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Abstract: Super-resolution technology is considered as an efficient approach to promote the image
quality of forward-looking imaging radar. However, super-resolution technology is inherently an
ill-conditioned issue, whose solution is quite susceptible to noise. Bayesian method can efficiently
alleviate this issue through utilizing prior knowledge of the imaging process, in which the scene
prior information plays a pretty significant role in ensuring the imaging accuracy. In this paper, we
proposed a novel Bayesian super-resolution method on the basis of Markov random field (MRF)
model. Compared with the traditional super-resolution method which is focused on one-dimensional
(1-D) echo processing, the MRF model adopted in this study strives to exploit the two-dimensional
(2-D) prior information of the scene. By using the MRF model, the 2-D spatial structural characteristics
of the imaging scene can be well described and utilized by the nth-order neighborhood system.
Then, the imaging objective function can be constructed through the maximum a posterior (MAP)
framework. Finally, an accelerated iterative threshold/shrinkage method is utilized to cope with
the objective function. Validation experiments using both synthetic echo and measured data are
designed, and results demonstrate that the new MAP-MRF method exceeds other benchmarking
approaches in terms of artifacts suppression and contour recovery.

Keywords: forward-looking; imaging radar; angular super-resolution; maximum a posterior; Markov
random field

1. Introduction

Radar forward-looking imaging has extensive applications in military and civil ter-
ritories, for instance, in the automatic landing of aircraft, material airdrops, topographic
mapping, etc. [1,2]. However, the conventional monostatic synthetic aperture radar (SAR)
and Doppler beam sharpening (DBS) techniques cannot be utilized to image the forward
area due to the difficulty in acquiring an effective Doppler bandwidth [3,4].

An effective strategy for radar forward-looking imaging is acquiring the real-aperture
scanning image first. Then, signal processing techniques are utilized on the real-aperture
image to improve the azimuth resolution. One typical method used is monopulse imag-
ing technology (MIT), which employs the monopulse angle measurement technology to
ameliorate the visual quality of the real-aperture image [5,6]. However, targets located
in the same radar beam cannot be discriminated by the MIT; thus, no actual resolution
improvement can be acquired.

Recently, angular super-resolution technology has aroused researchers’ interest owing
to its low hardware complexity and high efficiency in enhancing the angular resolution [7–9].
The fact that the azimuth echo of a scanning radar is the convolution of the antenna pattern
and the scattering coefficient is taken into account by this technology. Hence, deconvolution
should be an efficient technology for improving the angular resolution. Theoretically, the
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resolution could be infinitely improved under the ideal conditions, i.e, without noise in the
echo. Nevertheless, the deconvolution approach is inherently an ill-conditioned issue and
the solution is extremely unstable when the echo is contaminated [10].

Multiple methods have been proposed for addressing the noise-sensitive problem of
deconvolution. These methods can be classified as regularization technology and Bayesian
technology. In regularization technology, the ill-conditioned issue is transformed into a
constrained least squares estimation with Euclidean norm theory. One of the most repre-
sentative regularization approaches is the Tikhonov method, which can reduce the noise
sensitivity by adopting an L2-norm constraint at the cost of a reduction in resolution [11,12].
In Reference [13], L1-norm regularization combined with the truncated singular value de-
composition (TSVD) algorithm is conducted for radar forward imaging. Even a high
super-resolution ratio can be achieved for sparse targets, and the scene contour can be
destroyed simultaneously. In addition, the utilization of total variation (TV) has been
introduced prior to this for radar forward imaging in some studies [14–16], and the results
have verified its recoverability for contour information.

The Bayesian method provides a systematic and consistent way to deal with the
ill-conditioned problem through statistical optimization. In Reference [17], the noise and
targets are modeled as the Poisson distribution, and the angular resolution is enhanced at
least four times under a low SNR condition. Zha et al. [18] consider the noise as a mixed
distribution, i.e., Gaussian distribution and Poisson distribution, while Laplace distribution
is used to model the targets. The proposed method is able to distinguish strong targets
more efficiently due to its utilization of sparse prior information. However, since the
Poisson distribution is more suitable for describing photon behavior, these methods are not
compatible for radar imaging. As a matter of fact, the probability distribution of baseband
radar signal is supposed to be determined by I/Q two-way noise distribution due to the
coherence of the radar imaging system. In our previous study, we proposed an I/Q channel-
based maximum likelihood approach, with the results exhibiting a strong competence
of anti-noise [19]. After that, based on noise modeling, a maximum a posteriori method
that models the targets as a combined distribution, i.e., Gaussian distribution and Laplace
distribution, is proposed [20]. The experiment results demonstrate that the proposed
method performs more effectively in eliminating spurious targets and strengthening the
algorithm robustness in low-SNR conditions.

