,
due to occlusion and different viewing angles, a complete L-shape cannot be observed in
most cases. As such, in [25], after selecting the approximate corner point, it was further
judged whether the point was the corner point of the L-shape or the side point of the
vehicle, and the RANSAC algorithm was used to fit the L-shape features to obtain pose
estimation.

Although the abovementioned L-shape-based pose estimation methods can effec-
tively utilize geometric features, they require that the point cloud presents an obvious
L-shape. Additionally, when the point cloud number of obstacles is small, its geometric
characteristics are not prominent and thus usually ignored. Therefore, the abovementioned
L-shape-based pose estimation algorithms have poor global adaptability.

1.2.2. Methods Based on Global Algorithms

Compared to pose estimation based on a specific shape, a global-based pose estimation
algorithm reduces dependence on the point cloud’s specific geometry and pays more
attention to global applicability. Chen et al. [33,34] proposed a vehicle measurement model
based on the likelihood-field-based model. The model was combined with a modified
scaling series algorithm to estimate the pose of a target vehicle. However, when the point
clouds were sparse, the particles’ randomness became strong, which reduced the accuracy
of pose estimation. In response to this problem, Naujioks and Wuensche [35] proposed
an algorithm that used a convex hull to make a preliminary estimate and a line-creation
heuristic to fit a bounding box around incomplete segments of point clouds to correct
vehicle orientation. This algorithm used the rapidity features of convex hull extraction,
which could efficiently perform pose estimation even when the point cloud was sparse.
Another idea to solve sparse point cloud distribution is the use of the coherent point
drift pose estimation algorithm [36], which was one of the few pose estimation methods
that used the object correlation algorithm to combine timing information. Although the



Remote Sens. 2021, 13, 4123 4 of 30

algorithm fitted the vehicle measurement model well, the fitting randomness caused by the
scaling series algorithm interfered with the pose estimation. An and Kim [18] proposed an
algorithm for pose estimation using a low-end 3D LiDAR. The algorithm first established
four obstacle vehicle models with different observation angles, then modeled the measured
size of the object vehicle as a uniformly distributed sample, and finally used the idea of
template matching to estimate the pose of the object vehicle. Yang et al. [17] proposed a
vehicle pose estimation method based on edge distance, which used the bounding rectangle
of the point cloud. After correcting the bounding box’s size according to the preset vehicle
size, the pose estimation of the vehicle was finally completed. This method was more stable
and easier to calculate compared to that of Kim et al. [18].

Although the abovementioned global-based pose estimation algorithms have better
adaptability than L-shape-based pose estimation algorithms, they have poor pose estima-
tion effects on curved road sections. Another significant problem is that, except for that
of [36], no algorithms have considered the correlation between the front and rear frames
of the obstacle, which means that when a frame had an obvious pose estimation error, it
could not be effectively eliminated.

1.3. Overall of Our Approach

Based on our analysis, a new optimal vehicle pose estimation network based on time
series and spatial tightness (TS-OVPE) is proposed in this paper. Figure 2 shows the pose
estimation results of our approach.

Figure 2. Vehicle pose estimation result based on the 3D point cloud. The blue points represent
static obstacle vehicles, the orange points represent dynamic obstacle vehicles, and the red bounding
box represents the pose estimation result. Our approach can accurately estimate the tiny angular
deviation of obstacle vehicles. As shown from the bird’s eye view, our approach could effectively
estimate the direction of these two dynamic obstacle vehicles even if their directions only changed
slightly.

The main contributions of this paper are summarized as follows.

1. We propose a new pose estimation network integrated with five potential pose
estimation algorithms based on 3D LiDAR. This network was found to significantly
improve the algorithm’s global adaptability and the sensitivity of direction estimation.
It could also obtain an accurate performance on curved road sections.

2. We propose four evaluation indexes to reduce the pose estimation volatility between
each frame. The four evaluation indexes are based on the spatial and time dimensions,
and they allow for pose estimation that were found to be more robust and tighter
other comparison methods.



Remote Sens. 2021, 13, 4123 5 of 30

3. We propose evaluation indexes to transform each algorithm into a unified dimension.
The TS-OVPE network was indirectly trained with these evaluation indexes’ results.
Therefore, they can be directly used on untrained LiDAR equipment and have good
generalization performance.

The remainder of this paper is organized as follows. In Section 2, the five pose
estimation algorithms are proposed. Section 3 presents tests of the proposed algorithms in
public and experimental datasets, as well as a discussion of the results. Finally, Section 4
summarizes the contribution of this paper and discusses future research directions. The
flow chart of our approach is shown in Figure 3.

Figure 3. Overall flow chart. In Section 2.1, the preprocessing method is proposed. Section 2.2
presents five different pose estimation methods. Section 2.3 presents four indexes for evaluating
pose estimation methods from the time and spatial dimensions. In Section 2.4, the TS-OVPE network
is proposed, and introduces the network’s structure is introduced. Section 3 presents tests of the
proposed algorithm in a public dataset and our experimental dataset.

2. Methods
2.1. Pretreatment

Before obstacle pose estimation, this section first establishes the coordinate system
used to facilitate calculations. Then, it introduces the concept of the convex hull to speed
up computation and achieve real-time processing requirements.

2.1.1. Establishment of Coordinate System

Any obstacle vehicle’s pose can be represented by a 3D bounding box. The 3D bound-
ing box can reflect its driving direction information. The direction of the length side is the
direction of the vehicle’s heading direction. When determining the 3D bounding box of an
obstacle vehicle, eight vertices are generally used, but such description is redundant. The
algorithm only needs the coordinates of four vertices of any horizontal cross section rect-
angle and adds height information; then, a 3D bounding box can be described. Therefore,
our approach uses a two-dimensional plane coordinate system for each obstacle vehicle to
describe its pose, as shown in Figure 4.

For the i obstacle vehicle, its pose can be represented by a vector pi:

pi =
[
pix0, piy0, θi, li, wi, hi

]T (1)

where pix0 and piy0 are the coordinates of the geometric center point of the i obstacle vehicle;
θi is the angle between its heading and the y direction; li and wi are the length and width,
respectively, of the obstacle; and hi is the height of the obstacle vehicle.
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Figure 4. Visual representation of the vehicle pose estimation coordinate system.

