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Abstract: Due to the large quantity of noise and complex spatial background of the remote sensing
images, how to improve the accuracy of semantic segmentation has become a hot topic. Lake water
body extraction is crucial for disaster detection, resource utilization, and carbon cycle, etc. The the
area of lakes on the Tibetan Plateau has been constantly changing due to the movement of the Earth’s
crust. Most of the convolutional neural networks used for remote sensing images are based on single-
layer features for pixel classification while ignoring the correlation of such features in different layers.
In this paper, the two-branch encoder is presented, which is a multiscale structure that combines the
features of ResNet-34 with a feature pyramid network. Secondly, adaptive weights are distributed
to global information using the hybrid-scale attention block. Finally, PixelShuffle is used to recover
the feature maps’ resolution, and the densely connected block is used to refine the boundary of the
lake water body. Likewise, we transfer the best weights which are saved on the Google dataset to
the Landsat-8 dataset to ensure that our proposed method is robust. We validate the superiority of
Hybrid-scale Attention Network (HA-Net) on two given datasets, which were created by us using
Google and Landsat-8 remote sensing images. (1) On the Google dataset, HA-Net achieves the best
performance of all five evaluation metrics with a Mean Intersection over Union (MIoU) of 97.38%,
which improves by 1.04% compared with DeepLab V3+, and reduces the training time by about 100 s
per epoch. Moreover, the overall accuracy (OA), Recall, True Water Rate (TWR), and False Water Rate
(FWR) of HA-Net are 98.88%, 98.03%, 98.24%, and 1.76% respectively. (2) On the Landsat-8 dataset,
HA-Net achieves the best overall accuracy and the True Water Rate (TWR) improvement of 2.93%
compared to Pre_PSPNet, which proves to be more robust than other advanced models.

Keywords: deep convolutional neural network; remote sensing image; semantic segmentation;
tibetan plateau; transfer learning; attention mechanism

1. Introduction

The Tibetan Plateau is the security barrier of the Asian ecosystem and is also well-
known as the world’s third pole [1] and Asia’s water tower [2]. There are numerous lakes
on the Tibetan Plateau, which differ greatly in size and account for the majority of the lake
area in China [3]. Lakes have an important research value as the sentinel of environmental
change and the signal of climate change [4]. In recent years, it has been shown that global
warming accelerates glacial melt [5] and permafrost degradation [6], with most of the lakes
expanding in the last 30 years. It can also be confirmed that the lake area of the Tibetan
Plateau expands at a pace of 0.83%/year due to increased glacial runoff [7]. The overflow
of the salt lakes not only causes pollution of the land and freshwater lakes, which damages
the ecological environment, but also disturbs the life of the residents.

More remote sensing satellites, such as multi-spectral satellites, hyper-spectral satel-
lites, and high-resolution satellites, have been developed as global observation technology
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and sensor equipment evolve. The obtained remote sensing images not only capture de-
tailed ground information but also allow accurate analysis of interesting regions. As the
ability to analyze the amount of information contained in the remote sensing images has
gradually grown, so has the need for analysis of the target region. Therefore, the automatic
extraction of lake water bodies is important for monitoring the changes of lakes in remote
sensing images.

The automatic extraction of water bodies from remotely sensed images is an important
part of water resource management and an essential part of remote sensing science. In
order to eliminate misleading information such as mountain shadows, cloud shadows, and
glacial snow accumulation, traditional methods for water body extraction from a large
number of remote sensing images have been proposed, which can be mainly divided into
a spectral analysis method based on water indices, and a classification method based on
machine learning.

With the increasing demand for massive remote sensing data processing, the water
index method is a commonly used method for water extraction, which is mainly designed
to enhance water features and suppress non-water features, and then to achieve water
extraction by selecting the optimal threshold value. McFeeters et al. [8] used the low
reflectance of water in the near-infrared band and the high reflectance in the green band
to enhance the features of water bodies, resulting in the Normalised Difference Water
Index (NDWI). The proposal of NDWI has contributed to the rapid development of the
water extraction field from remote sensing images, with numerous studies carried out by
subsequent researchers based on NDWI. In order to solve the problem that NDWI cannot
suppress noise well in built-up areas as well as vegetation and soil noise, Xu et al. [9]
replaced the near-infrared band with the shortwave-infrared band to enhance the features
of open water bodies in remote sensing images by naming it modified NDWI (MNDWI).
NDWI has also been used by some researchers in combination with other metrics to
remove the interference of shadows on the accuracy of water body extraction. Xie et al. [10]
combined NDWI with the morphological shadow index (MSI), which is used to describe
shadow areas, to propose NDWI-MSI, which is able to highlight water bodies while
suppressing shadow areas. Kaplan et al. [11] proposed the water extraction surface
temperature index (WESTI) in combination with NDWI and the surface temperature
variability between the water body and other noise to improve the extraction accuracy of
water bodies in cold regions.

Although the accuracy of water body extraction based on water index methods is
improving, they all require a threshold to distinguish between water and non-water areas,
where subjective and static thresholds can lead to over-or underestimation of surface
water areas [12]. Due to the advantages of avoiding the manual selection of threshold
and better image understanding, the classification methods based on machine learning
are often used to extract water bodies from remote sensing images. They mainly use
manually-designed waterbody features to form a feature space, which is then fed into
a machine learning classifier to achieve water body extraction. Balázs et al. [13] used
principal component analysis to reduce the correlation of bands with spectral indices which
were fed into a classifier with principal components (PCs) to distinguish between three
water-related categories: water bodies, saturated soils, and non-water. Saghafi et al. [14]
used the data fusion method to improve the resolution of multispectral images and perform
information enhancement, and then used the extracted features to classify high-resolution
multispectral images, which demonstrated the significance of multisensor fusion for water
body extraction. Although all of the above methods achieve good classification accuracy,
they often require a certain amount of a priori knowledge to extract features manually.
At the same time, the manually extracted features have certain limitations and lack some
generalization ability.

In the special field of computer vision, a deep convolutional neural network (DCNN) has
higher accuracy compared to traditional machine learning methods. In 2012, AlexNet [15]
was formally proposed for the ImageNet classification task, which established the founda-



Remote Sens. 2021, 13, 4121 3 of 23

tion for the wide application of DCNN. In addition, various backbone networks have been
proposed to improve the drawbacks of AlexNet. For example, ResNet [16], ResNeXt [17],
and RegNet [18], which use residual learning modules to avoid degradation problems
caused by increasing network depth. The lightweight network represented by MobileNet [19]
reduces the number of trainable parameters, which divides the general convolution into
depthwise convolution and pointwise convolution. Densely-connected convolutional
neural networks, such as DenseNet [20], connect the current layer to all previous layers.

