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Abstract: In this article, we propose the utilization of chaos-based frequency modulated (CBFM)
waveforms for joint monostatic and bistatic radar-communication systems. Short-duration pulses
generated via chaotic oscillators are used for wideband radar imaging, while information is embedded
in the pulses using chaos shift keying (CSK). A self-synchronization technique for chaotic systems
decodes the information at the communication receiver and reconstructs the transmitted waveform at
the bistatic radar receiver. Using a nonlinear detection scheme, we show that the CBFM waveforms
closely follow the theoretical bit-error rate (BER) associated with bipolar phase-shift keying (BPSK).
We utilize the same nonlinear detection scheme to optimize the target detection at the bistatic radar
receiver. The ambiguity function for both the monostatic and bistatic cases resembles a thumbtack
ambiguity function with a pseudo-random sidelobe distribution. Furthermore, we characterize the
high-resolution imaging capability of the CBFM waveforms in the presence of noise and considering
a complex target.

Keywords: chaos; frequency modulation; joint radar-communication; bistatic radar; high-resolution
imaging; nonlinear detection

1. Introduction

Due to an exponential increase in the utilization of communication devices and limita-
tions on the electromagnetic spectrum, there is tremendous demand for radio frequency
systems [1] to operate simultaneously without any mutual interference. In particular, radar
is now sharing its allocated spectrum, while expectations are that it should perform opti-
mally [2]. Consequently, the coexistence of communications and radar systems is necessary
now more than ever.

Joint radar-communication systems (RadComm) can be realized using two main ap-
proaches [3]. The first approach is using a single platform where hardware is reduced
for simultaneous functionality. For instance, a xampling-based technology is utilized for
radar and communication spectrum sharing [4], where the communications and radar
systems transmit at separate spectral bands to avoid interference. Multiple-input multiple-
output (MIMO) radar and communication systems are proposed in [5,6]. It is noted that
the functionality of these systems may be preferred by examining the environment [3,7].
A transceiver architecture along with a dual-functional radar-communication (DFRC) sys-
tem using a hybrid analog-digital beamforming technique in mm waveband is proposed
in [8]. With many of these proposed techniques, the complexities associated with the
transmitter hardware can be reduced along with the operational and functional costs [8].
One of the major drawbacks of this approach is the mutual interference caused by each
system. Additional signal processing efforts are required to mitigate the interference [9,10].
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The second approach is a more efficient way in which a single transmitter is used for
dual radar-communication functioning. A single waveform in which the information is
embedded into the radar transmission can be used for the dual purpose of communicating
and radar sensing. Much of the research is focused on designing such a dual waveform.
An excellent review of historical development and current state-of-the-art on joint radar-
communication systems along with modulation schemes and systems are presented in [11].
Examples of these waveforms include intrapulse basis waveforms [12], orthogonal fre-
quency division multiplexing (OFDM) [13], linear frequency modulated waveforms [14,15],
phase-modulated waveforms [16], random sequence encoding [17], embedding multi-
ple phase-shift keying symbols onto linear frequency modulated waveforms [18], etc.
An overview of dual-function radar-communications (DFRC) and various waveform
schemes are noted in [19]. Many of the proposed waveforms are either radar-centric or
communication-centric. They either have high sidelobes suffering high-resolution imaging
capabilities, or they have high bit-error rates.

Wide bandwidth waveforms are necessary to obtain finer resolution images to classify
radar targets [20]. Similarly, wideband waveforms are necessary for communication sys-
tems to transmit data at higher rates [21]. The wideband waveforms are typically generated
by modulating the frequency of a long pulse for a fixed signal-to-noise ratio. Alternatively,
noise-like waveforms that are inherently wideband are used for simultaneous radar and
communication systems [22]. Chaotic signals are a special case of noise-like waveforms
that were demonstrated to have potentials for communications [23–34], ranging [35,36]
and radar systems [37–41] individually. However, their advantages for dual-function radar
communications are not fully explored.

2. Contributions of Our Work

In this work, we explore and demonstrate the potentials of chaos for dual radar-
communication functionality. To the best of the authors’ knowledge, this is the first series
of experiments to combine the chaotic radars and communication systems using chaos.
In particular, this will be the first work to present the joint bistatic radar-communication
system using chaos. To that end, we:

1. Generate a chaos-based frequency-modulated (CBFM) waveform for dual functional-
ity. First, the chaos shift-keying approach is used to encode digital information onto
the chaotic system and thereby using it as an instantaneous frequency to transmit
CBFM pulses.

2. Show that the proposed waveforms perform better in terms of bit-error rate and
imaging capabilities than the current RadComm waveforms.

3. Demonstrate that the CBFM waveform in bistatic configuration solves two issues.
Firstly, reconstruct the transmitted waveform at the receiver via a direct synchro-
nization scheme and a simple response chaotic oscillator. Secondly, to obtain the
high-resolution imagery of targets.

4. Illustrate the high-resolution imaging capabilities of the CBFM waveform for a mono-
static radar mode.

The remainder of the paper is as follows. Section 3 will show a way to generate a CBFM
waveform with digital information embedded in it. Section 4 describes the architecture
to decode the information at the communication receiver. Section 5 shows a systematic
procedure to reconstruct the transmitted waveform and simulate cross-ambiguity functions.
Will will also characterize CBFM bistatic radar performance by simulating complex target
imagery and analyze cross-ambiguity function in the presence of noise. Finally, in Section 6,
we will show the high-resolution imaging capabilities of chaotic monostatic radar.
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3. Generation of CBFM Waveforms for Joint Radar-Communications

An N-dimensional chaotic system is mathematically given by a set of differential
equations [42] such as

dX
dt

= f (X) (1)

where f is a nonlinear function, and X is a vector of N-chaotic state variables. These systems
are governed by control parameters that dictate the periodic, quasi-periodic and chaotic
nature of the system [43]. For illustration purposes, we considered three-dimensional
Lorenz [44] and Burke–Shaw [45] systems that are given in Table 1. Many other chaotic
systems, such as Chua’s circuit (multi-scroll) [46], can yield similar results. It should be
noted that the performance of the communication receiver depends on the time it takes
to self-synchronize. Lorenz, Burke–Shaw, and Chua systems self-synchronize relatively
faster than other oscillators such as the Rössler system. Varying time constants of chaotic
systems [47] and linear methodologies such as frequency scaling [48] can improve the
communication and bistatic radar performance. However, these implementations are
beyond the scope of this work. Instead, the digital information is encoded using the chaos-
shift keying approach, where the control parameters of the system are continuously varied
in proportion to the digital information i(t) [24,25,49]. Here, i(t) takes on values of −1
and +1, i.e., i(t), a data stream that could be thought of as a pseudo-random sequence of
antipodal bits.