Unfortunately, in the state-of-the-art research on this topic, only one-dimensional (1-D)
prior information has been utilized. In imaging tasks, the structure of an imaging scene is
two-dimensional (2-D), and every pixel is assumed to be determined by the neighborhood
around it. Although the TV prior can describe the 2-D spatial relationship of the pixels, the
relevant studies have only used TV prior within one distance cell, thus confining its two-
dimensional representation capacity. Therefore, the utilization of scene prior information
needs to be further developed.

In this paper, a novel super-resolution imaging method based on the Bayesian method
is proposed. The reason why we chose to use the Bayesian method instead of the reg-
ularization method is that statistical optimization approaches are able to interpret prior
information more flexibly for both the noise and targets. Through the use of the Maxi-
mum a posteriori (MAP) framework of the Bayesian method, the noise and targets can be
modeled, respectively, in view of a statistical perspective. Therefore, the noise is firstly
modeled through I/Q channel, thus allowing an accurate likelihood function to be ob-
tained. Differently from the traditional real-aperture imaging method, Markov random
field (MRF) is adopted in this paper. Compared with the 1-D modeling method, the MRF
can describe the spatial continuity and structural features more efficiently for its ability in
modeling the conditional distribution of each pixel about the adjacent pixels. By selecting
an appropriate neighborhood system for MRF and employing the MAP framework, the
structural characteristics and interacting features can be well described and absorbed into
the imaging objective function, thus greatly facilitating the improvement of the resolution
and image contour recovery. At last, an accelerated iterative threshold/shrinking (IST)
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method is utilized to cope with the objective function for its superiority in fast convergence
and noise resistance.

The framework of this article is structured as follows: Firstly, the super-resolution
imaging mold of real-aperture scanning radar (RASR) is described in Section 2. In Section 3,
the Bayesian framework and likelihood function are derived first; then, the MRF is in-
troduced, and the Huber MRF is adopted to formulate the imaging objective function;
afterwards, the derivation of the proposed MAP-MRF method is presented. Section 4
illustrates the results of the numerical simulation and a real data experiment. A discussion
of the results is demonstrated in Section 5. Section 6 provides a brief conclusion.

2. Super-Resolution Echo Model for RASR

Figure 1 illustrates an imaging sketch of the RASR in which the aircraft flies along
the y-axis at a constant speed of v. The radar beam scans anticlockwise with the rotational
rate ω, transmitting and receiving LFM signals. We suppose that there is a target P in the
irradiation area and that its initial distance to the radar is r0. According to the geometry
relationship in Figure 1, the range history of target P can be stated as:

rP(t) =
√

r2
0 + (vt)2 − 2r0vt cos θ0 cos ϕ, (1)

where t denotes the azimuth–time variable, θ0 is the initial azimuth angle of target P, and
ϕ is the incident angle. Since the required imaging time is relatively short owing to the
rapid scanning velocity and small imaging area, rP(t) can be roughly expanded into [21]

rP(t) ≈ r0 − vt cos θ0 cos ϕ. (2)

In addition, since the imaging area is less than 10◦, cos θ0 can be approximated as 1.
Thus, rP(t) can be further deduced as:

rP(t) ≈ r0 − vt cos ϕ. (3)

Figure 1. The imaging sketch of RASR.

We assume that the transmitted signal sout(τ) is:

sout(τ) = rect
(

τ

Tr

)
exp{j2π fcτ} exp

{
j2πKτ2

}
, (4)
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where τ denotes the range–time variable, Tr denotes the signal width, fc denotes the carrier
frequency, K is the frequency modulation rate of LFM, and rect(·) is defined as:

rect
(

τ

Tr

)
=

{
1 τ ≤

∣∣∣ Tr
2

∣∣∣
0, other

. (5)

After quadrature demodulation, the baseband complex signal is obtained as

sP(τ, t) = σ0h(t− t0) exp
{

jπKr(τ − 2rP(t)/c)2
}

exp
{
−j

4π

λ
rP(t)

}
, (6)

where σ0 is the scattering coefficient, which is assumed to be constant during the scanning
process, h(t) is the radiation pattern of the antenna, and t0 is the center time, while scanning
P, c denotes the light speed, and λ denotes the wavelength. By using the approximated
range history in Equation (6), the echo after pulse compression can be stated as:

sP(τ, t) = σ0h(t− t0) exp
{

jπKr(τ − 2(r0 − vt cos ϕ)/c)2
}

exp
{
−j

4π

λ
(r0 − vt cos ϕ)

}
. (7)

For analyzing the azimuth signal, the obtained echo can be preprocessed by pulse
compression and range migration correction [21]. After that, sP(τ, t) is rewritten as

s̃P(τ, t) = σ0h(t− t0)sinc
(

τ − 2r0

c

)
exp

{
−j

4π

λ
(r0 − vt cos ϕ)

}
. (8)

In order to analyze the echo in the space variable space, we translate the time variables
on the basis of t = (θ − θa)/ω and τ = 2r/c, where θ is the azimuth angle variable, and r
is the range variable. Then, Equation (8) can be converted to:

sP(r, θ) = σ0h(θ − θ0)sinc
[

2B
c
(r− r0)