The purpose of semantic segmentation is to assign a class label to each pixel based on
the probability map calculated by softmax or sigmoid function. DCNNs have achieved
superior performance in natural image segmentation, and they are also being used in
remote sensing image analysis in recent years [21–24]. However, the complex background
of remote sensing images and targets with multi-scale features lead the advanced network
not to model the foreground correctly. Therefore, its performance is poor. The remote
sensing image analysis is also an important application field of attention mechanism
used to minimize noise interference, such as building footprint extraction [25–28], road
extraction [29,30], water body extraction [31–33], land cover segmentation [34–37].

Lakes are important indicators of global climate change. Traditional water body
extraction methods all suffer from the drawbacks of poor generalization ability, high com-
putational complexity, and low extraction accuracy. Many researchers have used DCNN
for the extraction of water bodies. Restricted receptive field deconvolution network (RRF
DeconvNet) [21] was proposed to perform accurate extraction of water bodies in remotely
sensed images, but without using pre-trained weights to initialize the model. To overcome
the boundary-blurring problem of DCNN which is caused by the loss of boundary infor-
mation during the downsampling process, it proposes a new edge-weighted loss function
to assign greater weights to the pixels near the boundary. However, due to the single
expansion rate, it is not enough to deal with common problems such as noise interference
and multiscale features. Weng et al. [22] improved the feature extraction method by intro-
ducing depthwise separable convolution to reduce the risk of overfitting and expanding the
receptive field by dilated convolution. The information of the small water body is obtained
by using cascading methods in the encoder stage. Guo et al. [23] used four parallel dilated
convolutions to form a multiscale feature extractor which guarantees the accuracy of small
water body extraction. All the above methods use dilated convolution to capture more
multiscale contextual information, however, the shallower encoder cannot extract enough
features for pixel classification in the regions with strong noise interference. To reduce
the risk of overfitting, Wang et al. [24] used ResNet-101, which introduces depthwise
separable convolution, as an encoder to prevent overfitting. Although a high accuracy rate
is obtained, its training time is too long.

Attentional mechanisms, an important area of research in the field of computer vision,
had been applied by many researchers to the extraction of water bodies from remote sens-
ing images with a focus on the adaptive weighting of different important information. A
network of two-branch attention mechanisms [31] was proposed, where a deeper one is
used to extract multiscale channel features and another shallower one is used to extract
location information, and the two branches were fused to segment the water body. How-
ever, it cannot accurately extract small water bodies and edge information. Xia et al. [32]
localized the water body by shallow features and a large-scale attention module while
segmenting the edges of the water body using deep features and a small-scale attention
module, but they used a conditional random field (CRF) to further enhance the extraction
capability. Zeng et al. [33] proposed an adaptive row and column self-attention mechanism
to achieve high accuracy extraction of aquatic ponds without using post-processing.

In this paper, a model based on a fully convolutional neural network is proposed
to perform pixel classification on the Google dataset and validate the robustness of the
Landsat-8 dataset. Firstly, we propose a two-branch encoder structure, which uses ResNet-
34 to extract deep semantic features of lake water bodies and a feature pyramid network
(FPN) to fuse the extracted features of different resolutions. Due to the low interclass
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variance and high intraclass variance features, we use hybrid-scales attention block (HAB)
to weight the spatial and channel information for feature maps to reduce the interference of
noise. During upsampling, the pixelshuffle convolution upsample block (PCUB) is used to
recover the low-resolution feature maps to the spatial resolution of the original image and
refine the segmentation boundaries. The main contributions of this paper are summarized
in the following five points.

1. A Hybrid-scale Attention Network, named HA-Net, is proposed in this paper for the
effective extraction of the lake water body.

2. Combining ResNet-34 and FPN, a two-branch encoder structure is proposed to model
the foreground, which can better solve the multiscale problem of the lake water body.

3. Inspired by Inception [38], where using convolutional kernels of different sizes can
improve the expression ability of the model, we design a hybrid-scale attention block.

4. PCUB, by combining Pixelshuffle [39] and densely-connected convolution, is proposed
to perform upsampling, which has better segmentation performance compared to
bilinear interpolation upsampling, nearest interpolation upsampling, and transposed
convolution upsampling.

5. Compared to other state-of-the-art models, such as DeepLab V3+, PSPNet, Unet,
MSLWENet, MWEN, and SR-segnet, HA-Net achieves the best performance on the
Google dataset and demonstrates better robustness on the Landsat-8 dataset.

2. Related Work
2.1. Fully Convolutional Network

Fully convolutional networks(FCN), which use an encoder-decoder structure to re-
cover low-resolution feature maps to high resolution, are used for pixel classification.
Long et al. [40] replaced the final fully connected layer of the pure classification network
with a decoder that upsamples the feature maps to their original size using transposed
convolution, which established the foundation for image segmentation using deep learning
methods. To solve the problem of poor accuracy for FCN boundary extraction, a more
structured encoder-decoder model, SegNet [41], was proposed, which uses a maximum
pooling index in the upsampling phase to introduce more encoding information and re-
cover the resolution of the feature maps. Similar to SegNet, Ronneberger et al. [42] formally
proposed the Unet for medical images segmentation which reuses the encoder features by
using skip-connection operation during the upsampling process. DeepLab V3+ [43] uses
an atrous space pyramidal pooling structure to model multiscale contextual information
and an encoder–decoder structure to recover image resolution at the decoder stage. The
proposed encoder–decoder architecture has established the foundation for subsequent
research work and facilitated the development of the semantic segmentation field.