Figure 1 shows the bifurcation plot of the (a) Lorenz and (b) Burke–Shaw systems.
The y-axis is the maxima of the x-state variable (Xn). For the Lorenz system, the bifurcation
parameter is considered to be β. When ρ = 28 and σ = 10, the chaotic region is from
0.72 < β < 3.46. Similarly, when ρ = 28 and σ = 14, the chaotic region is 0.97 < β < 3.315.
For the Burke–Shaw system, the bifurcation parameter is V. When U = 10, the chaotic
region occurs between 5 < V < 28, and for U = 11, the chaotic region is 5 < V < 30.
In both cases, with change in σ, β, U, and V, the dynamics of the bifurcation plot are not
easily altered.

Figure 1. Bifurcation plot of (a) the Lorenz system with varying parameter β and (b) the Burke–Shaw system with varying
parameter V.

For the Lorenz system, the control parameter ρ = 28 is constant, while the other two
control parameters σ and ρ are a function of time given as
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σi(t) = 12 + 2i(t)

βi(t) =
(

8
3
+ 0.3

)
+ 0.3i(t).

(2)

when a bit −1 is encoded, σ(−1) = 10, and β(−1) = 8/3. When a bit +1 is encoded,
σ(+1) = 14, and β(+1) = 8/3 + 0.6. For the remainder of the paper, the subscripts (−1) and
(+1) indicate that encoded bits are −1 and +1, respectively.

Similarly, for the Burke–Shaw system, the control parameters U and V are varied as

Ui(t) = 10.5 + 0.5i(t)

Vi(t) = 14.5 + 1.5i(t).
(3)

Hence, U(−1) = 10, V(−1) = 13 and U(+1) = 11, V(+1) = 16.
The selection of the control parameters given in Equations (2) and (3) are based on the

chaotic region, as shown in Figure 1. In addition to bifurcation analysis, to verify that the
system is chaotic for the selected control parameters, we computed the largest Lyapunov
exponent (λ) using the QR decomposition method [50]. A positive value of λ indicates
that the system quickly diverges from its original orbit with an infinitesimal change in the
initial conditions, making the system chaotic. Values of the largest Lyapunov exponents
λ(−1) and λ(+1) for the Lorenz and Burke–Shaw systems are summarized in Table 1. The
values γL and γB are the time constants used to compress or dilate the chaotic system.
These particular values are chosen to obtain the identical bandwidth for the Lorenz-based
CBFM and Burke–Shaw-based CBFM waveforms. In all the cases, the largest Lyapunov
exponent is positive, indicating that the system is always chaotic despite changing the
selected control parameter values.

Table 1. Nonlinear differential equations governing the Lorenz [44] and Burke–Shaw [45] dissipative chaotic systems, their
control parameter values, and corresponding Lyapunov exponents.

System Differential Equations
at the Transmitter

Control Parameters Largest
Lyapunov Exponents

Lorenz

ẋt = γL[σi(yt − xt)]

ẏt = γL[xt(ρ− zt)− yt]

żt = γL[xtyt − βizt]

γL = 2.2× 10−3

σ(−1) = 10, σ(+1) = 14

ρ = 28

β(−1) =
8
3 , β(+1) =

8
3 + 0.6

λ(−1) = 0.8924

λ(+1) = 0.9335

Burke–Shaw

ẋt = γB[−Ui(xt + yt)]

ẏt = γB[−Uixtzt − yt]

żt = γB[Uixtyt + Vi]

γB = 2.7× 10−3

U(−1) = 10, U(+1) = 11,

V(−1) = 13, V(+1) = 16

λ(−1) = 2.2490

λ(+1) = 2.5159

Note that despite changing the control parameters by a fraction of ±1 (as the function
of time), the λs are identical. An identical λ value indicates that the characteristics of the
system do not change drastically, and this can be observed from the time-series plot shown
in Figure 2.

With this chaos-shift keying approach, the output of a chaotic system inherently has
information encoded in it without altering the bandwidth of the chaotic signal. Figure 2
shows the normalized time series plots of x(t) for both the Lorenz and Burke–Shaw chaotic
systems. The systems are simulated using the Runge–Kutta fourth-order method with a
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sampling interval of 1 ns. Both the time series plots consist of information but without
revealing what bits are encoded.

The scaled version of x(t) acts as an input to the voltage-controlled oscillator (VCO).
The scaling factor ζ equal to the absolute maximum value of the x(t) is necessary to avoid
spectral aliasing. Alternately, to reduce the additional hardware components, this scaling
process can be achieved using the amplitude control approach, as shown in [51].

vi(t) =
x(t)

ζ
. (4)
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Figure 2. Instantaneous frequency (vi(t) is the scaled version of x(t)) of the CBFM waveform
using (a) Lorenz and (b) Burke–Shaw chaotic systems (zoom in plots). The solid line indicates the
encoded information. The time-series plot does not have any discontinuities when digital information
is encoded.