]
exp

{
−j

4π

λ

(
r0 − v

θ − θa

ω
cos ϕ

)}
. (9)

Therefore, the echo of the area targets with scattering coefficient σ(r, θ) is obtained by
integrating Equation (9):

sΩ(r, θ) =
∫∫

σ̃(r̄, θ̄)h
(
θ − θ̄

)
sinc

{
2B
c
(r− r̄)

}
dr̄dθ̄ exp(jϕ(θ)), (10)

where r̄ and θ̄ are the integral variables in angular direction and range direction, re-
spectively; σ̃(r̄, θ̄) equals σ(r̄, θ̄)exp

(
4π
λ r̄
)

, which denotes the phase-weighted scattering

function; ϕ(θ) equals 4π
λ v θ−θa

ω cos ϕ, which is independent of the integral variable. Pro-
viding that the azimuth echo is extracted, a more concise azimuth convolution model can
be obtained:

sA(θ) = σ(θ)⊗ h(θ), (11)

where ⊗ denotes convolution operation, and sA(θ) is the amplitude of the azimuth echo.
Considering the analysis simplicity and system noise, the super-resolution convolution
model (11) can be further discretized by a matrix vector form:

s = Hσ + n, (12)

where s = [s1, . . . , sN ]
T is the measured echo, N denotes the sampling points, σ = [σ1, . . . , σN ]

T

denotes the targets distribution to be estimated, n = [n1, . . . , nN ]
T represents the system

noise, and H is the convolution matrix that is cyclically formulated to facilitate matrix
vector multiplication through fast Fourier transform (FFT).
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H = [h(θ1), h(θ2), . . . , h(θN)] =



h1,1 hL,N−L+2 · · · h2,N

h2,1 h1,2
. . . h3,N

...
. . .

...
hL,1

. . .
. . .

hL,N−L+1 · · · h2,N−1 h1,N


N×N

. (13)

According to Equation (12), the azimuth resolution has been seriously worsened
owing to the convolution impact of the scanning beam. Based on the convolution model,
the deconvolution technique can be adopted to promote the azimuth resolution. Further-
more, to relief the noise sensitivity of the deconvolution and utilize the structural prior
information more comprehensively, the MRF is employed to model the targets in this paper.

3. Methodology
3.1. Bayesian Framework

The Bayesian technique is a fundamental theory in estimation and decision-making.
Based on Bayesian theory, the forward-looking imaging problem can be formulated from a
probabilistic perspective. To be more specific, in the Bayesian framework, all the unknown
and observed variables are treated as stochastic variables. Then, the deconvolution imaging
problem is converted to maximize the posterior probability function of the targets. To
begin, the posterior probability function can be stated as:

P(σ|s ) = P(s|σ )P(σ)
P(s)

, (14)

where P(s|σ ) is the likelihood function, and P(σ) and P(s) are the probability distributions
of σ and s, respectively. Since P(s) in Equation (14) is a constant for a fixed s, maximizing
P(σ|s ) is equivalent to maximizing the joint distribution:

σ̂ = arg max
σ

P(s|σ )P(σ). (15)

For the ease of derivation, the log function is utilized to separate the multiplication
terms in Equation (15):

σ̂ = arg max
σ

ln P(s|σ ) + ln P(σ). (16)

For a given σ, the likelihood function is determined by the probability distribution
of the noise. In a radar system, the noise is generated by electrons’ thermal motion and
subjected to a Gaussian distribution. After quadrature demodulation, the radar echo is
transformed to a complex signal composed of I/Q two-way signals. Meanwhile, the echo
of the I/Q channel is also contaminated by the Gaussian noise:{

I : sI = Hσ cos ϕ + nI
Q : sQ = Hσ sin ϕ + nQ

. (17)

Thus, according to Equation (17), the amplitude probability function of the measured
complex data is mainly determined by the probability distribution of the I/Q channel noise.
Since this paper is mainly concerned with the prior modeling of targets, the derivation of
the likelihood function is skipped and given directly here. The detailed derivation process
can be found in our previous article [19].

lnP(sA|σ ) =
N

∑
i=1

ln J0

(
si(Hσ)i

ρ2

)
−

N

∑
i=1

((Hσ)i)
2

2ρ2 , (18)
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where sA is the amplitude of the demodulated echo, (·)i is the i−th element of the vector
in the bracket, ρ is the standard deviation of the noise probability distribution, and J0(·)
denotes the zero-order Bessel function.

3.2. Markov Radom Field Model

Spatial structure information takes on a significant character in the imaging process.
Within the structure of an image, there is a certain correlation and regularity between the
pixels, and the brightness value of a pixel is assumed to be closely related to other nearby
pixels. Markov random field can effectively model this spatial structure relationship and
describe the local statistical characteristics of a pixel and the pixels around [22–24]. Thus,
the MRF is utilized to model the priori information of the targets of this paper.