2.2. Attention Mechanisms

The attention mechanism is essentially designed to mimic the way that humans
observe objects, being able to dismiss unimportant information while focusing on the
most crucial one. Vaswani et al. [44] used the attention mechanism to replace the network
structures, such as Recurrent Neural Network (RNN) and Convolutional neural network
(CNN) for machine translation, however, it has a quadratic complexity problem and
ignores the potential correlation between different samples. In order to model the potential
relationships, Zhao et al. [45] introduced one-dimensional convolution with different
receptive fields to solve the drawback that self-attention has only global capture capability,
but its complexity is still high. Zhai et al. [46] used the product of corresponding positions
to eliminate the dot product in self-attention to greatly reduce the computational complexity.
In the same year, Guo et al. [47] used two tandem MLPs as memory units, which have
linear complexity and implicitly take into account the association of different samples. In
addition to the research on self-attention mechanisms, Hu et al. [48] modeled the channel
dimension of the feature maps by a squeeze-excitation block, which adaptively calibrates
the channel feature response. However, the presence of fully connected layers introduces
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a huge amount of parameters and ignores how significant the spatial information is for
feature extraction. Woo et al. [49] and Park et al. [50] used tandem and parallel channel
attention block and spatial attention block, respectively, for adaptive enhancement of
features. However, they ignore the issue that different sizes of convolutional kernels can
enhance model expression ability. Li et al. [51] used different sizes of convolutional kernels
to obtain feature maps and shared weights of different kernels to improve the training
efficiency of the model.

2.3. Dilated Convolution

Dilated convolution [52] introduces a new hyperparameter, dilation rate, which defines
the distance between each position of the filter. With the decreasing resolution of the feature
maps, the receptive field of the convolution kernel becomes larger, but its information
also gradually decreases. To improve the accuracy of image classification, He et al. [16]
introduced the dilated convolution into ResNet, which is the most widely used backbone
network in subsequent research work. Dilated convolution is used to increase the receptive
field of the convolution kernels without reducing the resolution of the feature maps, which
is very helpful for image segmentation. Chen et al. [53] introduced dilated convolution
into the backbone of the network and used a conditional random field instead of the
fully connected layer to capture pixel dependencies more accurately for image semantic
segmentation. Dilated convolution plays an important role not only in natural image
processing but is also frequently employed in remote sensing image analysis [21–24].

2.4. Feature Pyramid Networks

In the encoder stage, more detailed information exists in the shallow feature maps to
distinguish simple targets, while more semantic information exists in the deep feature maps
to distinguish complex targets. For example, VGG [54] only uses the final deep feature
maps for classification and ignores the detailed information of other shallow features, which
can improve the accuracy of the classification network. Lin et al. [55] fused Shallow detail
features and deep semantic features by an FPN, it can better handle the multiscale problem
without increasing the computational complexity. FPN can also be used in the semantic
segmentation field, Zheng et al. [56] proposed a foreground-aware relation network to
enhance the recognition of foreground features and used foreground-aware optimization
to balance foreground examples and hard examples during the training process. It can
be seen that FPN is a great feature fusion strategy that can be used to model contextual
information as well as improve segmentation accuracy.

2.5. Global Convolution Network

Semantic segmentation tasks often face two challenges: classification and localization,
but they are contradictory. A large number of semantic segmentation models mainly follow
the principle of localization and ignore classification. Inspired by the classification model,
Peng et al. [57] proposed Global Convolution Network (GCN) and enlarged the size of
convolution kernels, which gives the network the same advantages as the classification
network to overcome the drawbacks of the semantic segmentation methods that only
consider the localization principle. Finally, the segmentation accuracy of the boundary is
further improved by adding a boundary refinement block.

2.6. Transfer Learning

Semantic segmentation for remotely sensed image analysis has good performance, but
it requires learning from a large amount of annotated data. Creating annotated datasets is
very expensive, it is crucial to optimize existing datasets [34]. Transfer learning is a great
way to solve the problem of model overfitting due to a small dataset, which can be divided
into two main aspects. On the one hand, the weights learned on a large dataset are applied
to a task with insufficient data to help the model converge to the global optimum values.
On the other hand, the model weights obtained in a domain similar to the target task can
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be transferred to the target task. This is mainly because some features, such as the shape
and color of objects, are relevant and the model weights for these features do not need to
be re-learned, only the deep semantic weights need to be fine-tuned. In addition, transfer
learning can also be used to validate the robustness of the deep learning methods when
applied to different datasets.

3. The Proposed Methods

In recent years, deep learning-based supervised methods for natural image processing
have greatly contributed to the development of remote sensing image analysis. In this
paper, we present the Hybrid-scale Attention Network (HA-Net), which comprises a two-
branch encoder, attention block, and decoder to correctly model lake water bodies, with the
structure shown in Figure 1. Firstly, we use a two-branch encoder to fuse shallow and deep
feature maps without increasing the computational complexity to deal with the multiscale
problem of the lake water body. Then, the feature maps outputted from the FPN are fed
into the hybrid-scale attention block in four ways, which weigh the channel and spatial
information. Finally, we propose PUCB by combining PixelShuffle, and densely connected
convolution to capture more precise edge details. The two-branch encoder, hybrid-scale
attention block and pixelshuffle convolution upsample block are given in Sections 3.1–3.3,
respectively.

Stage-1

Stage-2

Stage-3

Stage-4

⊕

⊕

⊕

HAB

HAB

HAB

HAB PCUB* 2×

⨁
PCUB* 2×

⨁
PCUB* 2×

⨁
PCUB* 4×

Conv1×1

(a) Two-branch Encoder (b) Attention Block (c) Decoder

F1

F2

F3

P4

F4

P3

P2

P1

256×256×3

64×64×64

64×64×64

32×32×128

16×16×256

8×8×512

Conv1×1

Conv1×1

Conv1×1

Conv1×1

8×8×256

16×16×256

32×32×256

64×64×256

8×8×256

16×16×256

32×32×128

64×64×128

32×32×128

64×64×128

256×256×32

16×16×256

Figure 1. The structure of the hybrid-scale attention network used in this paper. (a) Two-branch
encoder; (b) Attention block; (c) Decoder.

3.1. Two-Branch Encoder

It is well-known that the feature pyramid network is an effective method for fusing
multiscale information, which can help us recover details of objects and perform multiscale
context modeling. As shown in Figure 1a, a top-down foreground modeling branch and a
bottom-up feature fusion branch make up the two-branch encoder. In the top-down branch,
we use ResNet-34, a backbone network widely used in image analysis, to extract features
from the input training data, where {Fi | i = 1, 2, 3, 4} indicates the set of extracted feature
maps. In the bottom-up branch, the deep feature maps are upsampled to ensure that the
spatial and channel dimensions match the shallow feature maps. Pyramid feature maps
{Pi | i = 1, 2, 3, 4}, calculated by Equation (1), are generated by element-wise summing of
shallow and deep feature maps.

