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Abstract: Topographic effects in medium and high spatial resolution remote sensing images greatly 
limit the application of quantitative parameter retrieval and analysis in mountainous areas. Many 
topographic correction methods have been proposed to reduce such effects. Comparative analyses 
on topographic correction algorithms have been carried out, some of which drew different or even 
contradictory conclusions. Performances of these algorithms over different terrain and surface cover 
conditions remain largely unknown. In this paper, we intercompared ten widely used topographic 
correction algorithms by adopting multi-criteria evaluation methods using Landsat images under 
various terrain and surface cover conditions as well as images simulated by a 3D radiative transfer 
model. Based on comprehensive analysis, we found that the Teillet regression-based models had 
the overall best performance in terms of topographic effects’ reduction and overcorrection; how-
ever, correction bias may be introduced by Teillet regression models when surface reflectance in the 
uncorrected images do not follow a normal distribution. We recommend including more simulated 
images for a more in-depth evaluation. We also recommend that the pros and cons of topographic 
correction methods reported in this paper should be carefully considered for surface parameters 
retrieval and applications in mountain regions. 

Keywords: Landsat; topographic correction; multi-criteria evaluation; land type stratification;  
correction bias 
 

1. Introduction 
Mountains cover around a quarter of the global terrestrial land surface [1] and are 

particularly sensitive to climate changes [2,3]. However, topographic effects caused by 
diverse topography and illumination conditions have complicated further studies em-
ploying remote sensing data in mountain regions, such as geophysical parameter retrieval 
and land cover classification [4–7]. For example, Cuo et al. [8] reported that the overall 
classification accuracy for original images was 55%, which increased to 85% after remov-
ing the topographic effects. Yu et al. [9] found that the leaf area index retrieval error with 
satellite data could reach 51% on average when the slope was 60°. 

Over the past three decades, many topographic correction models have been devel-
oped [10,11], and can be classified as empirical, semi-empirical, and physical models 
[12,13]. The band ratio method, also categorized as an empirical method, was the earliest 
and simplest one used [14]. It assumes that reflectance values caused by shadowing in 
different spectral bands are proportional, and the topographic effects can be removed us-
ing band ratio; however, it lacked physical meaning [15]. 
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Physical models based on radiative transfer models usually have a solid theorical 
basis and require auxiliary information as inputs for radiative transfer calculation [10]. 
Some studies considered direct radiation, diffuse radiation, and reflection from adjacent 
areas on sloping terrain for correction [12,13,16,17]. Soenen et al. [18] proposed an algo-
rithm based on geometric optical mutual shadowing [19] simulation and look-up tables. 
Li et al. [20] proposed a physical parameterization scheme with atmospheric, BRDF, and 
topographic correction that handles both flat and inclined surfaces. Yin et al. [21] devel-
oped path length correction (PLC) by simplifying radiative transfer process of canopy in 
rugged terrain, which is both physically sound and mathematically straightforward. Alt-
hough physical models always have high accuracy, they were always in need of auxiliary 
data and hard to be adopted on real-time processing of satellite products. 

Semi-empirical models have become the most commonly used methods due to their 
simplicity and effectiveness [22] compared with empirical and physical models. Smith et 
al. [23] presented the Minnaert model by introducing the Minnaert parameter [24] to de-
pict anisotropy on the true ground. Teillet et al. [25] presented the Cosine model by mod-
eling the geometric relationship among the Sun, target, and sensor; thus, this model was 
also defined as the STS method. The Teillet regression model showed the potential for 
eliminating terrain effects based on the linear relationship between reflectance and illu-
mination angle [25]. Gu and Gillespie [26] put forward a model based on Sun-Canopy-
Sensor (SCS) geometry to reduce errors introduced by the STS model in forest areas. Ow-
ing to the obvious overcorrection problems, the C factor was introduced which depicted 
the relationship between reflectance and illumination angle [25,27], and the C and SCS+C 
model was developed; this relationship was further used to develop b correction [28] and 
variable empirical coefficient algorithm (VECA) [29]. Riano et al. [30] smoothed the terrain 
slope while calculating illumination conditions to settle the overcorrection problem in the 
C model. Lu et al. [31] found that the Minnaert parameter should be computed after slope 
stratification. Meanwhile, [32], Szantoi and Simonetti [22], and Vázquez-Jiménez et al. [33] 
tested different methods to compute the C factors in the SCS+C or the C model, and all 
concluded that pixels in image should be stratified before calculating the C factor. 

Independent model intercomparisons have been carried out to assess the effective-
ness of the topographic correction models [10,34]. The most commonly used evaluation 
method is to compare the correlation coefficients between reflectance and illumination 
angles based on the assumption that a good correction method should reduce the correla-
tion coefficient [6,35–37]. Based on the assumption that the difference of reflectance in 
similar land cover would be decreased after correction, some statistical parameters, such 
as coefficient of variation (CV) [38,39], standard deviation (SD) [36,40], and interquartile 
range (IQR) [34] were introduced for evaluation. Synthetic images were also used to assess 
the performance of topographic correction algorithms [41]. In recent years, the multi-cri-
teria evaluation strategy was recommended for topographic correction algorithms’ com-
parison [34,42]. 

Great efforts have been made focusing on the correction model development, but few 
studies have evaluated them comprehensively in different seasons and terrain conditions, 
especially snow-covered areas, preventing a clearer understanding of the models’ perfor-
mances. Conclusions regarding the algorithms’ performance sometimes differed and 
were even conflicting. For example, the modified Minnaert model was shown to have the 
best performance in Switzerland using six scenes from SPOT 5, Landsat 5 TM, and Land-
sat 7 ETM+ [43]; meanwhile, the C correction and the Teillet regression were reported to 
have the best performance based on a time series of 15 Landsat images [10]. Yet, most of 
these evaluation strategies based on the assumption that the surface reflectance of differ-
ent slope directions should be consistent, and they may cause deviation in the validation 
results. Although some researchers reported that the classification accuracy or biomass 
inversion accuracy can be improved after topographic correction [6,44,45], Hoshikawa 
and Umezaki [44] reported that classification accuracy could be negatively affected by the 
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reduction of the obvious differences among distinct classes. The classification and vegeta-
tion parameter retrieval accuracies are related to complicated factors and may not directly 
reflect the topographic correction methods’ performance. Meanwhile, the current evalua-
tion and comparison studies relied on limited images which may result in conflicting con-
clusions, and a systematic evaluation of topographic correction methods is currently in 
urgent need. 