To describe the mutual impact between one pixel and the others, the concept of clique
h̄ is introduced. For image description, cliques h̄ represent the basic structure of an image
texture, as is roughly demonstrated in Figure 2, in which Figure 2a displays the fifth-order
neighborhood system, and Figure 2b,c display the cliques for the first-order neighborhood
and second-order neighborhood, respectively. As can be observed from Figure 2, these basic
cliques can comprehensively describe the two-dimensional spatial structure characteristics
in the neighborhood system.

(a) (b) (c)

Figure 2. (a) The fifth-order neighborhood; (b) cliques for the first-order neighborhood; (c) cliques
for the second-order neighborhood.

Based on the definitions, the random field defined in MRF can be acquired according
to the Markov–Gibbs equivalence, which can be written as:

p(σ) =
1
Z

exp[−U(σ)] , (19)

where Z is a normalizing constant, and U(σ) denotes the energy function, which is de-
fined as:

U(σ) = ∑
h̄∈Ω

Vh̄(σ) , (20)

where Vh̄(σ) is the potential function associated with the clique h̄, and Ω is the set of all
possible structures of h̄. The energy function relies on specific images and the pixel values
contained in the cliques. In this paper, the Huber–Markov prior model is chosen as the
potential function for its competence in protecting the edge information [25], which is
stated as:

p(σ) =
1
Z

exp

{
− 1

τ ∑
h̄∈Ω

ρT(dn
h̄(σ))

}
, (21)

where ρT(·) denotes the Huber function, τ is a temperature coefficient, and dn
h̄ denotes the

derivative operation, which is defined using second-order derivatives as

d0
i,j = σi,j+1 − 2σi,j + σi,j−1

d1
i,j =

1
2 (σi−1,j+1 − 2σi,j + σi+1,j−1)

d2
i,j = σi−1,j − 2σi,j + σi+1,j

d3
i,j = σi−1,j−1 − 2σi,j + σi+,j+1

. (22)
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The Huber function is given by:

ρT(x) =
{

x2 |x| ≤ Λ
2Λ|x| −Λ2 |x| > Λ

. (23)

The threshold Λ will punish the change in gray level in the image space. To smooth
the small-scale noise, a square penalty is applied to the area with a flat gray level change,
i.e., (|x| ≤ Λ), while the linear penalty is applied to the image edge with strong gray
level change, i.e., (|x| > Λ). Λ is regarded as the dividing point between high-frequency
components and low-frequency components, which can be determined by the formula:

Λ=

{
Sort

(∣∣∣∣∣ 3

∑
n=0

dn
i,j
(
σi,j
)∣∣∣∣∣, i = 2, · · · , N − 1; j = 2, · · · , M− 1

)}
(N−2)×(M−2)×‘̄λ

, (24)

where σi,j denotes the value of σ located at column i and row j; Sort(·) denotes the
sort in descending order for second-order derivative and taking the value at position
(N − 2)× (M− 2)× λ̄; M and N are the sampling points in terms of azimuth and dis-
tance, respectively; andλ̄ is the proportion of high-frequency components determined in
advance. Since we normally suppose that the medium- and low-frequency components
in the image are higher than the high-frequency components, λ̄ can be taken as a value
between 0 and 1/2.

Through substituting Equations (18) and (21) into Equation (16), the final objective
function for MAP-MRF can be obtained. The derivation is illustrated in Appendix A.

σ̂ =


arg min

σ
F1(σ) = arg min

σ

{
N
∑

i=1
ln J0

(
si(Hσ)i

ρ2

)
−

N
∑

i=1

((Hσ)i)
2

2ρ2 + λ
N−1
∑

i=2

M−1
∑

j=2

3
∑

n=0

(
dn

i,j
(
σi,j
))2
} ∣∣∣∣ 3

∑
n=0

dn
i,j
(
σi,j
)∣∣∣∣ ≤ Λ

arg min
σ

F2(σ) = arg min
σ

{
N
∑

i=1
ln J0

(
si(Hσ)i

ρ2

)
−

N
∑

i=1

((Hσ)i)
2

2ρ2 + λ
N−1
∑

i=2

M−1
∑

j=2

3
∑

n=0

(
2Λ
∣∣∣dn

i,j
(
σi,j
)∣∣∣−Λ2

)} ∣∣∣∣ 3
∑

n=0
dn

i,j
(
σi,j
)∣∣∣∣ > Λ

. (25)

Equation (25) demonstrates the objective function obtained. Parameter λ controls the
relative weight of the prior term and can be determined through the L-curve method [26].
Then, the forward-looking super-resolution imaging problem of RASA can be transformed
into the optimal solution of Equation (25).

3.3. Solution to the Objective Function

Equation (25) is a non-linear optimization problem. To acquire the minimum value of
objective function (25), the gradient-based approach can be adopted, where the derivative
information is used to search for the optimal value. However, the absolute term in F2(σ) is
non-differentiable, thus the gradient-based method no longer being in force. Fortunately,
through introducing a minuscule parameter ε , F2(σ) can be made differentiable.