Vector pi can simplify the number of parameters in solving the obstacle pose. It
can also express the four corners of the bounding box of the obstacle vehicle in the two-
dimensional plane. A description of the bounding box corners Ai, Bi, Ci, and Di is shown
in Equation (2).[

Aix Bix Cix Dix
Aiy Biy Ciy Diy

]
=

[
cos θi − sin θi
sin θi cos θi

][
pix0 +

wi
2 pix0 +

wi
2 pix0 − wi

2 pix0 − wi
2

piy0 +
li
2 piy0 − li

2 piy0 − li
2 piy0 +

li
2

]
(2)

2.1.2. Extraction of Convex Hull

In point cloud data, each obstacle vehicle is composed of multiple point clouds.
Figure 5 shows the original point cloud data of an obstacle vehicle. After projecting all the
obstacle vehicle’s point clouds onto the horizontal plane, the projected points’ geometric
contour can also genuinely reflect the obstacle vehicle’s geometric information. Analyzing
the points inside its geometric contour is a meaningless waste of computing time. Therefore,
our approach extracts its external contour from the point cloud’s convex hull before pose
estimation.

Figure 5. Convex hull extraction of obstacle vehicle point cloud: (a) the original 3D point cloud of
the obstacle vehicle; (b) the bird’s eye view of the obstacle vehicle point cloud; (c) the convex hull
point of the obstacle vehicle (red line).

The convex hull of an obstacle point cloud refers to the smallest convex polygon that
enables all point clouds to be inside or on the convex hull. The extraction of the convex
hull adopts the global convex hull algorithm proposed in [37]. On the premise of ensuring
that the information is not lost, the invalid point cloud of each obstacle vehicle is reduced,
which is economical in both computing space and time.
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2.2. Vehicle Pose Estimation

In this section, we focus on the direction extraction of the bounding box. Our ap-
proach uses the road direction as a priori knowledge and improves the pose estimation
algorithm based on principal component analysis (PCA). Furthermore, we propose two
global algorithms independent of the prior direction.

2.2.1. Basic Line Algorithm

In the pose estimation of various obstacle vehicles, direction information is often
ignored. While a vehicle is driving, its direction is mainly along the road, and road
direction is very useful for pose estimation.

Our algorithm assumes that the directions of all obstacle vehicles are parallel or
perpendicular to the road direction. Therefore, our approach only needs to find the extreme
points in the x- and the y-directions after convex hull extraction, as shown in Figure 6.
Although this algorithm is simple, its pose estimation effect is very advantageous in straight
roads. Therefore, this algorithm is called the Basic Line algorithm. If a vehicle is driving on
a curved road section, the directions are no longer vertical or horizontal and this method is
longer applicable.

Figure 6. Illustration of the Basic Line algorithm. The black points represent the projection points of
the original point cloud on the horizontal plane, the blue points represent the convex hull points, the
blue lines represent the contour lines of the point cloud, and the yellow points represent the poles of
the convex hull points in the x and y directions. The green points represent the corner point of the
two-dimensional bounding box, and the red lines represent the extracted two-dimensional bounding
box.

2.2.2. Pose Estimation Algorithms Based on PCA

Our analysis suggests that the estimation of the direction is a vital step. The authors
of [38] used PCA to analyze the driving direction of obstacle point clouds; their results were
not satisfactory, but the method was still reasonable from the perspective of theoretical
analysis. Therefore, the authors of this paper explored the PCA method to improve
direction extraction accuracy and performance in actual engineering applications.

• Basic principles and feasibility analysis of PCA

The PCA method is used to map the multi-dimensional feature vector of original
data from high-dimensional space to low-dimensional space through linear orthogonal
transformations in order to obtain a set of linearly uncorrelated vectors of each dimension.
PCA removes the correlation between dimensions and achieves dimensionality reduction.
In the dimensionality reduction of the data in the x and y directions, PCA makes the final
one-dimensional data variance as large as possible. The eigenvector corresponding to the
largest eigenvalue of the covariance matrix is the driving direction of the vehicle.
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The convex hull point set H = {pi1, pi2, · · · , pin} contains n convex hull points for the
i obstacle vehicle in each frame of point cloud data. First, our approach first composes the
point set H into a matrix H with two rows and n columns, where the first line of the matrix
represents the x value of each point in the point set H and the second line represents the y
value of the corresponding point, as shown in Equation (3).

H =

(
pi1x pi2x pi3x · · · pinx
pi1y pi2y pi3y · · · piny

)
(3)

Second, our approach performs zero-average processing on the formed matrix H,
calculates the mean values of all points in the x and y directions with Equation (4), and
obtains the matrix H’s zero averaging matrices with Equation (5). The zero averaging
matrices are shown in Equation (6). 

pix =

n
∑

j=1
pijx

n

piy =

n
∑

j=1
pijy

n

(4)

{
pijx∗ = pijx − pix
pijy∗ = pijy − piy

(5)

Y =

(
pi1x∗ pi2x∗ pi3x∗ · · · pinx∗

pi1y∗ pi2y∗ pi3y∗ · · · piny∗

)
(6)

Third, the covariance matrix C can be obtained with Equation (7).

C =
1
n

YYT =
1
n

(
pi1x∗ pi2x∗ pi3x∗ · · · pinx∗

pi1y∗ pi2y∗ pi3y∗ · · · piny∗

)


pi1x∗ pi1y∗

pi2x∗ pi2y∗

pi3x∗ pi3y∗
...

...
pinx∗ piny∗

 (7)

According to |C− λE| = 0, the eigenvalues λ1 and λ2 of the covariance matrix C

can be solved. The corresponding feature vectors are c1 =

(
c11
c12

)
and c2 =

(
c21
c22

)
.

Compare the larger λmax of the eigenvalues of λ1 and λ2: the corresponding eigenvector is

cmax =

(
cmax1
cmax2

)
. The feature vector cmax represents the direction vector of the obstacle

vehicle obtained by the PCA. Finally, the heading θ of the obstacle vehicle can be obtained
with Equation (8).

θ = arctan
(

cmax2

cmax1

)
(8)

When the obtained point cloud data of the obstacle vehicle are relatively complete, as
shown in Figure 7a, the direction obtained by the PCA method is the driving direction of
the obstacle vehicle. However, the point cloud of most obstacle vehicles is incomplete, as
shown in Figure 7b. Because the scanned point cloud is missing diagonally, the direction
obtained by PCA is the diagonal direction of the obstacle vehicle, not the obstacle vehicle’s
forward direction. This is why the authors of [38] could not obtain satisfactory pose
estimation results.
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Figure 7. Schematic diagram of the PCA method for extracting the driving direction of the obstacle point cloud: (a) the
direction obtained by the PCA is the driving direction; (b) the direction obtained by the PCA is the diagonal direction;
(c) the direction obtained by the PCA is neither the driving direction nor the diagonal direction. The red arrow represents
the direction obtained by PCA.