With abundant topographic correction methods available currently, it is urgent to 
document the pros and cons of the well-known algorithms on different spatial and tem-
poral domains. This study conducts multi-criteria comparisons among ten topographic 
correction models over different regions with multi-temporal imagery to assess the model 
performance taking advantage of the Landsat data legacy. Issues in different algorithms 
could be revealed through different analyses and comparisons, while the evaluation with 
different seasons and terrain conditions could provide us more robust results, and thor-
oughly validate algorithms’ performance under diverse situations. We also paid more at-
tention to snow-cover areas which occupied a large portion of mountainous areas in win-
ter, but were always ignored in previous studies [10,34,38]. LESS [46] was employed to 
simulate images with topography, and different land types were introduced to the simu-
lation by simply setting vegetation and bare land spectral properties of the ground. The 
corresponding images over flat terrain were also simulated with the same surface param-
eters, which can be used as referenced “true value”. Section 2 of this paper describes the 
topographic correction models and evaluation methods we used. Section 3 defines the 
study area, data, and pre-processing in the study. The results of different evaluation meth-
ods are compared and analyzed in Section 4. Sections 5 and 6 contain the discussion and 
study conclusions, respectively. 

2. Methods 
2.1. Topographic Correction Models 

After a comprehensive literature review, we tried to cover multiple classical and 
widely used algorithms and to evaluate their feasibility for topographic correction in var-
ious conditions. The algorithms we selected are shown in Table 1. Some stratification ap-
proaches worked well [22,33,47–50] for regression models; we used a simple land type 
stratification in our study for the C, the SCS+C, and the Teillet regression model for their 
good potential in previous studies. The stratification grade was classified into three 
groups: (1) snow-cover area (normalized difference snow index (NDSI) > 0.1 [51]), (2) veg-
etation (normalized difference vegetation index (NDVI) > 0.2 [52], and NDSI < 0.1), (3) 
bare land (NDVI < 0.2, and NDSI < 0.1). NDVI and NDSI were selected because of their 
attenuation in topographic effects [53,54]. The NDSI and NDVI in Landsat 8 can be calcu-
lated as: 

1

1

NDSI= green swir

green swir

ρ ρ
ρ ρ

−

+
 (1) 

redNDVI= nir

nir red

ρ ρ
ρ ρ

−
+

 (2) 

where greenρ , 1swirρ , nirρ , and redρ  refers to the green, SWIR1, near-infrared, and red 
spectral band of Landsat 8 surface reflectance data, respectively. Table 1 shows the infor-
mation of algorithms included in this study. 
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Table 1. The topographic correction methods used in this study. 

Number 
Topographic  

Correction Model 
Expression Presenter 

1 Teillet regression cosH T a i bρ ρ ρ= − ⋅ − +  Teillet et al. [25] 

2 C 
cos
cos

s
H T

C
i C
θ

ρ ρ
+

= ⋅
+

 Teillet et al. [25] 

3 Minnaert+SCS 
cos

cos ( )
cos

ks
H T S

i
θ

ρ ρ= ⋅ ⋅  Henry Reeder [55] 

4 b correction exp[ ' (cos cos )]H T sb iρ ρ θ= ⋅ ⋅ −  Vincini et al. [28] 

5 SCS+C 
cos cos

cos
s

H T

S C
i C

θ
ρ ρ

⋅ +
= ⋅

+
 Soenen et al. [27] 

6 VECA T cosH a i b
ρρ ρ= ⋅

⋅ +
 Gao and Zhang [29] 

7 PLC 1 2

1 2

( ) ( )
( ) ( )H T

t t

S S
S S

ρ ρ
Ω + Ω

= ⋅
Ω + Ω

 Yin et al. [21]  

Note: The Teillet regression model is also called Statistical Empirical model. 

The computation of the illumination condition (solar incidence angle) is based on the 
geometric relationship in the following equation [10]: 

0cos cos cos sin sin cos( - )s s ai S Sθ θ ϕ ϕ= +  (3) 

where cos i  is the cosine of solar incidence angle, sθ  is the solar zenith angle, S  is the 
slope angle, aϕ  is the solar azimuth angle, and 0ϕ  is the aspect angle of the terrain. 

In Table 1, Tρ  is the original reflectance of the image in each pixel and Hρ  is the 
reflectance after topographic correction. ρ  is the average of original reflectance, while 
a  and b  can be regressed by: 

cosT a i bρ = ⋅ +  (4) 

where cos i  is the cosine of the solar incidence angle calculated by Equation (1). The pa-
rameter c  in SCS+C and C models can be calculated by the ratio of b  and a  in the 
Equation (4). The Minnaert+SCS parameter k  can be calculated by fitting the expression: 

s

cosln( cos ) ln( ) ln
cosT H

iS kρ ρ
θ

⋅ = ⋅ +  (5) 

while 'b  in b correction model can be obtained by a similar transformation as in Min-
naert+SCS, and can be computed by: 

ln ' cosT b i cρ = × +  (6) 

The flat area (with less than 5° slope), cloud-cover area [21], and cast shadow area 
[56] were masked before these regressions. 