The above input voltage vi(t) controls the frequency oscillations of the VCO output,
thus generating the CBFM waveform which, is expressed as

s(t) = A exp

j2π fct + j2πK
t∫

0

vi(α)dα

. (5)

where A = 1, is the amplitude to obtain a constant envelope, fc = 300 MHz is the carrier
frequency, and K is the modulation index adjusted to obtain a bandwidth of 150 MHz. This
particular bandwidth is chosen in order to obtain the range-resolution ∆r = c

2β = 1 m and
considering the demodulation limits of the phase-locked loop. Notice that the generated
FM waveform has a fractional bandwidth β

fc
= 0.5, thereby not satisfying the narrow band

criteria where the fractional bandwidth should be less than 0.1. It should be noted that
the frequencies of the chaotic systems are typically limited based on the circuitry. Unlike
the work shown in [41], we modulate the chaotic signal onto the frequency carrier to gen-
erate the CBFM waveform. The spectral width of the generated CBFM waveform can be
controlled using voltage-controlled oscillators to achieve the described bandwidths. Conse-
quently, the spectrum of the CBFM waveform is independent of the circuit components of
chaotic oscillators.

Figure 3 shows an illustration of the joint radar-communication system. The generated
CBFM waveform transmitted from location A is used for both sensing and communications.
Communication is possible via ground-to-air (communicating with aircraft) or ground-
to-ground (a device on the ground). The radar sensing is possible either in monostatic
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mode in which the transmitter and receiver are collocated or in the bistatic mode where
the transmitter and receiver are separated. Note that the communication receiver can
also act as the bistatic radar receiver. The details of the communication receiver and
bistatic/monostatic radar configurations are given in subsequent sections.

Figure 3. Illustration of the joint radar-communication systems.

Figure 4 shows the architecture of the joint radar-communication system transmitter.
Here, the digital information is encoded into the chaotic system that is further modulated
on to frequency to generate the CBFM waveform. This modulation step serves several
purposes. Mainly, it increases the bandwidth of the transmitted signal, which is necessary
for high-resolution radar imaging. Secondly, it provides an additional security blanket
without revealing what type of information is encoded. Here, the security is through
obfuscation and not any standard type of encryption. Lastly, it is immune to noise up to a
certain degree of freedom.

digital information
[... -1 1 -1 1 1 -1 ...]

chaotic
shift

keying

ϕ(t)
1
ζ

vi(t)
VCO

s(t)

Figure 4. Block diagram for the joint mono and bistatic RadComm transmitter.

The selection of the chaotic state variable depends on the conditional Lyapunov
exponent of the response oscillator (discussed in the next section). Thus, there may be
some systems where state variable x(t) may not serve the purpose of synchronization, but
other state variables will do.

4. Communication Receiver

To decode the information, the self-synchronization scheme of chaotic systems is
utilized [52,53]. Consider two identical chaotic systems: a driver and a response system (an
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RCO). These two systems are synchronized by driving (forcing) the response system using
a chaotic signal generated from the driver. This type of synchronization is only possible if
both the systems are identical in the sense that they have the same dynamical equations and
control parameters. If the control parameters are mismatched, the error between the driver
and response does not approach zero asymptotically. Furthermore, for a given driving
function, the RCO is stable if the conditional Lyapunov exponents are negative [53].

Figure 5 shows the communication receiver that consists of a phase-locked loop (PLL)
and a nonlinear detector. The received CBFM waveform is driven through the PLL, which
consists of an infinite impulse response lowpass Butterworth third-order filter to eliminate
higher harmonics, a mixer, and a local voltage-controlled oscillator that is arbitrarily
initialized. The output of PLL p(t) approximates the instantaneous frequency vi(t) of the
transmitted waveform, i.e., p(t) ≈ vi(t) [54]. The scaled version of p(t), i.e., d(t) = ζ p(t)
acts as a driving function to synchronize the RCOs that are tuned to two sets of control
parameters. The first RCO is tuned to the control parameters with respect to bit (−1) and
the second RCO to the bit (+1). The corresponding dynamical equations of the Lorenz and
Burke–Shaw RCOs are given in Table 2. The conditional Lyapunov exponents of RCOs for
both sets of control parameters are negative, making them stable response systems.

s(t)
PLL

d(t)

Response
CO1

Response
CO2

xr2 (t)

xr1 (t)

+- |e1(t)|

|e2(t)|
+-

Comparator ... -1 1 -1 1 1 -1 ...

Nonlinear detector

Figure 5. Proposed architecture for the communication receiver.

In this context, the combination of two RCOs, summers and a comparator, is called
the nonlinear detector. The two RCOs will become synchronized to d(t) according to the
control parameters associated with the transmitted signal. When a bit (−1) is encoded, the
control parameters of the Lorenz system at the transmitter are {10, 28, 8/3} and hence
RCO1 will be synchronized to d(t) with the error |e1(t)| = |d(t)− xr1(t)| approaching zero
asymptotically. Due to parameter mismatch, RCO2 will not be synchronized causing a
significant amplitude in error |e2(t)| = |d(t)− xr2(t)|. Similarly, when a bit (+1) is encoded,
the control parameters of the Lorenz system at the transmitter are {14, 28, 8/3 + 0.6}. In
this case, RCO2 will synchronize with a very low error |e2(t)| while RCO1 will be out of
sync with high error amplitudes. Figure 6a shows an illustration of errors |e1(t)| and |e2(t)|
when information is encoded onto the Lorenz system. Similar results can be obtained for
the Burke–Shaw system, as shown in Figure 6b. For illustration purposes, we concatenated
several encoded bits as a single waveform. However, considering the bistatic radar system,
we considered that one CBFM waveform pulse could transmit only one bit of information.
A data rate of 0.2 Mbits/s is used for our simulations.

To decode the digital information, a nonlinear detection scheme is used. The compara-
tor is used to compare the error between RCO1, RCO2 and d(t) to obtain |e1(t)| and |e2(t)|
and decode the bits. It is mathematically expressed as Equation (6), where, Tb = 5 µs is the
duration of bit, n = 0, 1, 2, . . . , N is the nth bit and N is the total number of encoded bits.