Therefore, we propose two pose estimation algorithms based on the direction charac-
teristics obtained by PCA. The rotating principal component analysis (RPCA) algorithm is
used for extracting obstacle vehicle’s driving directions. The diagonal principal compo-
nent analysis (DPCA) algorithm used is for the extracting the obstacle vehicle’s diagonal
directions. Detailed descriptions of these two algorithms are as follows.

• Rotating Principal Component Analysis Algorithm

We designed the RPCA pose estimation algorithm by focusing on the situation shown
in Figure 7a, in which the direction obtained by the PCA method is close to the driving
direction of the obstacle vehicle. An error between yi (the actual direction of the vehicle)
and the red arrow (the direction obtained by PCA) is present but minimal, so it can be
ignored. Therefore, our approach assumes that the θi obtained by the PCA is the actual
driving direction.

For any point pi(xi, yi) in the xi pi0yi coordinate system, take point pi0 as the center
coordinate; then, according to the forward rotation Equation (9), rotate it θi degrees clock-
wise in the yi direction (clockwise while θi > 0 and counterclockwise while θi < 0) to get
pi(xit, yit) under the coordinate system xit pi0yit.[

xit
yit

]
=

[
cos θi sin θi
− sin θi cos θi

][
xi
xi

]
(9)

Furthermore, Ait, Bit, Cit, and Dit can be calculated after finding the extreme points of
the x- and y-directions in the xit pi0yit coordinate system. According to the reverse rotation
Equation (10), all points in the xit pi0yit coordinate system are rotated θi and transformed
back to the xi pi0yi coordinate system, as shown in Figure 8.[

xi
yi

]
=

[
cos θi − sin θi
sin θi cos θi

][
xit
yit

]
(10)
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Figure 8. Illustration of the RPCA algorithm: (a) the original coordinate system of the RPCA; (b) the
coordinate system after forwarding rotation. The red arrow represents the direction of obstacles
extracted by the PCA. The essence of the RPCA algorithm is its use of the direction obtained by the
PCA to find the corner points of the two-dimensional bounding box by twice rotating the coordinate
points forward and backward.

As a result, the corner point of the two-dimensional bounding box can be obtained in
the original coordinate system xi pi0yi, as shown in Figure 8b.

• Diagonal Principal Component Analysis Algorithm

The obstacle vehicle and own vehicle are sometimes in a relatively diagonal position,
as shown in Figure 9. The point clouds of vehicles are relatively complete along their
diagonal halves, and this asymmetry affects the PCA’s dimensionality reduction process.
In this algorithm, our approach assumes the direction obtained by the PCA is the diagonal
direction of the obstacle. Therefore, this algorithm is called the DPCA algorithm.

Figure 9. Illustration of diagonal obstacle point cloud formation. When the LiDAR transmitter emits
a laser pulse, the emitted laser beam irradiates the surface of the obstacle object and forms the return
light. Therefore, the point cloud has a diagonal shape when the obstacle vehicle’s relative position is
diagonal.

The convex hull point set H = {pi1, pi2, · · · , pin} contains n convex hull points for the
i obstacle vehicle in each frame of point cloud data. First, it traverses any two points pk and
pl in the convex hull point set H and calculates the straight-line pk pl’s angle θp between
the yi direction. The difference between angles θp and θi obtained by the PCA is θd. Then,
the algorithm needs to find the two endpoints pk and pl as a set of diagonal points of the
two-dimensional bounding box. The line pk pl first needs to have the closest direction to
that extracted by the PCA, which requires following the smallest θd. Moreover, the line
pk pl needs to have the longest distance in this direction. Secondly, the algorithm finds the
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furthest point p f of the straight line pk pl in the convex hull point set H. After finding pk,
pl , and p f , according to the rectangular character geometry, the two-dimensional bounding
box of the initial obstacle vehicle is obtained, as shown in Figure 10.

Figure 10. Illustration of the DPCA algorithm. The red dotted line represents the uncorrected
bounding box, the red line box represents the final bounding box, and the green part represents the
corrected area.

The abovementioned algorithm was established under ideal conditions, but the four
corners of a vehicle are mainly arc-shaped in actual point clouds. The diagonal points
found in our study were not the real diagonal points of a bounding box. As shown in
Figure 10, the obtained bounding box AiBiCiDi only contained a part of the point cloud,
but its direction was consistent with the actual obstacle vehicle’s direction. Therefore,
the bounding box needed to be fixed. According to the obtained direction, the extreme
longitudinal points yimax and yimin in this direction and the extreme transverse points ximax
and ximin perpendicular to this direction could be obtained. Figure 10 shows that the fixed
bounding box A∗i B∗i C∗i Di had a more accurate enclosing effect.

2.2.3. Longest Diameter Algorithm

The abovementioned pose estimation algorithms were mainly designed from the
perspective of obstacle directions. We sought a better overall pose estimation method to
put aside the dependence on PCA. Therefore, we proposed the Longest Diameter (LD)
algorithm. Our LD algorithm could find the diagonal of an obstacle vehicle without direct
guidance.

The LD algorithm calculates the obstacle vehicle’s two-dimensional bounding box
when the two diagonal points have the longest distance and the farthest point of this line
is located. Due to the different relative positions of vehicles, the diagonal direction of the
obstacle may be left or right. Furthermore, the position of the third point, which is farthest
from the diagonal, also appears in two different situations—on the left side or the right
side of the diagonal line. The three points pA, pB, and pC have four different positional
relationships, which are shown in Figure 11.

For the i obstacle vehicle in each frame of point cloud data, its convex hull point set H
contains n convex hull points H = {pi1, pi2, · · · , pin}. Firstly, following the iteration of any
two points in the convex hull point set H, the longest diameter of the convex hull is found.
Secondly, the two points pA and pB with the longest distance in the diameter direction are
diagonal points of the two-dimensional bounding box. Point pC is the furthest point from
the straight line pA pB formed by these two points in the convex hull point set H. Following
their identification, pA, pB, and pC also need to be adjusted with the Correction function to
obtain the final pose estimation result.
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Figure 11. Illustration of the LD algorithm. (a) and (d) show the left diagonal, and (b) and (c) show
the right diagonal. (a) and (c) show the farthest points on the left side of the diagonal, and (b) and
(d) show the farthest points on the right side of the diagonal.