For the PLC model, 1( )S Ω  and 2( )S Ω  are the path length along solar and viewing 
directions on flat terrain, respectively; and 1( )tS Ω  and 2( )tS Ω  are their counterparts on 
sloping terrain. The path lengths over flat and sloping terrain can be simply computed as 
Equations (7) and (8), respectively: 

( ) 1 cosS θ θ=  (7) 

0
0

1( , , , )
cos (1 tan cos( ) tan )tS S

S
θ ϕ ϕ

θ ϕ ϕ θ
=

− −
 (8) 
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where θ  is the solar/viewing zenith angle, and ϕ  is the solar/viewing azimuth angle. 
Some problems exist in calculating the length of solar direction over sloping terrain 

while calculating path length, which influenced the outcome of topographic correction. 
According to Luisa et al. [57], the topographic mask of path length over sloping terrain 
could be calculated by 2s Sθ π= − , where sθ  is the solar zenith angle and S  is the 
slope angle. However, we did not adopt this mask for PLC model in this study because of 
our thorough evaluation target of topographic correction models in different conditions. 

2.2. Evaluation Methods 
To make a systematic evaluation of topographic correction algorithms, we used a 

multi-criteria method [34,42] to compare different aspects of the algorithms’ performance. 
For the sake of applicability of the evaluation methods, the following methods were se-
lected for this research: 
(1) Outliers percentage 

Some algorithms generate outliers such as negative values due to overcorrection, 
which can sometimes reach 10% of the total pixels [14] and will severely reduce the quality 
of the corrected results. The number of outliers (pixels in corrected images larger than the 
maximum original reflectance or lower than the minimum) was calculated in this study, 
and algorithms that produced many outliers should not be recommended. It should be 
noted that the atmospheric correction can introduce negative values in shadow areas, and 
to reduce its influence on further comparison, we got rid of negative values caused by 
atmospheric correction in evaluation. 
(2) Difference in sunlit and shady areas 

The difference between sunlit and shadow areas was calculated in each spectral band 
to see whether topographic effects were eliminated or whether there was overcorrection 
[14,58]. The area where the relative angle between Sun azimuth angle and terrain aspect 
angle less than 45° was defined as the sunlit area, and that relative angle from 135° to 180° 
was the shady area [34]. However, this evaluation assumed that the sunlit and shady areas 
have similar surface properties, thus, the selection of validated images is of great im-
portance. Owing to the fact that winter images have more negative surface reflectance in 
shadow areas and the snow-cover areas are always terrain dependent, which may deviate 
the evaluation result, we focused on the images obtained in May/July/September to see 
the result of different algorithms. The difference percentage can be calculated by: 

( ) ( )
100%

( )
sunlit shady

percentage
shady

median median
Difference

median
ρ ρ

ρ
−

= ×  (9) 

where sunlitρ  is the reflectance in sunlit area and shadyρ  is the reflectance in shady area. 

(3) Interquartile range reduction 
The dispersion degree in the image can be measured by the interquartile range (IQR), 

which would not be significantly influenced by outliers [42]. Smaller IQR indicates smaller 
spectral differences among similar ground objects, which implies a smaller difference be-
tween shady and sunlit areas in the image [34]. The IQR reduction of each image was 
calculated based on the IQR weighted by land type: 

cov 1
( ) 100%

N
T H

reduction
land er T

IQR IQRIQR L
IQR=

−
= × ×∑  (10) 

where TIQR  is the IQR of the uncorrected image and HIQR  is the IQR of corrected im-
age. 
(4) Evaluation using simulated images 
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A simulation method that only uses DEM data, which can eliminate the errors caused 
by the assumptions using remote sensing images, was adopted (e.g., the sunlit and the 
shady areas have the same reflectance characteristics). LESS (LargE-Scale remote Sensing 
data and image simulation framework) is a ray-tracing-based 3D radiative transfer model 
which can simulate large-scale satellite images and solar radiation over rugged terrain 
[46,59]. In LESS simulation, the “orthographic” sensor type was selected, and 50% diffuse 
irradiance (SKY_TO_TOTAL) was set. A DEM of 2000 × 2000 pixels was inputted for sim-
ulation and the ground was covered by soil and vegetation through introducing different 
spectral reflectance in different simulations (larger scene and trees on the ground could 
not be simulated because of computation limitation). The Sun zenith angle was set as 30° 
and 60°; and the Sun azimuth angle was set as 90° and 270°. Then, the marginal 50 pixels 
were removed to avoid the edge effect, and we finally obtained the scene with different 
land type by repeating the simulation with the same DEM but with different soil and veg-
etation spectral reflectance values. Meanwhile, the corresponding images over flat terrain 
could be attained without inputting the DEM and used as the reference data to validate 
topographic correction algorithms. By comparing the topographic corrected images with 
the simulated plane images, the effect of different algorithms can be analyzed in-depth, 
and more problems can be brought to light. 

3. Materials 
3.1. Study Area 

Topographic effects depend on the terrain condition and solar position, thus the ge-
ographic distribution and seasonal variation in the study area are vital to the evaluation. 
Both good and poor illumination conditions should be considered, and the study area is 
supposed to cover as many real situations as possible. China is a mountainous country 
where the mountain coverage exceeds two-thirds [60], and it includes nearly all the 
world’s terrain types; thus, it was chosen as the study area for this paper. To carry out a 
more comprehensive comparison, eleven experimental areas with different terrain fea-
tures and climate characteristics were selected to carry out the evaluation. In general, typ-
ical landforms, such as hills, plateaus, and mountains were included. Different climate 
regions, including different types of continental and monsoon climates, were covered in 
our study area. Meanwhile, the land cover contained bare land, bush, grassland, forest, 
and so on. Therefore, the study areas would represent most conditions worldwide. The 
study area location with DEM data is shown in Figure 1. The relevant parameters of the 
study area are listed in Table 2. 
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Figure 1. The study area location with DEM of China (the red box is the study area we used which 
contains different terrain conditions and the number in the red box represents the number of 
scenes). 

Table 2. Terrain parameter statistics of Landsat data selected in the study area. 