Pi =

{
ζFi + ςPi+1 , i = 1, 2, 3
Fi , i = 4

(1)
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where ζ is the 1 × 1 convolution which is used to match the channel dimensions between
the shallow and deep feature maps, and ς is the bilinear interpolation upsampling that
matches their spatial dimensions.

Due to the high resolution of the shallow feature maps, they contain a significant
amount of texture information, while the deep feature maps provide abundant semantic
information. The pyramid feature maps are obtained by element-wise summing of shallow
and deep features through the bottom-up branch of the two-branch encoder, which can
preserve the spatial information of the shallow feature maps and the rich semantic features
of the deep feature maps.

3.2. Hybrid-Scale Attention Block

In the computer vision field, the attention mechanism uses limited attentional re-
sources to quickly extract the regions that need to be highlighted from the image. Numer-
ous researches have shown that it can be widely used in the fields of video processing,
natural language processing, and computer vision. Lots of researches use a single convolu-
tional kernel to extract features, ignoring the multiscale variation problem. Therefore, as
shown in Figure 2, we propose a hybrid-scale attention block (HAB) to adaptively weigh
the feature maps generated by FPN to suppress noise and background information.

split

Channel Attention 

Module

c Spatial Attention 

Module

Conv1×1

Hybrid-scale Attention Block

HS-GCN

HS-GCN

HS-GCN

Conv1×1

BN+ReLu

Channel Attention 

Module

Channel Attention 

Module

Channel Attention 

Module

c

Hybrid-scale Channel Attention Module

w×h×128/64 

w×h×256/128 

w×h×32/16

h

w

256

w×h×256

w×h×64

Figure 2. The structure of hybrid-scale attention block (HAB).

Inspired by Inception, Hybrid-Scale Global Convolution Network(HS-GCN) is used to
improve the expressive capacity of feature maps and weigh the importance of their channel
dimensions by using channel attention. Then, the concatenation operation is used on the
feature maps that have completed channel attention weighting and weights are assigned
adaptively to the spatial dimension. In order to meet the goal of obtaining the information
with significant value, HAB dynamically captures the correlation of internal features, while
assigning different weights to targets at different scales.

3.2.1. Hybrid-Scale GCN

The receptive field is a very important concept for semantic segmentation. For the
current end-to-end pixel classification methods, the classifier is locally connected to the
feature maps. Therefore, its receptive field can only cover the local part, which is difficult to
handle the problem of multiscale variation of the target. Similar to separable convolution,
GCN translates k× k convolution into 1× k and k× 1 convolution with fewer parameters
while ensuring the same receptive field.

The GCN-based semantic segmentation model achieves better results in image seg-
mentation tasks [34,57,58]. We improve the original GCN, as shown in Figure 3, from a
single-size convolutional kernel to a two-by-two combination of three convolutional ker-
nels with different sizes, 3× 3, 5× 5, and 7× 7. We add Batch Normalization (BN) [59] and
Rectified Linear Unit (ReLU) [60] to each branch of the GCN to reduce the interdependence
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of parameters, and finally change the strategy of features fusion. Its formula is shown
as follows.

Z = Γ(Zw×h×cSCk×k, Zw×h×cSCs×s), (2)

where Zw×h×c represents the input feature map with width w, height h and number of
channels c, SC is a separable convolution with convolution kernel size k or s, and Γ(·)
represents the channel concatation operation.

w×h×c

Conv

1×k×c

Conv

k×1×c

Conv

k×1×c

Conv

1×k×c

Sum
w×h×c

w×h×c

Conv

1×k×c

Conv

s×1×c

Conv

k×1×c

Conv

1×s×c

Concat
w×h×c

BN+ReLU BN+ReLU

(a) (b)

Figure 3. The differences between GCN and Hybrid-scale GCN. (a) GCN; (b) Hybrid-scale GCN.

3.2.2. Channel Attention Module and Spatial Attention Module

The attention module in the computer vision field can achieve the redistribution of
resources and improve the accuracy of lake water body extraction. In this paper, channel
attention and spatial attention mechanisms, with the structure shown in Figure 4, are used
to adaptively assign weights to the captured water body characteristics.

In the channel attention module, we generate the statistical vector Zch by compressing
the input feature maps Zin in spatial dimension H×W, which is calculated by Equation (3).

Zch =
1

H ×W

H

∑
i=1

W

∑
j=1

Zin(i, j). (3)

In this paper, the global average pooling and global maximum pooling are used
to generate the channel statistical information Zch_avg and Zch_max, respectively. Then,
multilayer perceptron (MLP) is used to efficiently combine the linear information between
high and low channels, and the formula is shown below.

Zmlp = F(Zch; W) = W2(δ(W1Zch)), (4)

where W and δ represent the fully connected layer and ReLU function, respectively. After
obtaining the statistical information zmlp_avg and zmlp_max by MLP, the probability predic-
tion matrix, which is the importance of each channel, can be obtained by element-wise
summing and passing through the sigmoid function. Therefore, the feature maps Zout
weighted by the channel attention module can be calculated by Equation (5).

Zout_ch = Zin × σ
(

Zmlp_avg + Zmlp_max

)
, (5)

where σ is the sigmoid function.
In the spatial attention module, we compress the feature maps Zch_concat, which have

passed through the channel attention module, by averaging pooling and maximum pooling
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in channel dimension C to obtain the feature maps Zsp_avg and Zsp_max. The formula is
shown as follows.

Zsp =
1
C

C

∑
c=1

Zch_concat(c). (6)

Then, they are concat at channel dimension and passed through a 1× 1 convolution
to generate a feature descriptor. Finally, the probability prediction matrix generated by a
sigmoid function is element-wise multiplied with Zch_concat to obtain the weighted feature
maps, which is calculated by Equation (7).

Zout_sp = Zch_concat × σ
(
W1×1 · Γ

(
Zsp_avg; Zsp_max

))
. (7)

MaxPool

AvgPool

MLP

⨁ ∫

Sigmoid

⨂

Zin

Zch_concat

Conv1×1

(a)

(b)

∫

Sigmoid

⨂

Zout_sp

Zout_ch

AvgPool

w

h

c

1×1×c

1×1×c

1×1×c

1×1×c

w

h

c

w×h×1

MaxPool
w×h×1

w×h×2 w×h×1 w×h×1

Figure 4. The structure of attention modules. (a) Channel attention module; (b) spatial attention module.