2.2.4. Rotating Triangle Algorithm

In some situations, the longest line of point clouds l1l2 is not the diagonal direction
d1d2, as shown in Figure 12a. Therefore, we propose the Rotating Triangle (RT) algorithm,
which was explicitly designed for this situation. In the convex hull point set H, for the n
convex hull points pij contained therein, the main idea of the RT algorithm is to use any
two neighbor convex hull points pik and pik+1 as the base of the triangle. The vertex pid of
the triangle in the convex hull points pij, j ∈ {1, . . . , k− 1, k + 2, . . . , n} are found, and the
area Sik of ∆pik pik+1 pid is calculated. When the triangle area Sik reaches the maximum, the
direction of the triangle base pik pik+1 is the direction of the obstacle. The height hid of the
triangle is the width of the obstacle vehicle. Each side of the convex hull forms the triangle
as the base is continuously rotated in the convex hull until the largest area triangles are
found. This is called the RT algorithm, an illustration of which is shown in Figure 12. Some
points are not contained in the bounding box, so the Correction function is used again. It is
then modified to obtain a perfect pose estimation result.
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Figure 12. Illustration of the RT algorithm: (a) illustration of the situation faced by the RT algorithm.
The longest line (green line) is not the diagonal direction (yellow line); (b) illustration of the RT
algorithm. The yellow triangle represents the triangle with the largest area found by the RT algorithm,
and the green part represents the corrected area. The mark "*" represents the corrected bounding
box’s corner points.

2.2.5. Comparison of Our Vehicle Pose Estimation Methods

Figure 13 shows the pose estimation results of the five proposed methods in small
curvature roads and crossroads in urban areas. It can be seen that each method had its own
pose estimations features.

Figure 13a,f illustrate the Basic Line algorithm’s effect. This method was found to
be accurate when used on small curvature roads. However, it is not sensitive enough,
especially when entering a crossroads. Figure 13f shows that the direction of the pose esti-
mation remained north, and the pose estimation was almost entirely incorrect. Therefore,
this method is only valuable for straight roads. Figure 13b,g show the RPCA algorithm’s
effects. The sensitivity of the pose estimation direction was improved. Although it was
not as effective as Basic Line on small curvature roads, it partly increased the sensitivity of
the direction estimation. Figure 13c,h show the DPCA algorithm’s effects. The direction of
some obstacles was estimated with higher accuracy. However, DPCA’s pose estimation
effect was not as good as that of RPCA. Figure 13d,i show the LD algorithm’s effects;
this is a more compact pose estimation method. Figure 13e,j show the effect of the RT
algorithm. The global pose estimation effect of the RT algorithm was found to be the best
of all methods, though it still struggled with some obstacles, such as Obj.b.

Table 1 shows the evaluation results of the above-mentioned obstacles’ (Obj.a–Obj.h)
pose estimation. There is no guarantee that a perfect pose estimation result can be obtained
for all obstacles if one only uses a single algorithm. However, for any obstacle vehicle,
the above-discussed five methods can guarantee at least one effective pose estimation
result. As such, we then needed to determine which of our methods is optimal when facing
different obstacles.
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Figure 13. Comparison of the results of our five pose estimation algorithms. The blue point represents
the obstacle vehicle point cloud, and the red box represents the bounding box of the obstacle’s pose
estimation. The experimental conditions of (a–e) were small curvature roads, and the experimental
conditions of (f–j) were crossroads.
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Table 1. Evaluation results of the pose estimation. The True mark indicates that its pose estimation
was acceptable. The False mark indicates that there was a large error in its pose estimation. Obj.a–
Obj.h corresponds to the obstacle number in each part of Figure 13.

Algorithm
Small Curved Roads Crossroads

Obj.a Obj.b Obj.c Obj.d Obj.e Obj.f Obj.g Obj.h

Basic Line
√ √

×
√

× × × ×
RPCA

√
× ×

√ √
×

√ √

DPCA ×
√

× × ×
√

× ×
LD ×

√ √
×

√
×

√ √

RT
√

×
√ √ √

×
√ √

2.3. Pose Estimation Evaluation Indexes

For this section, four indexes were designed to quantitatively evaluate the effects of
the five pose estimation methods. The four evaluation indexes are used to estimate the
bounding box pose from the time and spatial dimensions.

2.3.1. The Area of the Bounding Box

The area of the bounding box index evaluates pose estimation from the spatial dimen-
sion. Our approach was intended to allow the bounding box to more compactly enclose all
point clouds of obstacles. We found that when the bounding box could enclose all point
clouds, the bounding box area of its pose estimation was negatively related to its effect, as
shown in Figure 14.

Figure 14. Illustration of the bounding box area evaluation index: (a) three different pose estimation
bounding boxes; (b) a comparison of three bounding box areas. The area of box1 is the smallest, and
the pose estimation of the two-dimensional bounding box is the most compact, which means its pose
estimation result was the most accurate.

2.3.2. Number of Points in the Bounding Box

The minimum area discussed earlier is meaningless when the pose estimation bound-
ing box cannot enclose all obstacle point clouds. In extreme cases, the area of the two-
dimensional bounding box of the pose estimation can approach infinitesimal values. Al-
though it approximates the smallest bounding box area, it fails to enclose any point cloud
belonging to the obstacle, as shown in Figure 15.

The bounding box area at this time is no longer suitable for evaluating pose estimation
results. Because of this situation, it is necessary to evaluate the number of points enclosed
by the bounding box for each pose estimation. This index counts the number of point
clouds in each bounding box, as shown in Figure 15.
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Figure 15. Illustration of the number of points in the bounding box evaluation index. Although box2

box2 has the smallest area, its bounding box fails to enclose all the point clouds. The box2 has a larger
area than box1, but it can enclose all point clouds, so box2’s pose estimation effect was better than
box1.

2.3.3. The Centroid of the Bounding Box

In order to further estimate the deviation of the bounding box from the original
obstacle point cloud in the spatial dimension, we established a bounding box centroid
evaluation index, as shown in Figure 16.

Figure 16. Illustration of the bounding box centroid evaluation index.

The convex hull point set H = {pi1, pi2, · · · , pin} contains n convex hull points for the
i obstacle vehicle in each frame of point cloud data H = {pi1, pi2, · · · , pin}. Firstly, it needs
to calculate the distance from the point pij to the bounding box’s four sides dju, djd, djl , and

djr. Secondly, the geometric mean
√

djudjd and
√

djldjr of each point are calculate. The
geometric mean value of the distance in the two directions is multiplied to reflect the total
deviation degree in the horizontal and vertical directions. Finally, the average deviation
degree of all convex hull points is calculated with Equation (11).

wi =
1
n

n

∑
j=1

√
djudjd ×

√
djldjr (11)

where wi represents the average value of the deviation of all points in the horizontal
and vertical directions. The smaller the centroid wi of the bounding box, the tighter the
bounding box to the obstacle point cloud.
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2.3.4. Direction Angle Association

These indexes must be evaluated from both the spatial and time dimensions. Sudden
changes in vehicle direction are generally impossible to produce in consecutive frames.
Therefore, our method associates the obstacle vehicles’ direction changes with the front
and rear frames. This index can eliminate the possible fluctuation problem of direction
estimation.