WRS2 
PathRow 

Center 
Coordinate 

Elevation Range/m 
(Average Eleva-

tion/m) 

Average 
Slope/° 

Main Land Cover Main Terrain 

120029 30° N 118° E 1-1821 (277) 16.1 Evergreen forest 
Middle and low moun-

tains 
121024 52° N 124° E 277-1519 (699) 8.5 Deciduous forest Low mountains, hills 
121042 26° N 116° E 42-1522 (393) 13.9 Evergreen forest and cropland Low hills 
122035 36° N 117° E 0-1524 (144) 5.0 Cropland and grassland Hills, relatively flat 

124032 40° N 115° E 15-2849 (1029) 13.5 Cropland and grassland 
Hills, plains, and moun-

tains 
128036 34° N 108° E 419-3753 (1366) 18.1 Evergreen forest High mountains 

129043 24° N 103° E 341-2983 (1830) 14.2 Forest and grassland 
Mountains, plateaus, ba-

sins 
131035 36° N 103° E 1436-4767 (2487) 17.2 Grassland and cropland High mountains 
131038 32° N 102° E 1812-5479 (3888) 26.7 Grassland and evergreen forest Hilly plateau 

139040 28° N 88° E 3725-7073 (4723) 16.0 Bare areas and grassland 
Mountains and wide val-

leys 
143030 44° N 87° E 516-5248 (2394) 18.9 Sparse vegetation and forest Vast mountains 

Note: WRS means Worldwide Reference System. The main land cover is from [61]. 

3.2. Data 
Landsat 8 surface reflectance products provided an estimate of the surface spectral 

reflectance as it would be measured at ground level in the absence of atmospheric scatter-
ing or absorption [62]. They were generated at the Earth Resources Observation and Sci-
ence (EROS) Center at a 30-m spatial resolution in the Universal Transverse Mercator Grid 
System (UTM). Landsat 8 surface reflectance products were obtained from the United 
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States Geological Survey (USGS, https://earthexplorer.usgs.gov/, accessed on 12 October 
2021). Cloudless images (cloud cover lower than 10%) acquired in different seasons (Jan-
uary, May, July, September, and November) were selected in each experimental area. Ta-
ble 3 shows the image acquisition time, solar zenith angle, and snow cover percentage in 
each image (the snow cover percentage was calculated by the land type stratification de-
scribed in Section 2.1 in areas with slope angle larger than 5°). 

In this study, SRTM DEM V003 (the first freely available high resolution DEM [63], 
obtained from https://search.earthdata.nasa.gov/, accessed on 12 October 2021) with a 1 
arc-second resolution (~30 m) in WGS84 was used to calculate slope, aspect, and cast shad-
ows. 

Table 3. Data acquisition and snow-cover information of Landsat 8 surface reflectance products included for topographic 
correction evaluation. 

WRS2 
Path/Row 

Date 
Solar Zenith 

Angle/° 
Snow Cover 
Percentage 

WRS2 
Path/Row 

Date 
Solar Zenith 

Angle/° 
Snow Cover 
Percentage 

120/029 

20170126 54.7 1.46% 

131/035 

20180110 61.9 34.88% 
20170518 22.1 0.55% 20180502 27.6 4.34% 
20170721 23.5 0.35% 20180721 25.2 0.15% 
20160920 35.1 0.64% 20180923 40.2 0.28% 
20181129 54.9 0.69% 20171107 54.7 2.86% 

121/024 
20180528 32.7 0.48% 

129/043 
20180128 49.9 0.93% 

20160725 35.1 0.14% 20170501 23.2 0.11% 
20180917 51.0 0.03% 20161122 48.7 0.28% 

122/035 

20180111 61.8 2.41% 

139/040 

20180118 55.0 1.04% 
20180503 27.3 0.28% 20170507 23.2 2.47% 
20170703 23.1 0.31% 20150721 23.3 1.17% 
20180908 35.6 0.43% 20150907 30.7 0.92% 
20171124 59.0 0.29% 20181118 51.3 0.96% 

124/032 

20170122 63.6 16.19% 

143/030 

20180130 64.3 73.42% 
20170514 27.2 0.05% 20180522 27.6 7.07% 
20150712 25.8 0.09% 20170722 28.8 1.65% 
20180922 43.2 0.03% 20180927 47.3 34.61% 
20181109 59.0 0.09% 20181130 66.5 49.24% 

128/036 

20170102 61.2 1.38% 

121/042 

20170509 22.3 0.47% 
20180513 24.5 0.03% 20170728 23.7 0.34% 
20150724 25.0 0.14% 20160927 34.1 0.31% 
20181121 57.0 3.62% 20171101 44.4 0.27% 

131/038 

20180126 55.9 14.52% 
 

   
20160512 23.3 10.37%    
20160715 23.2 0.29%    
20181110 51.7 48.51%     

Note: snow cover percentage was calculated by the stratification method in Section 2.1. 

3.3. Data Processing 
Some necessary processing steps were completed before the implementation of topo-

graphic correction methods. After the SRTM DEM data were mosaicked in the study area, 
they were reprojected onto the same zone of UTM coordinate system as the corresponding 
Landsat 8 image. Cubic resampling and clipping were applied to DEM data so that they 
could be matched with the Landsat 8 data in the spatial domain. Aspect and slope param-
eters were then calculated from the DEM data. The mean solar azimuth/zenith angles 
were used, and sensor viewing angles were calculated pixel-by-pixel based on the location 
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and acquisition time. Cast shadow and cloud areas can influence the effect of some algo-
rithms and prejudice the evaluation results, thus they were detected in the preprocessing 
step. The cast shadow was detected by subtracting the self-shadow from the full shadow 
area [64], and the full shadow detection method was based on the geometric relationship 
between sunlight direction and mountains, and can refer to Li, Toshio, and Cheng [56]. 
Cloud detection was adopted by Fmask 4.0 [65], and both cloud and cloud-shadow pixels 
were eliminated before correction. However, snow is easily confused with clouds, thus 
we did not adopt Fmask in winter images to avoid hidden problems, and cloud cover in 
these images is small and can be ignored. Figure 2 is the flow chart of data processing for 
topographic correction in this study. 