3.3. Pixelshuffle Convolution Upsample Block

The spatial resolution of the feature maps weighted through HAB is recovered by
the pixelshuffle convolutional upsampling block (PCUB), which is shown in Figure 5. For
recovering the spatial resolution of low-resolution feature maps and improve efficiency,
we first use sub_pixel convolution in Pixelshuffle [39] with a convolution stride of 1/r,
which changes its spatial resolution to r time of the original feature maps. Then, 1× 1
convolution followed by Batch Normalization and ReLU layers are used to match the
channel dimension of the feature maps and increase their nonlinearity. Finally, we model
the boundary refinement block as a densely connected structure. More specifically, we
define F̃ as the score graph refined by the boundary refinement block: F̃ = BR(F), where F
and BR(·) present the rough score graph and the dense connected structure, respectively.
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Figure 5. The structure of pixelshuffle convolution upsample block.

4. Experiment
4.1. Datasets
4.1.1. Google Dataset

Google Earth is a virtual earth software developed by Google which is a combination
of satellite images and aerial photography data. In this paper, we randomly counted
6164 images for the training set and the remaining 610 images for the test set. This dataset
has a total of 6774 RGB images and corresponding RGB ground truth labels (red for the
lake water body, black for the background) with a resolution of 256 × 256, which were
annotated by the deep learning image annotation software, labelme. In this paper, we
randomly counted 6164 images for the training set and the remaining 610 images for the
test set. Due to the small size of our dataset, we did not set up a validation set.

4.1.2. Landsat-8 Dataset

The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are carried
by Landsat-8, the eighth Earth observation satellite launched by the American Landsat
program, and it will provide multi-spectral image data with medium resolution (30 m
spatial resolution) for at least eight years. The spatial resolution of Landsat-8 images can
be increased to 15 m by fusing multispectral bands with the panchromatic band (band 8).
As shown in Figure 6, we selected four Landsat-8 remote sensing images with a large
number of lakes in different seasons. Then, ENVI, the remote sensing image processing
software, was used for radiometric calibration of the multispectral and the panchromatic
bands. Finally, we used the Cubic Convolution in Gram-Schmidt Pan Sharpening to fuse
their R, G, and B bands with the panchromatic band to increase the spatial resolution. To
ensure that the proposed method, HA-Net, is robust, the original images are divided into
non-overlapping patches, and 841 RGB images are randomly selected to form the Landsat-8
dataset. As with the Google dataset, the ground truth labels are also labeled by labelme,
with the same image size and format.

4.1.3. Data Augmentation

Although deep learning methods can automatically learn features at different scales
from training data to obtain great prediction performance. However, in a specific field, it
is so difficult to obtain the labeled ground truth (GT) labels that the weights of the model
cannot converge to the global optimum values, thus limiting the working performance.
Data augmentation is an important method which mainly used to generate new samples to
compensate for the small training datasets. All training samples in the Google dataset are
randomly flipped and rotated at any angle of (0◦, 90◦) before each iteration, as shown in
Figure 7, to enhance the generalization of the model.
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Figure 6. The location of images in the Landsat-8 dataset.
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Figure 7. Part of the results for data augmentation on the original image and GT label. (a) Original
image; (b) Image flip up to down and left to right; (c) Image rotate at any angle of (0◦, 90◦).

4.2. Experimental Details and Evaluation Metrics
4.2.1. The Training Procedure of the HA-Net

Since the Google training set only contains 6164 images, which tends to make the pa-
rameters of the network fall into local minima, the transfer learning strategy is used to train
the HA-Net. As shown in Figure 8, our model training process is divided into two stages.
In Stage-1, we use ResNet-34 with pre-trained weights as a multiscale feature extractor in
the two-branch encoder, and all other trainable parameters are initialized randomly with
KaiMing initialization [61]. In the forward propagation process, the prediction maps and
the GT labels are put through the loss function to calculate the loss values. The parameters
of the ResNet-34 are frozen during the backpropagation phase, while other parameters are
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updated using the gradient descent method. In Stage-2, all parameters of the model are
fine-tuned using a smaller learning rate.

Pretrained ResNet-34 Decoder

Frozen Fine-tune

Fine-tune

Optimizer

Loss 

function

Prediction 

map

T
rain

 P
h

ase
T

est P
h

ase

Stage-1

Stage-2

Pretrained ResNet-34 Decoder

Figure 8. The training process proposed in this paper.

4.2.2. Experimental Settings

In this work, the proposed network, HA-Net, was implemented using the open-source
framework PyTorch [62]. The code written by Python3.6 was performed on the Windows
10 platform with an NVIDIA 2070 SUPER GPU (8 GB RAM) and AMD Ryzen 5 3600 CPU
(3.6 GHz). The loss values between the probability prediction maps and GT labels were
calculated using the cross-entropy loss function [63] during the training phase. The model
was trained with an Adam optimizer [64], where weight decay was 0.0001. For Stage-1, the
initial learning rate and training epoch were set to 0.001 and 20, respectively. For Stage-2,
the initial learning rate was set to 0.0001 to fine-tune all parameters and the weights
converged to the optimum after 35 epochs. The batch size (the number of samples input
to the model at the same time in each training iteration) was 8, and the learning rate was
dynamically updated by Equation (8).

lr = lr0 × 0.8(epoch+1)/2 (8)

where lr0 is the initial learning rate. For the other comparison models, we used the same
parameter settings and retrained them on the Google dataset.

4.2.3. Evaluation Metrics

In general, pixel-level evaluation metrics, which compute some relationship between
correctly and incorrectly classified pixels on a pixel-by-pixel basis, are often used to measure
the performance of semantic segmentation models. The method of extracting lake water
bodies is different from classifying the image itself, which is ultimately a pixel classification
method. Therefore, the following evaluation metrics for pixel classification are used to
assess the performance of the advanced model.

• Overall Accuracy (OA): the proportion of pixels that are correctly classified among
the total number of pixels.

OA =
TP + TN

TP + TN + FP + FN
× 100% (9)

• Recall: the proportion of pixels correctly classified as a water body among all water
body pixels

Recall =
TP

TP + FN
× 100% (10)
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• Mean Intersection over Union (MIoU): The average value of the ratio between the
intersection and the concatenation for all classes.

MIoU =
1

k + 1

k

∑
i=0

TP
FN + TP + FP

× 100% (11)

• True Water Rate (TWR): the proportion of pixels correctly classified as a water body
among all pixels predicted to be a water body.

TWR =
TP

TP + FP
× 100% (12)

• False Water Rate (FWR): the proportion of pixels incorrectly classified as a water body
among all pixels predicted to be a water body.