This index first uses each obstacle’s previous five frames of pose estimation direction
to calculate the direction’s average value. Secondly, it calculates each pose estimation
method’s direction difference between the current estimation direction and the average
value of the previous five frames. That with the most minor direction difference is the best
current pose estimation result, as shown in Figure 17.

Figure 17. Illustration of direction angle association evaluation index. Pt represents the current
moment, Pt−1 − Pt−5 represent the historical trajectory points of this obstacle in the previous five
frames, and the direction of the green arrow represents the average direction of the previous five
frames. At the Pt moment, the bounding boxes of the three pose estimation methods are shown.
According to the direction angle association index, the pose estimation direction of box1 is the closest
to the historical average direction. Thus, the box1 is the best pose estimation result from three
methods in this frame.

The four proposed evaluation indexes quantitatively evaluate pose estimation results
from the spatial and time dimensions. When evaluating the five pose estimation meth-
ods using these indexes, relying solely on one index is not a comprehensive evaluation.
Therefore, four indexes need to be integrated. The relationship between the four indexes is
further discussed in the next section in order to obtain the best pose estimation method.

2.4. Optimal Vehicle Pose Estimation Method Based on Ensemble Learning

A neural network is used to compare the output with the corresponding ground truth
for each input to accordingly adjust the weight. It repeats this process until the maximum
number reaches the allowed iterations or an acceptable error rate is reached. This fits our
requirements. The proposed network is shown in Figure 18.
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Figure 18. TS-OVPE network structure. The network uses a parallel integrated learning method.
After dimensionality reduction processing by linear discriminant analysis, the sub-training set is
built by bootstrap sampling. The base learners are established for parallel training, and the final
prediction is performed by voting.

The authors of this paper propose five pose estimation methods for any obstacle and
four evaluation indexes for each pose estimation method. Therefore, for any obstacle, there
are 20 evaluation indexes. These 20 evaluation indexes are used as the network’s input,
and the ground truth is the optimal pose estimation method. This problem can be regarded
as a five-classification problem with 20 feature vectors. “Optimal” refers to selecting each
obstacle vehicle’s most suitable result among the proposed five pose estimation methods.
Although the network may provide deviating pose estimation results, its pose estimation
is relatively optimal. Our approach uses an ensemble learning algorithm based on neural
networks to improve generalization. Each learner adopts a homogeneous integrated neural
network architecture that uses a fully connected network. Our approach uses bootstrap
sampling to construct a sub-training set of each base learner. The base learner is trained in
parallel based on each sub-training set. Furthermore, the voting algorithm combines the
prediction output to obtain the final prediction result.

3. Experimental Results and Discussion
3.1. The Details of TS-OVPE Network

The stability of ensemble learning greatly depended on the stability of the base learner.
Therefore, the parameters of the base learner first had to be determined. Because the input
feature vectors of each base learner were relatively small, over-fitting was most likely to
occur. The high dimensionality of the model was the primary cause of the overfitting
problem. Three main hyperparameters affected this problem: the number of hidden layers,
the number of neurons, and the number of iterations. The authors of this paper drew
a verification curve by continuously increasing these three hyperparameters to find the
optimal hyperparameter value of the base learner, as shown in Figure 19.
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Figure 19. Verification curves of base learner hyperparameters. The (a,b) show the Score and Loss of Hidden layer 1 sizes.
The (c,d) show the Score and Loss of Hidden layer 2 sizes. The (e,f) show the Score and Loss of Max iterations.

When the scale of the network was insufficient, the fitting ability of the base learner
was too. At this time, deviation dominated the error. With the deepening of the network
scale, the fitting ability of the base learner became more robust and the base learner even
learned from slight fluctuations of the data. At this time, variance dominated the error. As
shown in Figure 19a,b, the number of neurons in the first hidden layer of the base learner
was determined to be 400, which was twenty times the number of input nodes. According
to Figure 19c,d, the number of neurons in the second hidden layer of the base learner was
determined to be 400. At this time, the disturbance of the model was minor. Considering
the real-time requirement, we did not continually increase the number of hidden layers,
and we kept the number of hidden layers to 2. According to Figure 19e,f, it was determined
that the maximum number of iterations of the base learner was 200, which reduced the
computational complexity of the network while ensuring its learning ability.

After determining the hyperparameters that affected the base learner’s network scale,
the Relu activation function was adopted to prevent gradient disappearance caused by the
saturation of the activation function. The quasi-Newton method was used in the weight
optimization process. Each iteration only used gradient information, and the change
between the gradients was measured to produce a super-linear convergence effect.

In the network of TS-OVPE, the number of base learners and the number of samples
in the sub-training set were the essential hyperparameters that determined the effect of
network learning. The number of base learners determined the degree of network fitting.
If it was too small, it led to the under-fitting of the network. If it was too big, it led to
network over-fitting. Thus, an appropriate number of base learners was essential. When
the numbers of the base learners were 0–50, the effect of the learners was significantly
improved according to our experiments. Therefore, the number of the base learners was
set to 40.

The samples in the sub-training set had to be at least nearly one-third of the total
samples to ensure that each sub-training set’s samples were sufficiently rich. Since the
base learner was optimized, the ensemble learning performance was only improved by
10-8 when the sub-training set samples were added. Therefore, each sub-training was set
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at one-third of the total initial training samples while considering the algorithm’s time
complexity.

Our TS-OVPE network dataset used 800 obstacle vehicles as training data from the
00 sequences of the SemanticKITTI [39] dataset. The SemanticKITTI dataset provided
obstacle labels of the original point cloud, which allowed us to know which point cloud
belonged to which obstacle. Our approach used the five pose algorithms to calculate its
pose estimation bounding box according to each obstacle vehicle’s point cloud. Then, we
calculated the four evaluation indexes of each algorithm. The network’s input comprised
these twenty evaluation indexes of each obstacle vehicle. Furthermore, we annotated the
optimal pose estimation algorithm’s number as the ground truth for each obstacle vehicle.
The network’s training results are shown in Table 2.

Table 2. Network training evaluation results.

Precision Recall F1 Score

Initial Base Learner 42.79% 65.42% 51.74%
Optimized Base Learner 65.09% 67.50% 66.27%

Ensemble Learning 71.95% 72.50% 72.22%

These results prove that the ensemble learning could effectively improve the classifica-
tion performance of the network. The ensemble learning slightly enhanced its performance
because the base learner had been optimized. However, these results only reflect the
performance of the proposed network; they do not reflect the effect of the pose estimation
results. Methods for the evaluation of pose estimation results are discussed in Section 3.2.