F2(σ)=
N

∑
i=1

ln J0

(
si(Hσ)i

ρ2

)
−

N

∑
i=1

((Hσ)i)
2

2ρ2 + λ
N−1

∑
i=2

M−1

∑
j=2

3

∑
n=0

(
2Λ

(√((
dn

i,j
(
σi,j
))2

+ ε

))
−Λ2

)
. (26)

Normally, the ε can be taken as 10−10 . Then, we take the derivative of function
F1(σ) and F2(σ) with respect to σ . The gradient of the two objective functions can be
calculated as:

∇F1(σ) =
1
ρ2 HT

[
J1

(
si (Hσ)i

ρ2

)
J0

(
si (Hσ)i

ρ2

) � s

]
− 1

ρ2 HT Hσ − λ
3
∑

n=0
dn

i,j(σ)

∇F2(σ) =
1
ρ2 HT

[
J1

(
si (Hσ)i

ρ2

)
J0

(
si (Hσ)i

ρ2

) � s

]
− 1

ρ2 HT Hσ − λ
3
∑

n=0
diag

{(∣∣∣dn
i,j

(
σi,j

)∣∣∣2 + ε

)− 1
2
}

dn
i,j(σ)

, (27)
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where diag(·) is a diagonal matrix. Thus, the optimal value of σ can be obtained by iterative
searching along the gradient direction.

σk+1=


σk − β∇F1(σk)

∣∣∣∣ 3
∑

n=0
dn

i,j(σk)

∣∣∣∣ ≤ Λ

σk − β∇F2(σk)

∣∣∣∣ 3
∑

n=0
dn

i,j(σk)

∣∣∣∣ > Λ
, (28)

where σk+1 and σk are the (k + 1)−th and k−th iterative results, respectively; β is the step
size, which is confined within 2/

∥∥HT H
∥∥ to guarantee the convergence of the iteration.

However, this simple iterative method converges slowly and is still sensitive to noise.
Therefore, an acceleration strategy with an iterative shrinkage/thresholding (IST) solution
is employed to solve the objective function to facilitate the engineering implementation [27].
This accelerated IST method can not only effectively reduce the impact of noise through
the IST operation, but also quickly obtain the optimal solution. The basic iterative steps of
IST can be obtained based on Equation (28), which is:

σk+1=


ψ1(σk)=<δ{σk − β∇F1(σk)}

∣∣∣∣ 3
∑

n=0
dn

i,j(σk)

∣∣∣∣ ≤ Λ

ψ2(σk) = <δ{σk − β∇F2(σk)}
∣∣∣∣ 3

∑
n=0

dn
i,j(σk)

∣∣∣∣ > Λ
, (29)

where RN → RN : RN → RN is the shrinkage-thresholding operation

<δ(σ) =

{
0 , |σ| ≤ δ
σ− δsgn(σ) , otherwise

, (30)

where δ can be determined according to the noise level. When it is difficult to estimate
the noise, we simply set δ as zero to ensure the non-negativity of the results. Afterwards,
to improve the convergence speed, a vector extrapolation strategy is use to accelerate the
iterative process. That is, before each iteration, the first two iterations are used to predict
the next iteration, which is:

yk+1 = σk + αk(σk − σk−1). (31)

The prediction step αk is determined by the direction similarity of the first two iterations

αk =
∑ gk · gk−1

∑ gk−1 · gk−1
0 < αk < 1, (32)

where gk is the direction vector gk=σk − σk−1 . Then, the iteration operation is conducted
on yk+1 . Through utilizing the prediction result, the iterative result can progress much
faster along the convergence path.

Since the convolution kernel in this paper is formulated as a cyclic-convolution matrix,
the matrix-vector multiplication can be transformed into point-multiplication in the fre-
quency domain using FFT. Thus, the calculation complexity of MAP-MRF in one complete
iteration can be calculated as 4Nlog2N + 30N complex multiplications and 7Nlog2N + 26N
complex additions. Additionally, since the acceleration strategy only needs linear operation,
it will not burden the calculation while improving the convergence speed.

In conclusion, the implementation steps of the MAP-MRF method are given as follows:
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Input: the parameters β , δ , and λ

Initial Step: Give s for the initial iteration σ0 .
Calculate the threshold Λ according to Equation (24)

Then: Calculate the first two iterative results σ1 and σ2 with the iteration
Equation (29) and the first two iterative vectors g1 = σ1 − σ0 and g2 = σ2 − σ1

Repeat
Compute the extrapolation step size αk according to Equation (32)
Compute the prediction result yk+1 according to Equation (31)

If
∣∣∣∣ 3

∑
n=0

dn
i,j(σk)

∣∣∣∣ ≤ Λ, calculate the iterative point σk+1 through the upper

iteration formula Equation (28): σk+1 = ψ1(yk+1)

If
∣∣∣∣ 3

∑
n=0

dn
i,j(σk)

∣∣∣∣ > Λ, calculate the iterative point σk+1 through the lower

iteration formula Equation (28): σk+1 = ψ2(yk+1)
Update the iterative vector gk+1 = σk+1 − σk
Update the threshold according to Equation (24)

Until (convergence)

Export the final value σk+1

4. Numerical Results

The numerical results based on both the simulation experiment and measured echo are
presented in this section to validate the efficiency of MAP-MRF super-resolution methods
for angular super-resolution imaging.