TWR =
FP

TP + FP
× 100% (13)

where we assume that there are k categories (including one invalid category—background),
TP, FP, TN and FN are true positive, false positive, true negative and false negative,
respectively. In order to assess the statistical significance of the different methods, we
conducted five experiments using bootstrap analysis, with 6164 samples selected at random
with a put-back for each experiment and calculated p-value for MIoU using paired t-tests.

4.3. Experimental Results on Google Dataset
4.3.1. Performance Comparison of CNN Models

To analyze the effectiveness of HA-Net, we have compared it with other end-to-
end advanced semantic segmentation models. Among them, DeepLab V3+ and PSPNet
achieved excellent results on natural image segmentation datasets, and Unet established
the foundation for the medical semantic segmentation methods. The continuous proposal
of semantic segmentation methods for natural image segmentation has promoted the
development of remote sensing image analysis. When existing models are directly applied
to analyze remote sensing images, they face significant challenges such as the diversity of
spatial target distributions and a large amount of noise interference. Therefore, advanced
natural image semantic segmentation methods are not able to identify the target correctly.
MSLWENet, MWEN, and SR-segnet are networks that are specifically used to extract water
bodies from remotely sensed images.

We use the above five evaluation metrics to assess the performance of the models, and
the results are shown in Table 1. For DeepLab V3+, PSPNet, and Unet with pre-trained
weights, the models with deep encoders tend to achieve better results. HA-Net has a
great performance improvement compared to Pre_DeepLab V3+, the best natural image
segmentation method, especially the MIoU is improved by 1.04%. For the water body
extraction semantic segmentation method, HA-Net improves the OA and MIoU by 0.35%
and 1.29% relative to MSLWENet, respectively, and achieves the best performance on the
Google dataset for all five evaluation metrics.

The number of trainable parameters and the training time is shown in Table 2. Al-
though the SR-segnet model has the fewest parameters, its training time is not reduced due
to the introduction of numerous depthwise separable convolutions. Our proposed model
has the least training time and achieves a balance of accuracy and efficiency.
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Table 1. The quantitative results of comparing the proposed method against other methods.

Methods OA Recall MIoU TWR FWR p-Value (MIoU)

HA-Net 98.88% 98.03% 97.38% 98.24% 1.76% -
MSLWENet 98.53% 97.67% 96.09% 97.47% 2.53% 6.45× 10−9

MWEN 97.75% 96.94% 94.84% 96.94% 3.06% 3.05× 10−13

SR-segnet 97.59% 95.71% 94.46% 96.30% 3.70% 2.83× 10−11

Pre_DeepLab V3+ 98.42% 97.31% 96.34% 97.46% 2.54% 5.03× 10−11

Pre_PSPNet 98.33% 97.11% 96.13% 97.36% 2.54% 2.01× 10−12

Pre_Unet 97.42% 94.69% 94.12% 96.87% 3.13% 3.59× 10−15

Table 2. The comparison results for model complexity and training time.

Methods Number of Trainable Parameters Training Time (s)

HA-Net 2.41× 107 156.3
MSLWENet 2.90× 107 254.8

MWEN 2.89× 107 161.6
SR-segnet 1.35× 107 157.6

Pre_DeepLab V3+ 5.89× 107 255.0
Pre_PSPNet 6.76× 107 375.8

Pre_Unet 3.10× 107 221.1

4.3.2. Performance Comparison in Small Lake and Noisy Regions

The Tibetan Plateau lakes can be grouped into small water regions, low interclass
variance regions, and high intraclass variance regions [24]. In this section, some visible
results, as shown in Figure 9, are selected to demonstrate that HA-Net is superior in
extracting small lake water bodies as well as solving the problem of noise disturbance. Both
HA-Net and MSLWENet can extract small lake water bodies and solve the interference
of noise well, and the performance difference is difficult to distinguish, so we perform
quantitative calculations on the images in Figure 9, which are shown in Table 3.

It is clear from the quantitative results that our model improves the OA, Recall,
MIoU, and TWR by 0.37%, 0.38%, 0.75%, and 0.55% respectively compared to MSLWENet.
Although MSLWENet is able to locate the lake water body well and solve the interference
of noise, the boundary extraction of HA-Net is more accurate. As shown in Figure 9(1),
for a wide variety of lakes, HA-Net can correctly identify them, and the segmentation
boundary is better than other methods. In the noisy regions, as shown in Figure 9(2,3),
HA-Net and the models with deep encoders, such as MSLWENet, Pre_DeepLab V3+, and
Pre_PSPNet, can handle the interference of noise, while the segmentation results of other
models have a large number of mis-segmentations. As shown in Figure 9(4,5), the small
lake water body can be basically located correctly, but the segmentation boundaries have
large mistakes. Pre_DeepLab V3+, Pre_PSPNet, and Pre_Unet both use pre-trained weights
that can help converge to optimal values, but there are still major difficulties in applying
them to lake water body extraction. MWFE and SR-segnet cannot extract enough features
for pixel classification due to the use of shallow encoders.
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Table 3. The quantitative results of comparing the proposed method against other methods within
the region of Figure 9.

Methods OA Recall MIoU TWR FWR p-Value (MIoU)

HA-Net 98.21% 97.77% 96.37% 97.84% 2.16% -
MSLWENet 97.84% 97.39% 95.62% 97.29% 2.71% 3.77× 10−7

MWEN 93.85% 97.52% 87.84% 87.11% 12.89% 6.42× 10−17

SR-segnet 94.90% 97.49% 89.86% 89.79% 10.21% 9.24× 10−16

Pre_DeepLab V3+ 97.19% 97.87% 94.34% 95.19% 4.81% 6.48× 10−11

Pre_PSPNet 96.98% 95.97% 93.95% 96.65% 3.35% 1.06× 10−12

Pre_Unet 95.40% 94.48% 90.91% 94.20% 5.80% 1.33× 10−14

4.3.3. Performance Comparison in Boundary Regions

In this section, the performance comparison of the proposed model with MSLWENet,
SR_segnet, MWEN, Pre_DeepLab V3+, Pre_PSPNet, and Pre_Unet on the accuracy of the
extracted boundaries will be discussed, which are visualized in Figure 10. In Figure 10(1),
HA-Net, MSLEWENet, SR-segnet, and Pre_Unet can correctly localize the slender water
body, but the segmentation boundary of SR-segnet and MSLEWENet is not accurate, and
Pre_Unet cannot suppress the interference of noise well. In others, all models can correctly
localize the water body, but HA-Net has a clear advantage in pixel classification with
boundaries. The benefit of the strategy proposed in Sections 3.2 and 3.3 makes HA-Net
share the same benefits as the pure classification model to achieve the correct classification
of water body edge pixels. The quantitative results are shown in Table 4, where our
proposed model obtained the optimum in all five evaluation metrics.