3.2. Evaluation Index of Pose Estimation Results: Polygon Intersection over Union

In this section, we discuss our pose estimation evaluation index, which is used because
the current dataset cannot provide rich enough information without additional manual
annotations. The KITTI dataset provides raw data and annotation information for different
tasks [40]. The ground truth of the clustering of each obstacle vehicle needs to be input
since both our method and comparison method use each obstacle’s point cloud as the
input. To accurately compare the different pose estimation algorithms, it was necessary to
eliminate the interference of the inputting inaccuracy. Therefore, the authors of this paper
selected the SemanticKITTI dataset with frame-by-frame annotations.

Although the input problem was solved, the SemanticKITTI dataset has mainly been
proposed for the semantic segmentation of point clouds because it does not provide the
bounding box’s ground truth for pose estimation. The object detection and target tracking
dataset of the KITTI dataset provide the ground truth of the vehicle’s pose estimation
bounding box. However, the object detection dataset comprises discrete single-frame data
in which the timing information is lost, and the dataset provides the ground truth of point
cloud clustering. Therefore, the authors of this paper propose a polygon intersection over
union (P-IoU) evaluation standard to quantitatively measure the effect of pose estimation
based on the current SemanticKITTI dataset without additional manual annotation.

Intersection over union (IoU) is usually used to measure the overlap ratio between
the candidate and ground truth bound generated in object detection. The authors of this
paper used the polygon formed by the convex hull points as the original labeled box
due to the lack of the bounding box’s ground truth. The two-dimensional bounding box
obtained by the pose estimation algorithm was used as the candidate box to calculate the
intersection ratio. The overlap ratio between them could be used to measure the effect of
pose estimation, which is called P-IoU.

In an ideal situation, the P-IoU is close to 1 when its intersection and union ratio are
entirely overlapped. It is worth noting that the shape of the convex hull is often not a
regular rectangle, so even the bounding box could perfectly estimate the vehicle’s pose,
and the P-IoU at this time is not close to 1. Because the convex hull points of different
detection obstacles are different, comparing the P-IoU of different obstacles is not sensible.
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The P-IoU is used to compare the effect of the same obstacles of different pose estimation
methods in the same frame, as shown in Figure 20.

Figure 20. The evaluation of the P-IoU index. The (a–d) show four different pose estimation methods’
results for the same obstacle vehicle. For the same obstacle, the higher the value of the P-IoU, the
more accurate the pose estimation result.

Figure 20 verifies that our P-IoU index could effectively evaluate the pose estimation’s
results. When the direction and size estimation results of the pose estimation were both
inaccurate, as shown in Figure 20a, the value of P-IoU was only 50.02%. As the accuracy
of the direction estimation increased, the value of P-IoU increased to 60.73%, as shown
in Figure 20. However, its size estimation result still had a large error at this time. When
the size estimation was closer to the obstacle vehicle’s actual size, the value of P-IoU
continuously increased, as shown in Figure 20c,d. Figure 20d shows the most accurate
pose estimation results obtained with the four tested indexes. Moreover, this index’s P-IoU
value was also the highest at 92.25%. This set of experiments verified that the proposed
P-IoU evaluation index is reasonable, and we used this index to evaluate our methods in
subsequent experiments.

3.3. Experimental Results of SemanticKITTI Dataset

We texted the 00 sequences of the SemanticKITTI dataset to quantitatively evaluate the
pose estimation method. The 00 sequence contains 4540 consecutive frames of LiDAR data
under various road conditions in urban environments. It contains 67,085 obstacle vehicles,
including 273 dynamic vehicles and 66,812 static vehicles. The dataset was divided into
straight sections and curved sections via the changes of the curvature. We separately
evaluated the pose estimation methods under different road sections. The distribution of
obstacle vehicles under each road section is shown in Table 3.
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Table 3. The composition of SemanticKITTI dataset 00 sequences.

Straight Road Curved Road All Road

Number of static vehicles 53,423 13,389 66,812
Number of dynamic vehicles 201 72 273

Total number of vehicles 53,624 13,461 67,085

The point cloud cluster ground truth of each obstacle vehicle marked by the Se-
manticKITTI dataset was used as the original input in the test. The evaluation index
adopted the P-IoU proposed in the previous section. According to the road differentiation
conditions in Table 3, tests were carried out on straight and curved roads. The authors of
this paper compared the L-shaped pose estimation method [31] and the global pose esti-
mation method [17], they are the latest two mainstream pose estimation methods. Table 4
shows the results of the comparative experiment.

Table 4. The P-IoU results of the SemanticKITTI dataset.

Straight Road Curved Road All Road

Method [31] 67.24% 66.54% 67.12%
Method [17] 63.11% 61.05% 62.70%

Proposed 72.32% 72.57% 72.37%

As shown in Table 4, our approach was superior to the two comparison methods
on any road section. The two compared methods had poor performance on the curved
road sections. Our approach was found to have advantages on curved road sections. Our
method had this apparent advantage because of the proposed direction angle association
evaluation index. The methods of [31] and [17] cannot be corrected when a direction
estimation error occurs since it is estimated in a single frame. Our method considers the
direction of the first few frames to improve the accuracy of pose estimation. Our approach
was found to be very stable on all road sections and remained at almost the same level. The
fluctuation range of the P-IoU was within 0.25%. The accuracy of P-IoU was significantly
improved by 5.25% and 9.67% in comparison to the two methods.

Figure 21 shows the experimental results of one frame for each of the two road
conditions. These results were consistent with the results of the P-IoU. Obviously, the
accuracy of the method of [17] was less effective than that of [31], especially for the curved
road sections. Although the method of [31] was much better than the method of [17]
at direction estimation, it sometimes also had estimation errors, as shown in Figure 21b.
Our method showed a good pose estimation robustness on both straight and curved road
sections all the time.

Figure 22 shows the P-IoU evaluation. The two compared methods substantially
correctly estimate the obstacle’s direction, but its direction and size are not compact enough,
as shown in Figure 22a. In Figure 22b, the direct estimation of Method [31] is obviously
wrong, and the size of the pose estimation of Method [17] is not compact enough. Although
Method [31] has better overall performance than Method [17], its stability is not as good as
ours.
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Figure 21. The pose estimation results in the SemanticKITTI dataset. The (a,c,e) represents the experiment result on a
straight road section, and the (b,d,f) represents the experiment result on a curved road section.

Figure 22. P-IoU evaluation effect of pose estimation in SemanticKITTI dataset: (a) An obstacle
vehicle on a straight road section, which is the obstacle vehicle marked “a” in Figure 21. (b) An
obstacle vehicle on a curved road section, which is the obstacle vehicle marked “b” in Figure 21.