 
Figure 2. Flow chart of data processing for Landsat topographic correction. 

4. Results 
4.1. Outlier Analysis 

The number of outliers is the primary assessment method as good topographic cor-
rection methods should maintain a spatially continuous correction of surface and not pro-
duce many outliers. It should be noted that outlier calculation included cast shadow areas 
to find out each model’s overall performance in mountainous areas. Figure 3 shows the 
outlier percentage in each Landsat footprint with different time. The box plots of each 
topographic correction model’s outlier percentage on all images are shown in Figure 4. 
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Figure 3. The outlier percentage in different Landsat footprint with different time. (a) path/row:120/039, (b) path/row: 
121/024, (c) path/row: 121/042, (d) path/row:122/035, (e) path/row:124/032, (f) path/row: 128/036, (g) path/row:129/043, (h) 
path/row:131/035, (i) path/row: 131/038, (j) path/row: 139/040, (k) path/row: 143/030. 

 
Figure 4. The box plot of all topographic correction models’ outlier percentages (‘_landtype’ refers 
to the results using the land type stratification method). 
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From Figures 3 and 4, these algorithms always offered similar outlier percentages in 
the same image in May/July/September, and outliers were produced mainly in winter. 
The Minnaert+SCS and PLC model led to the largest numbers of outliers. The b correction, 
SCS+C, VECA, and C models offers a lower number of outliers compared with the Teillet 
regression model. The land type stratification decreased the outliers of the Teillet regres-
sion model effectively, and the effect of land type stratification was not obvious for C and 
SCS+C model. The outlier percentage also showed large differences even in winter, e.g., 
the outlier percentage of January was larger than November’s in Figure 3f,h, but the re-
verse was the case in Figure 3i. 

4.2. Difference in Sunlit and Shadow Areas 
A comparison of the difference in sunlit and shady areas was carried out for different 

algorithms in all spectral bands to determine which gave the best result, and to check 
whether slight overcorrection was produced. The relationship between median reflec-
tance in sunlit and shady areas for each model was shown in Figure 5. 

From Figure 5, the uncorrected images have a large difference between sunlit and 
shady slope’s median reflectance, and all topographic correction algorithms provide re-
duction of the difference. The b correction and Minnaert+SCS model had positive bias 
value, which indicated that the shady area’s reflectance exceeded the sunlit area’s reflec-
tance after correction, which may be caused by an overcorrection problem. The PLC 
model resulted in larger sunlit and shady areas’ difference than other models. The Teillet 
regression model outperformed other non-stratification algorithms with lower RMSE and 
smaller negative bias. Models with land type stratification can achieve better result than 
the original models. 
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Figure 5. The relationship of median reflectance in sunlit and shady areas for each model using seven spectral band (sam-
ple size = 203). (a) Original image, (b) b correction, (c) SCS+C model, (d) C model, (e) Minnaert+SCS, (f) PLC, (g) VECA, 
(h) Teillet regression, (i) C with land type stratification, (j) SCS+C with land type stratification, (k) Teillet regression with 
land type stratification. 

4.3. IQR Analysis 
IQR reduction shows the effect of topographic effects’ removal, and a comparison of 

different algorithms’ IQR reduction in May/July/September and January/November is 
shown in Figures 6 and 7, respectively. 
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Figure 6. The comparison of IQR reduction in May/July/September. The x label’s number represents different algorithms: 
b correction, SCS+C, C, Minnaert+SCS, PLC, VECA, Teillet regression, C with land type stratification, SCS+C with land 
type stratification, and Teillet regression with land type stratification. (a) 120,039 (path/row) image obtained on 20170518, 
(b) 120,039 image obtained on 20170721, (c) 120,039 image obtained on 20160920, (d) 121,024 image obtained on 20180528, 
(e) 121,024 image obtained on 20160725, (f) 121,024 image obtained on 20180917, (g) 121,042 image obtained on 20170509, 
(h) 121,042 image obtained on 20170728, (i) 121,042 image obtained on 20160927, (j) 122,035 image obtained on 20180503, 
(k) 122,035 image obtained on 20170703, (l) 122,035 image obtained on 20180908, (m) 124,032 image obtained on 20170514, 
(n) 124,032 image obtained on 20170712, (o) 124,032 image obtained on 20180922, (p) 128,036 image obtained on 20180513, 
(q) 128,036 image obtained on 20150724, (r) 129,043 image obtained on 20170501, (s) 131,035 image obtained on 20180502, 
(t) 131,035 image obtained on 20180721, (u) 131,035 image obtained on 20180923, (v) 131,038 image obtained on 20160512, 
(w) 131,038 image obtained on 20160715, (x) 139,040 image obtained on 20170507, (y) 139,040 image obtained on 20150721, 
(z) 139,040 image obtained on 20150907, (aa) 143,030 image obtained on 20180522, (bb) 143,030 image obtained on 
20170722, (cc) 143,030 image obtained on 20180927. 
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Figure 7. The comparison of IQR reduction in January/November. The x label number represents 
different algorithms: b correction, SCS+C, C, Minnaert+SCS, PLC, VECA, Teillet regression, C with 
land type stratification, SCS+C with land type stratification, and Teillet regression with land type 
stratification. (a) 120,039 (path/row) image obtained on 20170126, (b) 120,039 image obtained on 
20181129, (c) 121,042 image obtained on 20171101, (d) 122,035 image obtained on 20180111, (e) 
122,035 image obtained on 20171124, (f) 124,032 image obtained on 20170122, (g) 124,032 image ob-
tained on 20181109, (h) 128,036 image obtained on 20170102, (i) 128,036 image obtained on 20181121, 
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(j) 129,043 image obtained on 20180128, (k) 129,043 image obtained on 20161122, (l) 131,035 image 
obtained on 20180110, (m) 131,035 image obtained on 20171107, (n) 131,038 image obtained on 
20180126, (o) 131,038 image obtained on 20,181,110 (p) 139,040 image obtained on 20180118, (q) 
139,040 image obtained on 20181118, (r) 143,030 image obtained on 20180130, (s) 143,030 image ob-
tained on 20181130. 