(n+1)Tb∫
nTb

|e1(t)|dt
−1
≶
+1

(n+1)Tb∫
nTb

|e2(t)|dt (6)
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Table 2. Dynamical equations for the response oscillator and its corresponding conditional-Lyapunov exponents demon-
strating the stability of the response chaotic oscillators.

System Differential Equations of RCOs Conditional Lyapunov Exponents

Lorenz

RCO1

ẋr1 = γL[10(yr1 − xr1)]
ẏr1 = γL[d(t)(ρ− zr1)− yr1 ]

żr1 = γL
[
d(t)yr1 − 8

3 zr1

] λC1 = −1.7814
λC2 = −1.8862

RCO2

ẋr2 = γL[14(yr2 − xr2)]
ẏr2 = γL[d(t)(ρ− zr2)− yr2 ]

żr2 = γL
[
d(t)yr2 −

( 8
3 + 0.6

)
zr2

] λC1 = −2.1332
λC2 = −2.1353

Burke–Shaw

RCO1

ẋr1 = γB[−10(xr1 + yr1)]
ẏr1 = γB[−10d(t)zr1 − yr1 ]

żr1 = γB[10d(t)yr1 + 13]

λC1 = −0.4906
λC2 = −0.5102

RCO2

ẋr2 = γB[−11(xr2 + yr2)]
ẏr2 = γB[−11d(t)zr2 − yr2 ]

żr2 = γB[11d(t)yr2 + 16]

λC1 = −0.4933
λC2 = −0.5076

To assess the performance of a communication waveform, the bit error rate (BER) as
the function of the ratio of energy per bit to noise spectral density (Eb/N0) is used. Figure 7
shows the BER plots for the bipolar shift keying (BPSK), chaos-based FM waveforms using
the Lorenz and Burke–Shaw systems. A total of 100,000 signal realizations are used to
compute the BER values. For higher noise, the Lorenz CBFM yields high BER values. In
contrast, the Burke–Shaw CBFM waveform performs well with BER values close to the
theoretical BER values of the BPSK waveform. However, when the noise levels are less, i.e.,
for Eb/N0 > 4, the BER curve of the Lorenz CBFM waveform closely follows the theoretical
BER curve of the BPSK waveform. Consequently, there is a tradeoff of transmission between
these two CBFM waveforms depending on the noise in communication channels.

To show the effectiveness of our proposed communications waveform, we compared
our results with state-of-the-art binary reduced phase shift keying (BRPSK) as presented
in [14,15]. The BER of the BRPSK is given as

Pb = Q

√2Ebsin2(φ)

N0

 (7)

where, phases−φ and φ represent the binary data (two constellation points). If φ = 90◦, the
BRPSK waveform is essentially the BPSK waveform. The essence of the BRPSK waveform
is to have a minor phase difference such that the constellation points have the minimum
distance between them. For comparison purposes, we considered |φ| = 60◦ and simulated
the BER against the Eb/N0. It can be observed that the BER curves of the CBFM waveforms
closely follow the BRPSK that is embedded in the traditional radar chirp waveform. In
particular, for low noise, the Lorenz CBFM waveform performs better compared to the
BRPSK, whereas the Burke–Shaw CBFM performs well in a high noise environment.
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Figure 6. Encoded information and errors |e1(t)| and |e2(t)| for (a) the Lorenz CBFM waveform and (b) Burke–Shaw CBFM
waveform. (Illustration purpose only. For practical reasons, a single CBFM pulse transmits only one bit of information.)
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Figure 7. Bit error rate (BER) for BPSK, Lorenz CBFM and Burke–Shaw CBFM waveforms, and
BRPSK as a function of the ratio of energy per bit to noise spectral density (Eb/N0).

Typically the radar waveforms are transmitted at a very high power in the magnitudes
of 1 MW. In contrast, a typical communication waveform is transmitted in the order of KW.
Therefore, the proposed communication receiver will have a significant signal-to-noise
ratio compared to the traditional communication receivers. Thus, the CBFM waveforms (in
particular the Lorenz CBFM waveform) are good candidates for communication systems
while simultaneously offering advantages for the monostatic and bistatic radars presented
in the subsequent sections.

5. Bistatic Radar Receiver Synchronization and Ambiguity Function
5.1. Synchronizing the Bistatic Radar Receiver

The bistatic radar shown in Figure 8 has the transmitter and receiver at different loca-
tions separated by a considerable distance called baseline (L). Compared to a monostatic
radar, some advantages of using bistatic configuration are passive sensing, detection of
low radar cross-sectional (RCS) targets, and avoiding jammer systems, etc. Despite these
advantages, bistatic radars are not commonly employed due to their geometry and the
problem associated with synchronization of the receiver and transmitter, which is necessary
to obtain range-Doppler information of the target. In [55,56], tools such as global position-
ing systems (GPS), crystal oscillators, low-cost quartz GPS-disciplined oscillators, satellites,
and wired communication channels, etc. are used to synchronize the receiver and the
transmitter. Furthermore, due to the geometry limitations of bistatic radars, unique signal
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processing methods are required to obtain high-resolution imagery of targets. Instead,
chaotic oscillators offer a cost-effective way of synchronizing bistatic radar receivers [57,58],
as well as generating high-resolution radar imagery [59].

L

RT
RR

TX RX

Tgt

θRθT

Figure 8. Bistatic radar configuration.