3.4. Experimental Results of Our Experimental Platform

To test our approach’s effect in the actual road environment, this paper tests on our
"Smart Pioneer" experimental platform. The specific layout plan of the "Smart Pioneer"
experimental platform is shown in Figure 23. We do not choose the same 64-line LiDAR as
the SemanticKITTI dataset but used 128-line LiDAR on the "Smart Pioneer" experimental
platform to verify the generalization performance of our approach. The parameters of the
"Smart Pioneer" experimental platform as shown in Table 5.

When only one vehicle is used for the experiment, the actual pose of the obstacle
vehicles cannot be obtained. Therefore, our approach configured the two experimental
vehicles. Since both vehicles are equipped with GPS receiving equipment, the GPS receiving
equipment can provide the ground truth of the vehicle pose in real time.
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Figure 23. The experimental platform of "Smart Pioneer": (a) The "Smart Pioneer" SUV platform, equipped with a Robosense
Ruby 128-line 3D LiDAR and GPS receiver in the middle of the roof. (b) The "Smart Pioneer" Minibus platform. The four
corners are equipped with four Beike Tianhui R-Fans 16-line 3D LiDAR. A SICK LD-MRS 8-line 3D LiDAR is also mounted
on the front, and the GPS receiver is equipped on the top of the car.

Table 5. The parameters of the "Smart Pioneer" experimental platform.

Parameters “Smart Pioneer”
SUV Platform

“Smart Pioneer”
Minibus Platform

Basic Information

Vehicle Brand Chevrolet ANKAI

Power Type Petrol Car Blade Electric
Vehicles

Length (mm) 4673 6605
Width (mm) 1868 2320
Height (mm) 1756 2870

Wheel Base (mm) 2705 4400
Curb Weight (kg) 1822 5500

Main
Performance

Max. Speed (km/h) 60 30
Position Control Error (mm) ±300 (60 km/h) ±300 (30 km/h)
Speed Control Error (km/h) ±0.5 ±0.5

Development
Information

Operating System Linux (Ubuntu 16.04)
Robot Operating System (ROS)

Hardware Intel I7-8700 CPU and 16 GB RAM

This paper verifies the accuracy of the pose estimation algorithm itself and its effect
on the object tracking algorithm. The experiment details are as follows: the "Smart Pio-
neer" SUV platform is used as the experimental vehicle, and the "Smart Pioneer" Minibus
platform is used as the target obstacle vehicle. The two vehicles are tested in a regular
urban environment, and the vehicle’s trajectory is designed to be on a right turn road
section. This paper uses ground segmentation with the original point cloud [15] and then
performs clustering processing [16] in the process of point cloud data. Moreover, we use
the object tracking algorithm [41] to evaluate the pose estimation algorithm’s effect on
tracking results. The experimental results are shown in Figure 24.
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Figure 24. The experimental result’s curve of our experimental platform: (a) The Method[31]’s results. (b) The Method[17]’s
results. (c) Our results.

Compared with the two methods of comparison, our approach has certain advantages
in pose estimation. Table 6 shows the evaluation indexes related to the pose estimation.
Our approach has the smallest mean error on various road sections. The standard deviation
of the error is also relatively low, which means our approach has stable performance. Our
approach has a significant advantage in heading estimation. The experimental results are
consistent with the performance on the public SemanticKITTI dataset. The average error of
our approach is reduced 11.87 degrees and 22.40 degrees smaller than Method [31] and
Method [17] in the global heading estimation. The average heading error reduces by about
29.49% and 44.11% on all road sections. The advantage of heading estimation is more
obvious on the curved roads sections, and the mean value of the heading estimation error
is reduced 21.64 degrees and 33.85 degrees than Method [31] and Method [17].

The mean value of the heading error is higher than the standard deviation of the
heading error, which indicates that the heading results have a high dispersion degree.
Two reasons cause this volatility: (1) The partial lack of the original point cloud cannot
truly reflect the shape of the obstacle. (2) In preprocessing, the inaccurate clustering will
cause the same obstacle to be clustered into two objects or combine obstacles into one
object. These two situations randomly occur, which has a significant influence on heading
estimation. Since the heading estimation is calculated based on the input point cloud, the
inaccurate input will indirectly make pose estimation results showing a huge heading error.
The experiment uses the same input and evaluation methods, and it can be seen that our
method reduces this dispersion of heading estimation as much as possible.
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Table 6. The experimental results of our experimental platform.

Road Types Methods

Pose Estimation Results Object Tracking Results

Shape
Error (m)

Position
Error (m)

Heading
Error (Deg)

Speed
Error (m/s)

Speed
Direction

Error (Deg)

Mean Std Mean Std Mean Std Mean Std Mean Std

All road
Method [31] 1.55 0.81 1.46 0.38 40.25 54.09 0.27 0.40 1.56 2.91
Method [17] 1.57 0.98 1.45 0.39 50.78 58.05 0.36 0.54 2.83 4.99

Proposed 1.54 0.82 1.44 0.39 28.38 42.41 0.26 0.39 1.50 2.59

Curved road
Method [31] 0.87 0.68 1.14 0.38 34.93 52.12 0.37 0.54 2.98 4.08
Method [17] 0.88 0.92 1.15 0.39 47.14 56.45 0.56 0.79 4.30 6.65

Proposed 0.85 0.66 1.13 0.39 13.29 22.92 0.36 0.53 2.62 3.44

Straight road
Method [31] 2.35 0.50 1.77 0.16 52.57 60.79 0.22 0.33 0.39 0.49
Method [17] 2.38 0.64 1.77 0.16 59.26 62.11 0.27 0.39 0.84 1.26

Proposed 2.32 0.48 1.77 0.16 38.15 51.92 0.21 0.32 0.38 0.55

The shape and position estimation results of the three methods are almost identical, as
shown in Figure 24. Our method only slightly improves the performance because these two
parameters depend on the original point cloud. The algorithm can only get the shape from
the original incomplete point cloud, as shown in Figure 25. The fundamental shape error is
the same, and it is not easy to restore the complete point cloud. The distance estimation
is calculated using the center point of the obstacle vehicle’s bounding box. The position
is similar because its shape estimation has already received the same limitation from the
point cloud. In our experiment, although the standard deviation of some indexes is not
as good as the compared methods, our approach always has a lower error. Our approach
achieves the best accuracy while ensuring the stability of the algorithm.

Figure 25. The influence of point cloud on the shape and position estimation results: (a) The three pose estimation results
when the point cloud is partly missing. (b) The comparison of estimation results and ground truth. Due to the missing part
of the point cloud, the three methods’ shape and position estimation results are very close. Although the box1 has the best
heading estimation, there is a deviation of shape and position estimations.