From Figures 6 and 7, it was obvious that the removal of topographic effects in winter 
was much higher, which was caused by high Sun zenith angle and thus more topographic 
effects in winter. In contrast, topographic effects were less significant in May/July/Sep-
tember, and thus the effectiveness of algorithms was not obvious, which resulted in low 
IQR reduction. Meanwhile, different models had similar IQR reduction distribution for 
different spectral bands in the same image, which indicated the relative coincident of dif-
ferent algorithms and topographic effects depended on spectral bands. 

Negative IQR reduction did not correspond with the object of the topographic nor-
malization, however, it occurred in some images, such as Figure 6a,p,q,t. This phenome-
non happened mainly for b correction, C model with or without land type stratification. 
The Teillet regression model produced higher IQR reduction in most images; while PLC 
had a slightly lower IQR reduction than others in Figure 7, but similar or even larger IQR 
reduction in Figure 6. In Figure 7o,r, the IQR reduction in all algorithms was not satis-
factory; in this image, most algorithms produced small or even negative IQR reduc-
tion except the Teillet regression model with land type stratification; in the same scene 
both in winter (Figure 7n,s), however, most algorithms offered much better perfor-
mance. Land type stratification improved Teillet regression significantly, while the 
improvements for C and SCS+C model were not evident. 

4.4. Evaluation with LESS Simulation 
In LESS simulation, images with different terrain conditions were generated to ex-

plore the performance of topographic correction methods. Two scenes with two solar az-
imuth angles (90° and 270° respectively) were simulated, the scene was created by repeat-
ing the same DEM but was simulated with soil and vegetation spectral reflectance to fig-
ure out the effect of algorithms in images with different land types. Figure 8 shows the 
simulation result in the NIR band (0.85–0.88 μm). 

By adopting nine topographic correction methods, the images after correction all 
showed different levels of elimination of topographic effects. The PLC model was not 
adopted, because the “orthographic” sensor type was simulated in LESS, and thus unfea-
sible for the basis of the algorithm. 

The evaluation methods for topographic correction algorithms here included IQR re-
duction, RMSE, and bias compared with plane images, and mean reflectance was also 
calculated for in-depth understanding of these algorithms. The validation parameters of 
topographic correction methods in different images are listed in Table 4. 
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Figure 8. The LESS simulation results in two scenes with 30° and 270° solar azimuth angle (SAA). They are in NIR band, 
in 30 m resolution with 3800 × 1900 pixels. The upper area has soil reflectance property (lower reflectance), while the nether 
area has leaf reflectance property (higher reflectance). (a) is scene 1 with 90° SAA; (b) is scene 1 with 270° SAA; (c) is the 
scene 2 with 90° SAA; (d) is scene 2 with 270° SAA. 

Consistent with the former sections, the Minnaert+SCS did not show good perfor-
mance with highest RMSE, largest bias, and smallest IQR reduction. Meanwhile, SCS+C 
did not offer good results in this evaluation mainly due to the simulation limitations: we 
cannot simulate enough trees in such large scenes, but the SCS+C model was put forward 
to solve the STS model’s problem in forest areas. Our evaluation here also indicated better 
performance of the C model than the SCS+C model in bare land areas. The C model and 
b correction model offered better results, which had low RMSE, low bias, and relatively 
high IQR reduction. 

The VECA and Teillet regression model both produced high IQR reduction, but large 
bias and high RMSE. The mean reflectance of the simulated plane images was 0.407, and 
bias was found to be related to the mean reflectance value of the uncorrected images, for 
example, the bias can reach to −0.045 in scene 1, and the mean reflectance value of uncor-
rected is 0.3619, which had about −0.045 deviation compared with the mean reflectance of 
plane image. Similar findings were also identified in scene 2. Land type stratification im-
proved the Teillet regression model’s IQR reduction, but there was little improvement in 
the reduction of bias. There was no obvious improvement for the SCS+C and C model 
when adopting land type stratification. The RMSE of different algorithms varied in differ-
ent scenes; since these algorithms always have empirical parameters, the performance of 
them depend largely on the empirical parameters’ calculation.
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Table 4. The comparison of topographic correction methods in different simulated images. 

  SAA = 90° SAA = 270° 
  RMSE Bias IQR Reduction Mean RMSE Bias IQR Reduction Mean 

Scene 1 

Before correction 0.0673 −0.0454  0.3619 0.0664 −0.0455  0.3619 
b correction 0.0181 −0.0109 82.26% 0.3964 0.0179 −0.0108 81.88% 0.3965 

SCS+C 0.0526 −0.0454 58.43% 0.3619 0.0526 −0.0454 56.72% 0.3620 
C 0.0179 −0.0113 86.88% 0.3960 0.0177 −0.0113 86.48% 0.3960 

Minnaert+SCS 0.0801 −0.0644 32.86% 0.3430 0.0813 −0.0656 28.38% 0.3417 
VECA 0.0472 −0.0454 88.01% 0.3619 0.0472 −0.0455 87.65% 0.3619 

Teillet regression 0.0472 −0.0454 82.33% 0.3619 0.0472 −0.0455 82.16% 0.3619 
C_landtype 0.0176 −0.0113 86.88% 0.3960 0.0175 −0.0113 86.51% 0.3960 

SCS+C_landtype 0.0528 −0.0454 58.39% 0.3620 0.0528 −0.0453 56.87% 0.3620 
Teillet_ landtype 0.0467 −0.0454 87.92% 0.3619 0.0467 −0.0455 87.58% 0.3619 