To synchronize and detect the target, we consider two antennas at the receiver. One is
dedicated to face the transmitter, and the other is used to track the target. We assume that
the transmitter and the receiver are in line-of-sight (LOS) and are on non-moving platforms.
A direct synchronization approach is utilized at the bistatic radar receiver [60], as shown
in Figure 9. Here, the synchronization is achieved directly by receiving a signal (through
the dedicated antenna), demodulating it, and synchronizing the local oscillator to achieve
the ranging and detection. Hence, the term direct synchronization. Usually, the signal
transmission takes place using a separate channel such as a land-line cable, communication
link, or a satellite. Instead, we propose using the transmitted CBFM waveform to achieve
synchronization while providing excellent range resolution. The waveform incident on the
dedicated antenna is demodulated using the PLL (with the same specifications) mentioned
above. The scaled version of the output of PLL, i.e., d(t) = ζ p(t) is used to drive the
local RCOs. Depending on the bit encoded at the transmitter, the RCO that is tuned with
respective control parameters will be synchronized. That is, when a bit (−1) is encoded,
the RCO1 is synchronized, and when a bit (+1) is encoded, the RCO2 is synchronized.

s(t)
PLL

d(t)

-
d(t)

RCO1
Comparator

with
d(t) as

reference

xr1(t)
+

RCO2
xr2(t)

+

x̂(t)
ζr

VCO
srec(t)

rtgt(t)

Matched
filter

Figure 9. Architecture for the bistatic radar receiver.

The comparator (given in Equation (6) or part of Figure 5) is used to determine
which RCO is synchronized with the least error level. The normalized version of the
corresponding RCO’s x̂(t), i.e., v̂i(t) = x̂(t)/ζr forms the instantaneous frequency to
reconstruct the CBFM waveform. Here, ζr is maximum of |x̂(t)|. The reconstructed
CBFM waveform srec(t) given in Equation (8) serves as a reference waveform for the
matched filter.

srec(t) = Aexp

j2π fct + j2πK
t∫

0

v̂i(α)dα

. (8)

The effectiveness of the reconstruction approach is characterized using correlation
analysis. In Figure 10a, the auto-correlation between {s(t), s(t)} of the Lorenz CBFM is
plotted using a solid line (black color) plot while the cross-correlation between {s(t), srec(t)}
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is plotted in the blue color plot. Similarly, Figure 10b shows the auto-correlation in a solid
line (black color) and cross-correlation (red color) plot for the Burke–Shaw CBFM waveform.
In both instances, the cross-correlation closely replicates the auto-correlation of s(t) with
adjacent sidelobe levels (SLL) at −13.33 dB or below. These correlation properties show
that the proposed synchronization method is effective for the bistatic radar system.
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Figure 10. Auto–correlation (solid line plot) between {s(t), s(t)} and cross–correlation between {s(t), srec(t)} for (a) the
Lorenz CBFM waveform (blue color plot) and (b) the Burke–Shaw CBFM waveform (red color plot).

5.2. Cross-Ambiguity Functions

Once the bistatic radar receiver is synchronized and the transmitted waveform is
reconstructed, srec(t) is used to correlate with the echo from the target rtgt(t). This echo is a
time-delayed and Doppler-shifted version of the transmitted waveform. That is

rtgt(t) = s(t− τ)expj2π[ fc+ fD ]t. (9)

From Figure 8, let the range between the transmitter and the target be RT , the range
between the target and the receiver be RR. The bistatic configuration where L < RR is called
the cosite region, otherwise it is called the receiver-centered region. If θR is the receiver look
angle, then the relationships between the time-delay τ, range between the target-receiver
RR and Doppler frequency fD, and radial velocity V of the target are, respectively, given
as [61]τ =

RR +
√

R2
R + L2 + 2RRLsinθR

c
; fD =

2 fc

c
V

√√√√1
2
+

RR + LsinθR

2
√

R2
R + L2 + 2RRLsinθR

 (10)

where c is the speed of light. To detect a target, the bistatic radar parameters to be in-
vestigated are the estimates of time delay τ̂ and the Doppler frequency f̂D. Similar to
Equation (10), they are expressed asτ̂ =

R̂R +
√

R̂2
R + L2 + 2R̂RLsinθR

c
; f̂D =

2 fc

c
V̂

√√√√1
2
+

R̂R + LsinθR

2
√

R̂2
R + L2 + 2R̂RLsinθR

 (11)

When the target echo is processed through the matched filter [62], the estimates τ̂

and f̂D can be determined via the cross-ambiguity function χ
(

τ̂ − τ, f̂D − fD

)
, which

is expressed as Equation (12). However, due to the nonlinear relationship between
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{τ̂, R̂R} and { f̂D, V̂}, the cross-ambiguity function of a bistatic radar is plotted on the
range-velocity plane.

χ
(

τ̂ − τ, f̂D − fD

)
=

∞∫
−∞

s(t− τ)s∗rec(t− τ̂)exp[−j2π( fD− f̂D)t]dt. (12)

For the simulations, we considered a point target moving with a velocity Vtgt = 100 m/s,
L = 0.5 Km, RR = 1 Km, and θR = +30◦. When the received echo is driven through the
matched filter with a response srec(t), a peak is expected at RR and Vtgt. Figure 11a,b shows
the cross-ambiguity surface of the Lorenz CBFM and the Burke–Shaw CBFM waveforms,
respectively, which is computed between the {srec(t), rtgt(t)}.

Figure 11. Cross–ambiguity surface between {srec(t), rtgt(t)} for (a) the Lorenz CBFM waveform and (b) the Burke–Shaw
CBFM waveform.

For the Lorenz CBFM waveform, the sidelobes on the velocity plane decorrelate very
quickly. On the range plane, the first SLL occurs at 0.136 (−17.3 dB). The subsequent
sidelobes disappear at a faster rate. Similarly, for the Burke–Shaw CBFM waveform, the
first range SLL occurs at 0.081 (−21.93 dB). If the digital information is embedded onto
the chirp signal, the corresponding ambiguity surface resembles a shape of the mountain
ridge with range-Doppler coupling [14,15]. In contrast, the cross-ambiguity surface of the
CBFM waveform closely resembles a thumb-tack ambiguity function with a significant
peak occurring at RR = 1 Km and V = 100 m/s.