4.1. Experimental Results on Simulated Data

Figure 3a shows the simulated scene, which is composed of point targets settled in
an X shape. The specific locations of those targets are shown in Figure 3a. The scattering
coefficients are all set to 1 and do not change with time. The relevant experiment parameters
are stated in Table 1. We assume that there is no distortion in the antenna pattern over a
sweep, which is a rational hypothesis for the low-speed platform. Figure 3b,c display the
original echo and the echo after range compression and migration correction, separately.
Figure 3d shows the enlarged version of the area where the target echo is located. It can
be observed from Figure 3c,d that part of the echo energy of two X is overlapped, and the
shape of X is difficult to identify.

Table 1. Experiment parameters.

Parameters Value

Velocity of the platform 100 m/s
Pulse repetition frequency 2000 Hz

Main-lobe beam width 2◦

Antenna scanning velocity 60◦/s
Antenna scanning area ±10◦

Near range 2.97 km
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(a) (b)

(c) (d)

Figure 3. (a) Simulation scene; (b) original echo; (c) echo after range compression and migration
correction; (d) enlarged targets.

Afterwards, the Gaussian white noise is superimposed onto the complex echo. The
polluted data are displayed in Figure 4a, and the SNR equals 20 dB. Then, the echo
in Figure 4a is processed by the proposed MAP-MRF method and four benchmarking
methods, which are the classical Richardson–Lucy (RL) algorithm [28], the Tikhonov
method [11], the L1-norm regularization method [12], and the sparse-TV method [15],
respectively. All of these methods adopt the discrepancy criterion to stop the iterations [29].
Their outcomes are presented in Figure 4b–f, respectively.

The result of the RL algorithm is displayed in Figure 4b, from which it can be observed
that the shapes of two X are basically restored. However, the edges of X are still fuzzy.
Figure 4c displays the outcome of the Tikhonov method, in which the result is over-
smoothed and the edges tend to be wide. The result of the L1-norm regularization method
is displayed in Figure 4d. Due to the utilization of sparse prior information, the edges are
much sharper. Nevertheless, some noise is mistreated as targets in the result. Hence, the
result is presented as dispersed. Figure 4e displays the result of the sparse-TV method,
which adds TV prior information to describe the continuity of the scene. Even though the
outline is much clearer in Figure 4e, some unwanted energy still remains, especially near
the edges. Figure 4f demonstrates the result of the proposed method. It is clear that the
energy is better focused where the targets are located and that the shape of X is recovered
much more clearly than by other benchmarking methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Comparison of the super-resolution results in the case of SNR = 20dB: (a) echo; (b) RL
algorithm; (c) Tikhonov method; (d) L1-norm regularization method; (e) sparse-TV method; and
(f) proposed MAP-MRF method.

The profiles of the targets at 2987 m are illustrated in Figure 5, in which the dotted red
line is where the targets are located. Figure 5a shows the profile of the echo, from which it
can be seen that the echo of four targets are aliasing and the targets cannot be distinguished.
Figure 5b,c show the profiles of the RL algorithm and Tikhonov method, respectively. It
can be observed that the four targets have been partly recovered. However, the resolution
needs to be strengthened further. Figure 5e is the profile of the L1-norm regularization
method, in which the resolution has been improved compared with that in Figure 5b,c, but
some unwanted false structures have emerged between the real targets. Figure 5e shows the
profile of the sparse-TV method. Even the false structures have been suppressed to a certain
extent, though some residual energy still exists. Figure 5f demonstrates the outcome of the
MAP-MRF method. It is obvious that the four targets have been authentically restored, and
the surroundings are fairly clear.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The profile of super-resolution outcomes in the case of SNR = 20 dB: (a) echo; (b) RL
algorithm; (c) Tikhonov method; (d) L1-norm regularization method; (e) sparse-TV method; and
(f) proposed MAP-MRF method.

Next, the noise level of the echo is raised and the SNR is decreased to 10 dB. Then, the
echo is processed by the five super-resolution imaging methods, respectively. Figure 6b
displays the results of the RL algorithms, in which the results are severely distorted by
the noise, and the structures of X can barely be distinguished. The result of the Tikhonov
method is displayed in Figure 6c, and it can be observed that the noise has been smoothed,
but so are the targets. Figure 6d demonstrates the results of the L1-norm regularization
method. It can be seen that the edges are much clearer, but that the energy has been
discretized, and the edge appears to be granular. The results of the sparse-TV method
are displayed in Figure 6e. In comparison with Figure 6d, the energy of the edges is pre-
sented to be very continuous. However, the background contains some artifacts. Figure 6f
demonstrates the outcome of MAP-MRF. It is clear that the edges are sharper, and the
surroundings are much clearer, which indicates that the proposed method still has a strong
performance in structure reconstruction in low-SNR conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Super-resolution results comparison in the case of SNR = 10 dB: (a) echo; (b) RL algorithm;
(c) Tikhonov method; (d) L1-norm regularization method; (e) sparse-TV method; and (f) proposed
MAP-MRF method.