Scene 2 

Before correction 0.0356 −0.0164  0.3910 0.0354 −0.0171  0.3902 
b correction 0.0082 −0.0037 87.61% 0.4036 0.0081 −0.0037 87.40% 0.4036 

SCS+C 0.0218 −0.0167 60.41% 0.3906 0.0218 −0.0167 60.04% 0.3906 
C 0.0085 −0.0033 89.51% 0.4040 0.0084 −0.0033 89.36% 0.4040 

Minnaert+SCS 0.0337 −0.0242 38.63% 0.3831 0.0338 −0.0244 37.05% 0.3830 
VECA 0.0180 −0.0163 89.85% 0.3910 0.0186 −0.0171 89.72% 0.3902 

Teillet regression 0.0179 −0.0164 83.11% 0.3910 0.0186 −0.0171 83.05% 0.3902 
C_ landtype 0.0084 −0.0033 89.38% 0.4040 0.0084 −0.0033 89.27% 0.4040 

SCS+C_ landtype 0.0222 −0.0167 60.29% 0.3906 0.0222 −0.0167 59.93% 0.3906 
Teillet_ landtype 0.0173 −0.0164 89.67% 0.3910 0.0180 −0.0171 89.59% 0.3902 
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5. Discussion 
In this work, we focused on topographic correction models’ evaluation and intercom-

parison. Based on a large number of images with different terrain conditions and seasons, 
the in-depth analysis for topographic correction algorithms was carried out using a com-
bination of different evaluation methods. LESS simulation helped us discover some prob-
lems and drawbacks of algorithms which have not been mentioned before. 

5.1. Analysis of Evaluation Results 
By analyzing the outliers introduced by different algorithms, we could find which 

algorithms produced many outliers and invalid data. More outliers appeared in winter, 
which can be explained by deep terrain effects causing various problems for different 
topographic correction methods. For example, these images with deep terrain effects not 
only had self-shadow, but also had considerable cast shadow, which caused deviations 
for corrected images [64]. Many invalid values in Minnaert+SCS were generated because 
of the exponential form in these algorithms: the area with negative illumination condition 
would result in invalid pixels. The PLC model also produced more outliers than other 
algorithms, especially in winter times, which is caused by the limitation of path length 
computation in rugged terrains, and thus the PLC model may not be a good choice for 
steep terrain areas or images with a large solar zenith angle. The number of outliers in C, 
SCS+C, and VECA was lower than in the Teillet regression model, and the reason is that 
algorithms with ratio format can introduce some invalid values when the denominator is 
close to 0, but they are beneficial for scope limitations, while the Teillet regression model 
may produce more outliers slightly exceeding the original range once coefficients are not 
ideal. Therefore, the land type stratification significantly reduced the outliers produced 
by the Teillet regression model, but the effect for the C and SCS+C models was not evident. 

The difference between sunlit and shady areas showed the effect of topographic ef-
fects’ removal. However, the images for this evaluation should be carefully selected, be-
cause when terrain orientations determined the surface properties or land type (e.g., sunlit 
area covered by bare land, and shady area covered by snow), this evaluation would intro-
duce problems in comparison and analysis. Therefore, we only focused on the overall re-
sults, not specific images. The results showed the overcorrection in b correction and Min-
naert+SCS models, and land type stratification improved C, SCS+C, and Teillet regression 
models greatly. 

The IQR reductions were higher in winter owing to larger topographic effects, but it 
also showed large differences in the same footprint in January and November (Figure 7). 
We concluded that the different land type resulted in this problem (snow-cover can influ-
ence the model’s parameters calculation largely without land type stratification), and the 
results were largely improved by adopting land type stratification for the Teillet regres-
sion model. 

Many evaluation studies compared the correlation coefficients between reflectance 
and illumination angles [6,37–39]. However, the result may not be valid where slope ori-
entation determines land cover or vegetation growth status [10]. Furthermore, the relation 
between reflectance and illumination angle has been incorporated into some topographic 
correction models, such as the VECA model and the Teillet regression model, and using 
the correlation coefficients again as the evaluation method may not be impartial. 

The validation using LESS simulation is an effective way to avoid some assumptions 
in the evaluation and can explore the bias between corrected images and “true values”. 
The evaluation results by LESS simulation confirm the former comparison, and the C 
model performed best in the evaluation with smallest RMSE and least bias (this result was 
based on unforested simulations), and it corresponded with the former studies based on 
synthetic images [34,41]. In our study, correction bias was concentrated for further analy-
sis based on LESS simulations for the first time. The bias was found in Teillet regression 
model and VECA when the original images had large bias with the simulated plane image 
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and could be explained by the utilization of mean reflectance in the algorithm, assuming 
that the mean reflectance of the image is close to the “true value”. However, the bias 
would be introduced into the corrected image when the mean reflectance had large bias 
from the “true value”; and the C model also showed slight bias changing with scenes. 
Based on this, the mean value was not recommended for stability evaluation for topo-
graphic correction models [38], because the utilization of mean reflectance in some algo-
rithms (Teillet regression model and VECA) would show partiality in the comparison. 
Although large bias also appeared in SCS+C model, the IQR reduction was not that high 
and could be caused by the improper correction of SCS strategy for unforested areas. Due 
to the utilization of empirical parameters in these algorithms, the performance of them 
was closely related to the parameters’ calculation and the complexity of the surface 
ground. It should be noted that the evaluation based on simulation image in our study 
can offer more information about different algorithms, but we did not totally depend on 
it owing to more complex situations in remote sensing images. 