Table 4. The quantitative results of comparing the proposed method against other methods within
the region of Figure 10.

Methods OA Recall MIoU TWR FWR p-Value (MIoU)

HA-Net 97.88% 96.27% 95.64% 98.28% 1.72% -
MSLWENet 97.45% 95.77% 94.78% 97.68% 2.32% 1.33× 10−8

MWEN 96.93% 95.64% 93.73% 96.38% 3.62% 6.82× 10−11

SR-segnet 96.57% 95.41% 93.02% 95.65% 4.35% 3.88× 10−11

Pre_DeepLab V3+ 97.20% 94.85% 94.29% 98.02% 1.89% 1.21× 10−10

Pre_PSPNet 96.98% 95.97% 93.95% 96.65% 3.35% 1.66× 10−10

Pre_Unet 96.39% 95.13% 92.67% 95.48% 4.52% 1.45× 10−12

4.3.4. Performance Comparison of the Proposed Method with Different Encoders

The encoder, which is a very important part of the semantic segmentation network,
is used to extract the features of the image. As shown in Table 5, the performance of the
model does not consistently increase as the depth of ResNet increases. This is mainly
because complex models suffer from the risk of overfitting, which causes a decrease in
the overall accuracy. Each layer of DenseNet-121 can directly obtain the gradient and
the original input signal, which leads to a kind of implicit deep supervision, and should
have better performance in theory compared to ResNet. However, due to the presence of
dilated convolution in ResNet, which can expand the receptive field of the convolution
kernel, so it has better performance than DenseNet. EfficientNet-b4 reconsiders the model
performance in three perspectives of depth, width, and image resolution, resulting in good
model performance but with poor efficiency. In addition, the model with VGG-16 as the
feature encoder achieved the worst accuracy. So in this paper, we use the most commonly
used ResNet-34 as our feature encoder.
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Figure 9. The visualization results of comparing the proposed method against other methods in
small lake and noisy regions. (A(1)–A(5)) are the raw images in the Google test set; (B(1)–B(5))
are the ground truths to which the raw images correspond; (C(1)–C(5)), (D(1)–D(5)), (E(1)–E(5)),
(F(1)–F(5)), (G(1)–G(5)), (H(1)–H(5)), and (I(1)–I(5)) are the extracted results of HA-Net, MSLWENet,
Pre_DeepLab V3+, Pre_PSPNet, SR-segnet, Pre_Unet, and MWEN, respectively.
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Figure 10. The visualization results of comparing the proposed method against other methods in
boundary regions. (A(1)–A(5)) are the raw images in the test set; (B(1)–B(5)) are the ground truths
to which the raw images correspond; (C(1)–C(5)), (D(1)–D(5)), (E(1)–E(5)), (F(1)–F(5)), (G(1)–G(5)),
(H(1)–H(5)), and (I(1)–I(5)) are the extracted results of HA-Net, MSLWENet, Pre_DeepLab V3+,
Pre_PSPNet, SR-segnet, Pre_Unet, and MWEN, respectively.
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Table 5. The quantitative results of comparing the proposed method with different encoders.

Encoder OA Recall MIoU TWR FWR p-Value (MIoU)

ResNet-34 98.88% 98.03% 97.38% 98.24% 1.76% -
ResNet-101 98.86% 98.03% 97.33% 98.18% 1.82% 8.48× 10−3

VGG-16 98.76% 97.70% 97.10% 98.18% 1.82% 4.57× 10−4

DenseNet-121 98.75% 97.71% 97.07% 98.13% 1.87% 1.26× 10−6

EfficientNet-b4 98.83% 97.90% 97.27% 98.22% 1.78% 3.90× 10−4

4.3.5. Ablation Experiments of Attention Blocks and Different Upsampling Methods

Our strategy aims to increase the scores of different evaluation metrics by using spatial
attention, channel attention at different scales for adaptive weighting of the feature maps, in
addition to using PUCB to eliminate some artifacts in the upsampling process. We perform
ablation experiments on HA-Net, where HA-Net-T1 represents the elimination of the
Hybrid-scale channel attention block, HA-Net-T2 represents the elimination of the spatial
attention block, HA-Net-T3 represents the use of bilinear interpolation upsampling, HA-
Net-T4 represents the use of nearest interpolation upsampling, and HA-Net-T5 represents
upsampling using deconvolution.

As shown in Table 6, when we remove the hybrid-scale channel attention module
and spatial attention module, the OA of the model decreases by 0.12% and 0.05% in the
quantitative analysis, respectively. That demonstrates the importance of the attention
module for model performance. When we use bilinear interpolation upsampling or nearest
interpolation upsampling, there is a substantial degradation in the performance of the
model. The OA of HA-Net-T5 decreases by only 0.04%, mainly because upsampling
is learnable when using deconvolution. Bilinear interpolation upsampling and nearest
interpolation upsampling introduce artifacts that lead to degradation of accuracy.

Table 6. Ablation experiments of attention blocks and different upsampling methods.

Methods OA Recall MIoU TWR FWR p-Value (MIoU)

HA-Net 98.88% 98.03% 97.38% 98.24% 1.76% -
HA-Net-T1 98.76% 97.73% 97.10% 98.15% 1.85% 3.09× 10−4

HA-Net-T2 98.83% 97.98% 97.27% 98.13% 1.87% 6.61× 10−4

HA-Net-T3 98.81% 98.18% 97.21% 97.86% 2.14% 2.31× 10−4

HA-Net-T4 98.69% 97.62% 96.94% 98.03% 1.97% 4.26× 10−8

HA-Net-T5 98.84% 97.91% 97.29% 98.24% 1.76% 2.60× 10−4

4.4. Experimental Results on the Landsat-8 Dataset

Currently, a large number of remote sensing image analyses are based on the Landsat-
8 remote sensing satellite. Since both the Landsat-8 dataset and the Google dataset consist
of RGB images (with the same dimensionality), we can transfer the optimal parameters
saved on the Google dataset directly to the Landsat-8 dataset, which not only validates the
robustness of HA-Net but also demonstrates that it can be used as a foundation for other
lake water body extraction researches.