In the experiment of object tracking, our approach also has apparent advantages. As
shown in Table 6, our approach has obvious advantages in the speed direction evaluation
of the tracking algorithm. Compared with Method [31] and Method [17], the error of speed
direction is reduced by 0.06 degrees and 1.33 degrees. The average speed direction error
reduces by about 3.85% and 46.70%. The speed error is caused by the accumulation of
position error, which will amplify the position error. As shown in Table 6, our position
estimation has only a slight advantage, but this advantage is magnified in speed estimation.
Compared with Method [17], our position error is only reduced by 0.02 meters on the
curved roads, but its speed error is reduced by 0.2 m/s. Although our approach only has
a slight increase in the object tracking’s speed estimation, this slight improvement is also
essential considering the high moving speed of object vehicles.
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4. Discussion

Our experiments proved our method has accurate pose estimation results. The pose
estimation methods usually only use a single pose estimation method [17,31]. Due to the
diversity of point cloud distribution, it is hard to get perfect pose estimation results for
all obstacle vehicles. As shown in Figure 21, Method [31] and Method [17] are not stable
on both straight and curved road sections. We used the TS-OVPE network to determine
each obstacle’s best pose estimation methods from one of the five proposed methods. The
five proposed pose estimation methods complemented each other and ensured that each
obstacle had a perfect pose estimation result, as shown in Table 1. Compared with other
methods [17,31], our approach used the road direction, which was usually ignored as a
priori pose estimation. This method efficiently estimated pose on the straight road, as
shown in Figure 13a. Unlike the method of [38], we did not directly use PCA; instead,
we used the RPCA and DPCA algorithms combined with the distribution feature of the
point cloud, as shown in Figure 7. These two algorithms used PCA results as an a priori
direction to improve the pose estimation performance on curved road sections, as shown
in Figure 13g,h. Due to the complex environment of actual roads, the severe lack of point
cloud data makes pose estimation difficult. Thus, we used the LD and RT algorithms to
fix this problem with better global adaptability, as shown in Figure 13i,j. The proposed
evaluation indexes considering the time and spatial dimensions converted the five pose
estimation methods into a unified dimension for training. Most pose estimation algorithms
are processed in a single frame, but our direction angle association index made the method
more robust than other methods. As shown in Figure 24c, the heading curve of our method
was closer to the ground truth and possessed more minor fluctuation than the other
methods. As shown in Figure 22, the combined effect of multiple spatial evaluation indexes
enhanced our pose estimation. As we mentioned in the introduction, poor generalization
is the biggest problem of neural networks. Therefore, we indirectly trained the TS-OVPE
network through the proposed evaluation indexes. The network was trained on the public
SemanticKITTI dataset, which used 64-line LiDAR. As shown in Table 6, it unexpectedly
maintained a good pose estimation performance on our own dataset. In summary, our
TS-OVPE network is able to effectively improve the accuracy of pose estimation. Moreover,
it has a sensitive direction estimation feature and also shows excellent performance on
curved road sections.

Although our method can obtain effective pose estimation results in most cases, it still
has the following limitations. (1) Due to the lack of the original point cloud, it makes the
size estimation of vehicle obstacles more difficult. The incompleteness of the obstacle’s
point cloud greatly restricts the pose estimation algorithms. (2) Our method relies on
the distribution density of the point cloud. Its good adaptability has been verified for
multi-line LiDAR. However, the point cloud density in low-line LiDAR is too sparse to
enable effective pose estimation results.

In the future, we will continue to improve pose estimation accuracy in two respects.
(1) We will research pose estimation algorithms based on camera–LiDAR fusion because
this fusion could obtain richer obstacle information [42]. The sole use of point cloud makes
it challenging to identify obstacle types. However, it is easier to detect obstacle types
from camera images. The obstacle type, such as car, truck, and bus, can be merged with
the point cloud clustering results. The template matching method can be used to fill the
missing part of the obstacle point cloud. With the whole shape of the point cloud, the
pose estimation can be made more accurate and reliable. Moreover, it also makes pose
estimation under low-line LiDAR possible. (2) Inertial measurement unit (IMU) sensors can
be used to obtain a vehicle’s motion state in the pose estimation processing. IMU sensors
can provide a vehicle’s kinematics and dynamics parameters, such as angular velocity and
acceleration [43,44]. These parameters can help obtain a vehicle’s driving states, such as
on a straight road section or a curved road section. More abundant prior information can
make pose estimation more accurate.
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5. Conclusions

The authors of this paper have proposed an optimal vehicle pose estimation network
based on time series and spatial tightness with 3D LiDAR. The network integrates five
pose estimation algorithms to face changeable point cloud distributions. It eliminates
dependence on the specific point cloud’s geometric shape, such as the most commonly
used feature: L-shape. Under the ensemble learning unit, our network can effectively
achieve optimal pose estimation that is stable for both static and dynamic obstacle vehicles.
In the SemanticKITTI dataset, compared with the other two methods, the P-IoU was
found to improve by 5.25% and 9.67%, which showed its accuracy when there was no
interference from preprocessing. This performance depended on the time and spatial
evaluation indexes during network training. With the combination of time series and
spatial tightness, our network showed a stable pose estimation performance on all roads
sections. It even maintained the same level on curved road sections, which was the hardest
for the other pose estimation algorithms. On the SemanticKITTI dataset, the fluctuation
range of our algorithm’s P-IoU was only within 0.25%. Since the evaluation index of each
method is used for indirect training, our network can be directly used on our platform
even if the LiDAR-line is entirely different. The actual urban road experiment showed that
our pose estimation algorithm had an accurate heading estimation. The average heading
error was reduced by about 29.49% and 44.11% on all road sections due to the integration
of PCA methods into our algorithm. To test whether the application of the proposed pose
estimation algorithm was practical, we also tested its effect on an object tracking algorithm.
The object tracking results showed that our algorithm could reduce the average speed
direction error by about 3.85% and 46.70% compared with the two methods. In conclusion,
our algorithm not only improves pose estimation’s adaptability and direction sensitivity
but also has practical application value for tracking algorithms.
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The following abbreviations are used in this manuscript.

AV Autonomous Vehicle
LiDAR Light Detection and Ranging
TS-OVPE Optimal Vehicle Pose Estimation Based on Time Series and Spatial Tightness
PCA Principal Component Analysis
RPCA Rotating Principal Component Analysis
DPCA Diagonal Principal Component Analysis
LD Longest Diameter
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RT Rotating Triangle
IoU Intersection over Union
P-IoU Polygon Intersection over Union
ROS Robot Operating System
IMU Inertial Measurement Unit
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