5.3. Signature Analysis for the Bistatic Radar Configuration

Due to the thumbtack cross-ambiguity surfaces, the CBFM waveforms make an excel-
lent alternative for high-resolution radar imaging. A complex target such as an airplane
consists of multiple point reflectors, also called hotspots [63]. Consequently, the received
signal from a complex target is given as

r(t) =
N

∑
k=1

s(t− τk)exp[j2π( fc+ fDk
)t]. (13)

When the received signal is applied to the matched filter with an impulse response
srec(t), multiple peaks associated with each hotspot’s range and velocity can be obtained,
resulting in the signature of the complex target [64]. For example, Figure 12 shows the
signature of the BOEING 777 airplane that consists of 24 point reflectors. All these hotspots
are accurately resolved, illustrating the high-resolution capability of the proposed CBFM
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waveform as well as the synchronization approach. A complete study on generating a
signature analysis of complex targets is shown in our previous work [59]. As mentioned,
we assume the transmitters and receivers are on a non-moving platform. Moving platforms
would require, at minimum, adaptive motion compensation to eliminate non-rotational
Doppler shifts that would degrade range-Doppler imagery [65]. This analysis will be
provided in our future work.
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Figure 12. Signature analysis of the complex target obtained using (a) the Lorenz CBFM waveform and (b) the Burke–Shaw
CBFM waveform.

The quality of the radar image can be assessed using entropy-like functions [66]. The
entropy of an image is given as

E =
−∑

m
∑
n

Imnlog2(Imn)

∑
m

∑
n

Imn
. (14)

In the above equation, m and n are the number of rows and columns of an image, and
I is the normalized ambiguity surface such that the maximum pixel reflectivity is one. For
an ideal thumbtack ambiguity function, the pixel value is either 0 or 1. Hence, the entropy
value should be zero. Conversely, an increase in the entropy value indicates the presence
of sidelobe and noise dominance.

Using Equation (14), the entropy of the signature generated using the Lorenz CBFM is
1.8605 and that of the Burke–Shaw CBFM waveform is 1.7860. The positive entropy values
are apparent due to the increased noise-floor and self-noise of the transmitted waveform.
As expected, the entropy values for both the CBFM waveforms are similar due to the
same transmitted bandwidth. In either case, the high-resolution imagery of the signature
is evident.

5.4. Cross-Ambiguity Functions in the Presence of Noise

To assess the proposed joint bistatic RadComm system, we further computed the cross-
ambiguity functions in the presence of noise. The received signal from the transmitter is
typically corrupted with noise that can be modeled as bandlimited additive white Gaussian
noise (BL-AWGN) [62]. That is

r(t) = s(t) + η(t). (15)

The same procedure as illustrated in Figure 9 is used to reconstruct the CBFM wave-
form at the bistatic radar receiver. Once the CBFM waveform is reconstructed in the
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presence of noise, it can be used to correlate with the target echo, which is also assumed to
be corrupted with BL-AWGN. That is

rtgt(t) = s(t− τ)expj2π[ fc+ fD ]t + η(t). (16)

Figure 13a shows the cross-ambiguity functions between {r(t), rtgt} for the Lorenz
CBFM waveform with an SNR of 3 dB. Figure 13b is for the Burke–Shaw CBFM waveform.
In both cases, the noise floor tends to rise, and the energy from the mainlobe peak spills
over to the adjacent sidelobes. While the sidelobes on the velocity plane were not affected,
the range sidelobes for the Lorenz CBFM and the Burke–Shaw CBFM waveforms were
raised to −11.5 and −13.5 dB, respectively. The sidelobes adjacent to the mainlobe could
be further reduced using standard Chebyshev windows.

The bistatic radar synchronization using chaos and reconstruction of the FM waveform
is susceptible to very high noise levels. It is because the self-synchronization of the chaotic
system is sensitive to parameter mismatch and noise [53]. Furthermore, since the bistatic
radar receiver employs the self-synchronization scheme, the reconstruction of the FM
waveform suffers in the presence of noise, especially if SNR is less than 3 dB.

Figure 13. The cross–ambiguity surface obtained using (a) the Lorenz CBFM waveform and (b) the Burke–Shaw CBFM
waveform considering the SNR = 3 dB.

The quality of the simulated cross-ambiguity functions in the presence of noise can
be evaluated using the sidelobe volume function [67] given in Equation (17). For an ideal
thumbtack ambiguity function, VSL should be equal to zero. Any positive value indicates
the presence of sidelobes and an increase in noise-floor. It may not provide information
about the value of SLL, but it conveys the quality of the ambiguity function by computing
the overall sidelobes adjacent to the prominent peak.

VSL =
∫
f

∫
t

|χ|2dtd f −
∆ f∫
−∆ f

∆t∫
−∆t

|χ|2dtd f . (17)

Figure 14 shows the sidelobe volume of the CBFM waveforms in bistatic configuration
plotted against the SNR. As the noise increases, there is a clear indication of the growth of
SLL. Overall the Burke–Shaw CBFM waveform outperforms the Lorenz CBFM waveform.
For the Lorenz CBFM waveform, as indicated in the gold color square, the reference SLL of
−13.33 dB occurs for SNR = 5 dB, while for the Burke–Shaw CBFM waveform, it appears
for SNR = 2 dB (indicated in the green square). A detailed study on the bistatic radar
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synchronization using the CBFM waveform and its high-resolution capabilities is presented
in [59].

The Burke–Shaw CBFM waveform has better performance in terms of sidelobe volume
because of its apparent random behavior compared to the Lorenz CBFM waveform. It can
be observed by looking at the time series plot, as shown in Figure 2, as well as the higher
value of the largest Lyapunov exponent, indicating a more chaotic nature of the waveform.
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Figure 14. Sidelobe volume of the bistatic radar configuration for the Lorenz CBFM and Burke–Shaw
CBFM waveforms plotted against the signal to noise ratio (SNR). The squares indicate that for the
respective SNR, the sidelobe levels are at the value of −13.33 dB.