The visualization results and quantitative results on the Landsat-8 dataset are shown
in Figure 11 and Table 7, respectively, where our model obtained the optimal segmentation
results. MSLWENet, Pre_DeepLab V3+, and MWFE may lose a large amount of information
due to the presence of dilated convolutions in the atrous spatial pyramid pooling (ASPP)
structure, which leads to substantial performance degradation during the transfer process.
The Pyramid Scene Parsing Module in Pre_PSPNet can increase the ability to understand
the features of lakes and avoid a large number of misclassifications. On the Landsat-
8 dataset, HA-Net has clear boundaries compared to the segmentation results of other
advanced models, which can correctly classify the boundary pixels of the lake water
body. As mentioned above, in Figure 11(5), MSLWENet, Pre_DeepLab V3+, and MWFE
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have a large number of mis-segmentations due to the presence of ASPP structures. In
the quantitative comparison results, although the difference in OA between HA-Net and
Pre_PSPNet is only 0.94%, HA-Net has improved 2.93% in TWR compared to Pre_PSPNet.
Recall, however, is slightly lower than Pre_PSPNet. All other advanced models have a
significant degradation of OA.

Table 7. The quantitative results of comparing the proposed method against other methods on the
Landsat-8 dataset.

Methods OA Recall MIoU TWR FWR p-Value (MIoU)

HA-Net 97.28% 97.69% 94.15% 94.42% 5.58% -
MSLWENet 93.76% 94.34% 86.99% 87.30% 12.70% 6.35× 10−14

MWEN 91.01% 94.27% 81.48% 78.95% 21.05% 1.32× 10−15

SR-segnet 92.67% 98.10% 84.55% 80.52% 19.48% 1.18× 10−14

Pre_DeepLab V3+ 91.90% 96.80% 83.07% 79.37% 20.63% 8.06× 10−16

Pre_PSPNet 96.34% 97.86% 92.17% 91.49% 8.51% 7.67× 10−10

Pre_Unet 92.61% 98.34% 84.40% 80.12% 19.88% 4.69× 10−15
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Figure 11. The visualization results of comparing the proposed method against other methods
on the Landsat-8 dataset. (A(1)–A(7)) are the raw images in the landsat-8 dataset; (B(1)–B(7))
are the ground truths to which the raw images correspond; (C(1)–C(7)), (D(1)–D(7)), (E(1)–E(7)),
(F(1)–F(7)), (G(1)–G(7)), (H(1)–H(7)), and (I(1)–I(7)) are the extracted results of HA-Net, MSLWENet,
Pre_DeepLab V3+, Pre_PSPNet, SR-segnet, Pre_Unet, and MWEN, respectively.
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5. Discussion

In this paper, compared to Pre_DeepLab V3+ and Pre_PSPNet for natural image
segmentation, Pre_Unet for medical image segmentation, MSLWENet, SR-segnet, and
MWFE for water body extraction, our proposed model achieves the best performance on
both the Google dataset and Landsat-8 dataset. More importantly, the HA-Net achieves an
MIoU of 97.38%, which is a 1.04% improvement over MSLWENet, but reduces the training
time by about 100s at each epoch. The Recall and TWR have increased by 0.36% and
0.77% when compared to MSLWENet, despite the OA improvement not being substantial.
Since Pre_DeepLab V3+ and Pre_PSPNet use pre-trained weights, their segmentation
performance is comparable to the MSLWENet.

In the small lake and noisy regions, it can be seen from the visualization results that
our method has comparable performance with MSLWENet. Meanwhile, as shown by the
quantitative analysis, OA and MIoU improved by 0.37% and 0.75%, respectively. HA-Net
has great segmentation performance on the fuzzy boundaries in the boundary regions.
In particular, we discuss the effect of various encoders on classification accuracy. As the
depth of ResNet increases, the training time of the model becomes longer, but there is a
slight decrease in its performance. This is mainly because the number of parameters in
the deeper models becomes larger, making it slightly overfit. The performance of both the
shallow network represented by VGG and the densely connected network represented by
DenseNet decreases significantly, thus proving the superiority of ResNet, which is mainly
due to the fact that the dilated convolution expands the receptive field and allows more
useful information to be extracted. EfficientNet takes full consideration of depth, width,
and resolution of the input image, although achieving OA of 98.83%, the training time is
greatly increased. Finally, we conduct a comparison experiment between the hybrid-scale
attention block and the pixelshuffle upsampling convolution block to demonstrate the
superiority of HA-Net. When transferring the optimal weights to the Landsat-8 dataset,
our model has more robustness compared to other advanced models. On the other hand,
we also perform a common non-parametric test method to assess whether our performance
improvements are statistically significant in terms of MIoU metrics compared to other
current state-of-the-art methods, resulting in a p-value score. From the p-values shown in
Tables 1 and 3–7, it is clear that there is a statistically significant improvement in the MIoU
metric for our method at the 5% level (all p-values are less than 0.05).

6. Conclusions

The Tibetan Plateau is the region with the largest number of lakes and one of the two
most densely distributed lake regions in China. Although Wang et al. [24] used depthwise
separable convolution to limit the model complexity, its training time is not optimized.

In this paper, a new semantic segmentation model based on a convolutional neural
network for lake water body extraction from remote sensing images is proposed. In
the downsampling stage, we propose a two-branch encoder, which uses a shallower
encoder, ResNet-34, to extract features and a feature pyramid network to fuse features at
different scales. It not only handles the multiscale problem of the target but also greatly
reduces the model complexity and training time of the model. The hybrid-scale attention
block is used to adaptively weigh the feature maps generated by the feature pyramid
network in the channel and spatial dimensions, thereby suppressing the interference of
noise. In the upsampling stage, the pixelshuffle convolution upsample block is used
to recover the resolution of the feature maps and refine the segmentation boundaries.
Compared with MSLWENet, our model not only can correctly extract small lake water
bodies and suppress the interference of noise but also can improve the accuracy of target
segmentation boundaries.

A transformer is a new research hotspot in the field of semantic segmentation of
natural images, which treats it as a sequence-to-sequence prediction task to replace convo-
lutional neural networks. Transformer performs global context modeling for each layer and
achieves semantic segmentation by combining it with a simple decoder. Our subsequent
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work will mainly focus on the extraction of the lake water bodies using the transformer
method and verifying its feasibility.
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