Figure 7 illustrates the profiles of the results in Figure 6. Figure 7b–e show the results
of the benchmarking methods, from which it can be observed that there are some artifacts
arising due to the high level of noise. The better the targets recovered are, the more obvious
the artifacts are. However, it can be viewed from Figure 7f that not only are the restored
targets the closest to the authentic targets, but that the artifacts are well suppressed.

In addition, the relative error (ReErr) and structure similarity (SSIM) are used to
evaluate the performance of the acquired outcomes quantitatively. The specific definitions
of ReErr and SSIM can be found in Reference [30], in which ReErr is used to evaluate the
energy discrepancy between the result and the authentic targets, while SSIM is used to
evaluate the structure similarity between the two compared subjects.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The profile of super-resolution results in the case of SNR = 10dB: (a) echo (b) RL algorithm;
(c) Tikhonov method; (d) L1-norm regularization method; (e) sparse-TV method; and (f) proposed
MAP-MRF method.

Figure 8 demonstrates the obtained ReErr and SSIM curves of the proposed method
and benchmarking methods versus SNR. As we all know, noise will exert a huge influence
on the performance of super-resolution algorithms. Thus, as viewed from Figure 8a, the
ReErrs of all the super-resolution methods decline along with the increase in SNR. Among
all the acquired curves, the one for the MAP-MRF method is at the bottom-most, which
suggests that the outcome of MAP-MRF is the closest to the authentic solution. Notably,
when SNR equals 0 dB, the ReErr of the MAP-MRF method is much smaller than that of the
contrasted methods, which demonstrates the more favorable behavior of the MAP-MRF in
low-SNR situations. In Figure 8b, the SSIMs of the MAP-MRF method are always on top,
which indicates that the structure of MAP-MRF is the closest to that of the authentic scene,
as well as verifying the comparison results of ReErr. In summary, the MAP-MRF method
has more prominent advantages when the noise level is high and can recover the original
scene more accurately than other similar methods.
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(a) (b)

Figure 8. Quantitative curves for different super-resolution methods: (a) ReErr; (b) SSIM.

4.2. Experimental Results on Real Radar Data

The real data are processed in this subsection to demonstrate the validity and superi-
ority of the MAP-MRF method. Figure 9 illustrates an optical picture of a scene in which
an island is located in the upper side of the scene, and multiple ships are cruising across
the sea surface. It is worth noting that the picture was captured from Google Maps, and
the ships are only used for a schematic. A scanning radar whose antenna beam width is
2.5◦ is settled on another island and sweeps the imaging scene.

Figure 9. The imaging sketch of RASR.

Figure 10a shows the real beam image of the scene, from which it can be observed that
the contour of the island is blurred, and the azimuth echoes of all ships are broadened. Since
the incidence angle of the electromagnetic waves is relatively small, and the sea surface
identified by red block 1 is partly shielded by the ridges of the island, there is almost no
scattering energy in this region. The area identified by red block 2 is the range side lobe
of two meeting ships’ echo compressed by the matched filtering. The area marked by red
ellipse 3 is the two meeting ships. It can be observed that the echo energy in the azimuth is
broadened and superimposed, which results in the two ships being indistinguishable. Then,
the benchmarking methods and the proposed MAP-MRF method are both used on the echo.
Figure 10b–e show the results of contrasted methods. It can be seen that the resolution
has been partly enhanced and the contour of the island is sharpened. However, in the
sea surface identified by red block 1, some artifacts are aroused after the super-resolution
process. Furthermore, the side lobe marked by red block 2 is transformed into long tails
in the range direction after the process. Figure 10f illustrates the result of the proposed
method, in which the outline of the island is fairly clear, and there are almost no false
targets in the area of red block 1. The side lobe in red block 2 is also suppressed due to the
use of structural information.



Remote Sens. 2021, 13, 4115 16 of 20

Figure 11 presents the profiles of the ships marked by red ellipse 3 of all the outcomes.
From Figure 11b–d, it can be seen that the sparse Bayesian method performs best in
distinguishing the two ships. However, some spurious structures appear. 11e shows the
results of the sparse-TV method, in which the spurious structure has been eliminated.
Figure 11f demonstrates the result of MAP-MRF, in which not only are the ships well
separated, but there is also no increase in the noise. In summary, the results of the real
data experiment indicate that MAP-MRF can achieve a high super-resolution ratio with
no noise amplification and recover the contour of the scenario better than the contrasted
methods can.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Real data experiment: (a) echo; (b) RL algorithm; (c) Tikhonov method; (d) L1-norm
regularization method; (e) sparse-TV method; and (f) proposed MAP-MRF method.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Profiles of the super-resolution results of real data: (a) echo; (b) RL method; (c) Tikhonov
method; (d) L1-norm regularization method; (e) sparse-TV method; and (f) proposed MAP-
MRF method.