5.2. Summary of Different Topographic Correction Algorithms 
Different evaluation indicators aim to assess different aspects of topographic correc-

tion models, so it is necessary to combine these assessment methods to carry out a more 
systematic comparison [34,42]. By using different methods to validate algorithms, they 
showed diverse applicability in varied conditions. The Teillet regression with land type 
stratification offered good results but may produce bias in some conditions, which is ig-
nored in previous studies [34]. One feasible way for bias decrease and model improve-
ment is to build a high-quality database for parameter fitting [32] instead of training in 
each image, which would be beneficial for obtaining high-consistency topographic correc-
tion data. Meanwhile, in high cloud-cover images, using coefficients from a pre-con-
structed database is an effective way to provide good estimates. 

Owing to the logarithm in the fitting, the negative cos i  pixels were removed while 
calculating in Minnaert+SCS model; the impossibility of making a considerate description 
about the ground information obstructs the further advancement of the algorithm. The 
method of calculating path length in steep terrain areas restricted the application of the 
PLC model, and the topographic mask should be generated before correction [57]. Mean-
while, our study focused on Landsat 8 which has a small view zenith angle, and Yin et al. 
[21] reported a better performance of the PLC model when the view zenith angle is large. 
Without depending on empirical parameters, the PLC model may offer higher quality 
correction results for a time series study. The C model and SCS+C model provided similar 
performance in outliers and difference between sunlit and shady areas, but the C model 
offered better results based on LESS simulation (owing to the bare land simulations). 
Hurni et al. [42] found that the Teillet regression model offered the best performance in 
most images, but other algorithms can also outperform it in some conditions, which cor-
responded with our results, and the land type stratification improved Teillet regression 
model significantly in our study. It verified that the Teillet regression model was sensitive 
to fitting coefficients and may lead to bad results when the fitting is not ideal, e.g., insuf-
ficient fitting pixels or cloud and cast shadow pixels are not totally removed. The algo-
rithms with ratio format (SCS+C and C model) would be less sensitive to land type strati-
fication than the Teillet regression model, because the C parameter is both in the numer-
ator and the denominator, which can lessen the influence of coefficients in different land 
types. However, the ratio format also introduced errors, such as obvious outliers in the 
image when the denominator was close to zero. 

Land type stratification was found to improve the semi-empirical models, especially 
for the Teillet regression model in this study, which is inconsistent with [66]. The main 
reason is that the large surface reflectance difference between snow-free and snow-cover 
areas can significantly influence the fitting efficiency in some algorithms, and land type 
stratification markedly improves the images with high snow-cover (Figure 7). However, 
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the snow-cover areas were always ignored in previous research [10,66]. Thus, the conclu-
sion may be conflicting when focused only on a few images with similar land types. There-
fore, it is difficult to thoroughly evaluate algorithms in just a small number of images due 
to complicated conditions in mountainous areas, and we highly recommended evaluating 
topographic correction methods under different terrain conditions and seasons. 

Using a computer with i7-9750H CPU and 16GB memory for this experiment, the 
Teillet regression model took 103 s for each Landsat 8 image, and it was 174 s for the Teillet 
regression with land type stratification, which is acceptable for research and application. 
Other topographic correction methods without land type stratification used a similar 
amount of time as the Teillet regression model did, while the PLC was the most time effi-
cient of them all. 

5.3. Limitations and Applications 
Problems also existed with these algorithms, such as the neglection of cast shadow, 

which would introduce some errors while correcting, especially in steep terrain areas. 
Therefore, relevant modifications should be made on the model [64]. A simple land type 
stratification strategy was used in this study, and it can be improved or replaced by finer 
land classification product in the future. The 3D radiative transfer model is time and 
memory consuming, and the simulation of a large number of trees in the scene is limited, 
which makes it difficult to evaluate the algorithms’ performance in forest areas. 

Owing to the above issues in topographic correction algorithms, we here discuss the 
precautions that need to be taken when using topographic correction. Some studies have 
utilized topographic correction methods for land cover and vegetation classification, and 
reached good results in mountains [6,7,35,67]. Since the classification relied more on the 
difference of different land types and was not very sensitive to the absolute value of the 
image, topographic correction methods can eliminate the difference of the same land 
cover pixels in different terrain conditions; thus, it is helpful to apply topographic correc-
tion for image classification. 

However, when it comes to surface parameters retrieval, the bias caused by topo-
graphic correction algorithms may exceed the errors in the estimation method itself (e.g., 
large RMSE in scene for some algorithms in Table 4). It was also proven that the utilization 
of sloping reflectance directly offered better results than the reflectance after topographic 
correction for estimation of albedo [68]. Thus, we recommend users consider the pros and 
cons before using a topographic correction algorithm for surface parameter retrieval, es-
pecially for parameters related to radiation, such as surface albedo estimation [69], and 
net radiation [70]; and the further developing estimation algorithms for surface parame-
ters on sloping terrains should couple with the topography rather than apply topographic 
corrections [68,71]. 

6. Conclusions 
This study validated the effect of different topographic correction methods in large 

areas and different seasons. The advantages and disadvantages in different topographic 
correction methods are obvious after comparing a large number of images. Most algo-
rithms provided worse results in snow-cover areas, while land type stratification could 
improve the Teillet regression model. The Teillet regression model, which was most rec-
ommended in previous studies, showed bias in the evaluation using simulated images. 

The validation results showed large differences even in the same Landsat footprint 
in January and November, and the land type stratification can markedly decrease this 
difference for the Teillet regression model. It also indicated the necessity of evaluation 
based on a large number of images. 

LESS simulation offers an effective way to assess the correction bias, and large bias 
was found in the Teillet and VECA model when there was bias between the mean reflec-
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tance value in uncorrected images and the “true reflectance”. We recommend the imple-
mentation of simulation images to evaluate the topographic correction models, which can 
facilitate in-depth analysis. 

Owing to the issues in different algorithms and complicated conditions in rugged 
terrain, we recommended taking into account the pros and cons of topographic correction 
methods for surface parameter retrieval in mountain regions and integrating topographic 
considerations into mountainous retrieval methods directly rather than adopting topo-
graphic correction before retrieval. 
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