6. Monostatic Radar Signal Processing
6.1. Ambiguity Surface of Monostatic CBFM Radar

For a monostatic radar configuration, the transmitter and receiver are collocated.
Therefore, additional procedures as shown for the bistatic configuration are not necessary.
The same waveform that is embedded with digital information i(t) is used for efficient
transmission. The response of the matched filter is s(t). Hence, the ambiguity function in
monostatic configuration is given as

χ
(

τ̂ − τ, f̂D − dD

)
=

∞∫
−∞

s(t− τ)s∗(t− τ̂)exp[−j2π( fD− f̂D)t]dt. (18)

In the above equation, (
τ =

2RR
c

; fD =
2 fc

c
V
)

(19)(
τ̂ =

2R̂R
c

; f̂D =
2 fc

c
V̂

)
(20)

Since the relationship between the range-delay and velocity-Doppler frequency is
linear, the ambiguity surface can be plotted either on the delay-Doppler plane, which is tra-
ditionally used or on the range-velocity plane. Figure 15 shows the ambiguity surface of the
CBFM waveforms on the range-velocity plane. For both the Lorenz CBFM (Figure 15a) and
the Burke–Shaw CBFM waveforms (Figure 15b), a near thumbtack ambiguity function is ob-
tained. Similar to the bistatic radar, the sidelobes on the velocity plane die out very quickly.
The sidelobes on the range plane for the Lorenz CBFM is at 0.055 (−25.2 dB), and for the
Burke–Shaw CBFM, it is at 0.052 (−25.7 dB). These extremely low sidelobes prove that the
CBFM waveforms serve as an excellent candidate for high-resolution radar imaging.
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Figure 15. Ambiguity surface of Monostatic radar for (a) the Lorenz CBFM waveform and (b) the Burke–Shaw
CBFM waveform.

6.2. Signature Analysis for the Monostatic Radar Configuration

As mentioned earlier, in the presence of a complex target, the received is the sum-
mation of reflections from multiple point reflectors. Each of these reflections is delayed
and Doppler-shifted depending on the location of the reflector. Hence, when the received
signal is processed through the matched filter with impulse response s(t), the resultant is
the signature analysis. Note that for the bistatic radar, the matched filter response is srec(t).
Figure 16 shows the signature analysis of the same complex target. In addition, the entropy
of the Lorenz and Burke–Shaw CBFM waveforms is close to 2. The positive entropy value
signifies the presence of self-noise and a rise in the noise-floor of the signature. However,
all the hotspots are distinguishable from each other.

6.3. Ambiguity Functions in the Presence of Noise

Since the monostatic radar configuration does not require a chaotic synchronization
approach, its performance in the presence of noise is robust compared to the bistatic radar
system. Consequently, even for the SNR of −30 dB, the sidelobe does not rise above
−13.33 dB. Figure 17a,b shows the ambiguity surface of the Lorenz CBFM and Burke–
Shaw CBFM waveforms considering the received signal is corrupted with SNR = −30 dB.
The noise floor rises uniformly to 0.21 (−13.5 dB) across both planes. From Figure 18 it is
evident that for SNR < −30 dB, the sidelobes increase significantly, likely masking the
targets present in close proximity.
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Figure 16. Ambiguity surface of the monostatic radar for (a) the Lorenz CBFM waveform and (b) the Burke–Shaw
CBFM waveform.

Figure 17. Ambiguity surface of the monostatic radar for (a) the Lorenz CBFM waveform and (b) the Burke–Shaw CBFM
waveform considering SNR = −30 dB.
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Figure 18. Sidelobe volume of the monostatic radar configuration for the Lorenz CBFM and Burke–
Shaw CBFM waveforms plotted against the signal to noise ratio (SNR). The green square at
SNR = −30 dB indicate that for sidelobe levels are at the value of −13.33 dB.
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7. Conclusions

In this work, we presented a waveform design for joint monostatic radar-communication
and bistatic radar-communication systems. The generation of such a waveform is possible
using a chaotic oscillator modeled as nonlinear differential equations. The digital infor-
mation is embedded onto the chaotic oscillator using chaos shift keying. The resultant
output of the oscillator is used as an instantaneous frequency to generate a chaos-based
frequency-modulated waveform. This CBFM waveform is used for the dual application of
radar detection and communications.

We presented a nonlinear detection scheme to decode the digital information. Here,
we used two synchronized chaotic oscillators to compare the error difference to determine
the encoded bit. Through simulations, we showed that the bit error rate of the CBFM
waveform closely matches the bipolar shift keying.

The same nonlinear detection scheme is used at the bistatic radar receiver to synchro-
nize it with the transmitter. We use the synchronized local response oscillator to reconstruct
the transmitted FM waveform, which acts as the response for the matched filter. The
cross-ambiguity functions revealed a sharp mainlobe peak with minimum sidelobes on
the range-velocity planes desirable for high-resolution radar imaging. Signature analysis
of the complex target revealed the high-resolution capability of the proposed waveform.
However, due to the noise sensitivity of the nonlinear detector, our proposed approach is
susceptible to a significant amount of noise levels.

The self-ambiguity surface of CBFM waveforms for monostatic radars is of high
quality. The sidelobes on the range-velocity planes are extremely low. The signature
analysis illustrates that all the point reflectors could be distinguished accurately. In contrast
to the bistatic configuration, the monostatic radar performed excellently for SNRs as low
as −30 dB.

Our proposed work can have potential in airplanes, emergency response vehicles,
and defense sectors where faster communication rates and accurate target detection are
necessary. With the proposed work, both of these are achievable in addition to secure
communications and high-resolution imagery.