5. Discussion

In the imaging task, the 2-D spatial structure information plays an important role in
image processing. However, even though a certain number of prior information has been
discovered in state-of-the-art literature, e.g., sparse prior, square-norm prior, TV prior, or
the combination of those priors, all those methods are conducted on one profile of the
echo each time; thus, only one-dimensional (1-D) prior information is utilized. The MRF
theory provides a powerful approach to exploit the 2-D structural character of images,
which is of great significance for improving the resolution and recovering the structure
information. Therefore, coupled with accurate noise modeling, the MAP-MRF can perform
pretty well in noise resistance and structure recovery. Besides, the Huber function is chosen
as the specific form for MRF, of which diverse penalties can effectively protect the edge
information. For the visual and quantitative results obtained in Section 4, the proposed
MAP-MRF method can retrieve the structure and contour of the scene more accurately
compared with the benchmarking methods, especially in the low-SNR condition.

It should be noted that some assumptions are made in this paper. First, the convo-
lution kernel is formulated as a cyclic-convolution matrix to decrease the computational
complexity. Even though some end-part of the result may be inaccurate, this formulation
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can greatly reduce the calculation through FFT operation. As to the minute inaccurate part,
it can be discarded after super-resolution processing. The second is that the scattering coef-
ficients are set to be constant in the model. Even though this may differ from the real-life
situation, this assumption is adopted for the modeling simplicity and will not affect the
efficiency of the method itself. Moreover, The real data has validate its effectiveness.

Furthermore, some improvement work can continue to be completed. For instance, the
high-order neighborhood systems are encouraged to be further investigated in future work.
In addition, energy function should also be optimized according to diverse imaging scene.

6. Conclusions

Super-resolution technology is inherently an ill-conditioned issue, and the results are
susceptible to noise. Prior information plays a crucial role in the process of resolving the
issue. In this paper, an MAP-MRF model is exploited for RASR super-resolution imaging.
Through making use of the MRF model, the structural prior information in the scene can
be deeply exploited. Firstly, the MAP framework is utilized to construct the objective
function for RASR super-resolution imaging. Then, the imaging scene is modeled by the
HMRF and the spatial structural information is utilized to reconstruct the scene. Finally, by
solving the objective function with an accelerated iterative solution strategy, the optimal
super-resolution result of the targets can be obtained. Contrasted with traditional super-
resolution methods, the MAP-MRF method can retrieve the shape of the scene much more
clearly when improving the angular resolution.
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Appendix A

This Appendix A demonstrates the derivation of the MAP-MRF objective function.
As can be obtained from Equation (21), the Gibbs density function for a pixel σi,j is:

p
(
σi,j
)
=

1
Z

exp

{
− 1

τ ∑
h̄∈Ω

ρT
(
dn

h̄
(
σi,j
))}

. (A1)

Then, the prior term of Equation (16) can be calculated:
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(A2)
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Combining Equation (A2) with Equation (22):

ln P(σ)= − 1
τ

N−1

∑
i=2

M−1

∑
j=2

3

∑
n=0

ρT

(
dn

i,j
(
σi,j
))

+
N−1

∑
i=2

M−1

∑
j=2

ln
1
Z

. (A3)

Substituting Equations (A3) and (18) into Equation (16), the objective function can
be obtained

σ̂ = arg max
σ

N
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i=1
ln J0

(
si(Hσ)i

ρ2

)
−

N
∑

i=1

((Hσ)i)
2

2ρ2
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i,j
(
σi,j
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∑
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j=2
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(A4)

Since the last term is irrelevant to σi,j and cannot affect the optimization solution, the
objective function can be simplified by discarding this term.

σ̂ = arg max
σ

N
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. (A5)

For the Huber function in Equation (A5), we discuss it in two cases. Firstly, the

smoothness of the image
∣∣∣∣ 3

∑
n=0

dn
i,j
(
σi,j
)∣∣∣∣ is adopted to determine which form of Huber

function to take. Thus, for a given pixel, the gradient value
∣∣∣∣ 3

∑
n=0

dn
i,j
(
σi,j
)∣∣∣∣ is calculated and

compared with the threshold value Λ . Therefore, when
∣∣∣∣ 3

∑
n=0

dn
i,j
(
σi,j
)∣∣∣∣ ≤ Λ , taking the

upper term of Huber function into Equation (A5), we can obtain the objective function
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where λ equals − 1
τ . Similarly, when

∣∣∣∣ 3
∑

n=0
dn

i,j
(
σi,j
)∣∣∣∣ > Λ , taking the lower equation of

Huber function into Equation (A5), we can obtain the objective function
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