Author Contributions: Conceptualization, C.S.P.; methodology, C.S.P., A.N.B. and B.C.F.; software,
C.S.P. and A.N.B.; validation, C.S.P., A.N.B. and B.C.F.; formal analysis, C.S.P., A.N.B. and B.C.F.;
investigation, C.S.P. and B.C.F.; resources, C.S.P.; data curation, C.S.P.; writing—original draft prepa-
ration, C.S.P.; writing—review and editing, C.S.P., A.N.B. and B.C.F.; visualization, C.S.P., A.N.B. and
B.C.F.; supervision, C.S.P.; project administration, C.S.P.; funding acquisition, Not applicable. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tavik, G.C.; Hilterbrick, C.L.; Evins, J.B.; Alter, J.J.; Crnkovich, J.G.; de Graaf, J.W.; Habicht, W., II; Hrin, G.P.; Lessin, S.A.; Wu,

D.C.; et al. The advanced multifunction RF concept. IEEE Trans. Microw. Theory Tech. 2005, 53, 1009–1020. [CrossRef]
2. Griffiths, H.; Cohen, L.; Watts, S.; Mokole, E.; Baker, C.; Wicks, M.; Blunt, S. Radar spectrum engineering and management:

Technical and regulatory issue. Proc. IEEE 2015, 103, 85–102. [CrossRef]
3. Zheng, L.; Lops, M.; Eldar, Y.C.; Wang, X. Radar and Communication Coexistence: An Overview: A Review of Recent Methods.

IEEE Signal Process. Mag. 2019, 36, 85–99. [CrossRef]
4. Cohen, D.; Mishra, K.V.; Eldar, Y.C. Spectrum sharing radar: Coexistence via Xampling. IEEE Trans. Aerosp. Electron. Syst. 2017,

54, 1279–1296. [CrossRef]

http://doi.org/10.1109/TMTT.2005.843485
http://dx.doi.org/10.1109/JPROC.2014.2365517
http://dx.doi.org/10.1109/MSP.2019.2907329
http://dx.doi.org/10.1109/TAES.2017.2780599


Remote Sens. 2021, 13, 4113 19 of 20

5. Li, B.; Petropulu, A.P.; Trappe, W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and
a MIMO communication system. IEEE Trans. Signal Process. 2016, 64, 4562–4575. [CrossRef]

6. Qian, J.; Lops, M.; Zheng, L.; Wang, X.; He, Z. Joint system design for coexistence of MIMO radar and MIMO communication.
IEEE Trans. Signal Process. 2018, 66, 3504–3519. [CrossRef]

7. Li, B.; Petropulu, A.P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in
clutter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2846–2864. [CrossRef]

8. Liu, F.; Christos, M.; Petropulu, A.; Griffiths, H.; Hanzo, L. Joint radar and communication design: Applications, state-of-the-art,
and the road ahead. IEEE Trans. Commun. 2020, 68, 3834–3862. [CrossRef]

9. Deng, H.; Himed, B. Interference Mitigation Processing for Spectrum-Sharing Between Radar and Wireless Communications
Systems. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1911–1919. [CrossRef]

10. Kumar, S.; Mishra, K.V.; Gautam, S.; Mysore, B.S.; Ottersten, B. Interference Mitigation Methods for Coexistence of Radar and
Communication. In Proceedings of the 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany,
22–26 March 2021; pp. 1–4.

11. Han, L.; Wu, K. Joint wireless communication and radar sensing systems-state of the art and future prospects. IET Microwaves,
Antennas Propag. 2013, 7, 876–885. [CrossRef]

12. Blunt, S.D.; Yatham, P.; Stiles, J. Intrapulse Radar-Embedded Communications. IEEE Trans. Aerosp. Electron. Syst. 2010, 46,
1185–1200. [CrossRef]

13. Huang, K.W.; Bica, M.; Mitra, U.; Koivunen, V. Radar waveform design in spectrum sharing environment: Coexistence and
cognition. In Proceedings of the IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 1698–1703.

14. Zhang, Z.; Nowak, M.J.; Wicks, M.C.; Wu, Z.. Bio-inspired RF steganography via linear chirp radar signals. IEEE Commun. Mag.
2016, 54, 82–86. [CrossRef]

15. Zhang, Z.; Qu, Y.; Wu, Z.; Nowak, M.J.; Ellinger, J.; Wicks, M.C. RF steganography via LFM chirp radar signals. IEEE Trans.
Aerosp. Electron. Syst. 2017, 54, 1221–1236. [CrossRef]

16. Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Phase-modulation based dual-function radar-communications. IET Radar
Sonar Navig. 2016, 10, 1411–1421. [CrossRef]

17. Washington, R.; Bischof, B.; Garmatyuk, D.; Mudaliar, S. Clutter-Masked Waveform Design for LPI/LPD Radarcom Signal
Encoding. Sensors 2021, 21, 631. [CrossRef]

18. Bekar, M.; Baker, C.J.; Hoare, H.G.; Gashinova, M. Joint MIMO Radar and Communication System Using a PSK-LFM Waveform
With TDM and CDM Approaches. IEEE Sens. J. 2021, 21, 6115–6124. [CrossRef]

19. Hassanien, A.; Amin, M.G.; Aboutanios, E.; Himed, B. Dual-Function Radar Communication Systems: A Solution to the Spectrum
Congestion Problem. IEEE Signal Process. Mag. 2019, 36, 115–126. [CrossRef]

20. Wehner, D.R. High-Range Resolution Waveforms and Processing. In High-Resolution Radar, 2nd ed.; Artech House: Boston, MA,
USA, 1994; pp. 133–194.

21. Lathi, B.P.; Ding, Z. Performance analysis of digital communication systems. In Modern Digital and Analog Communication Systems,
4th ed.; Oxford University Press: New York, NY, USA, 2009; pp. 506–581.

22. Surender, S.C.; Narayanan, R.M. UWB noise-OFDM netted radar: Physical layer design and analysis. IEEE Trans. Aerosp. Electron.
Syst. 2011, 47, 1380–1400. [CrossRef]

23. Kocarev, L.; Halle, K.S.; Eckert, K.; Chua, L.O.; Parlitz, U. Experimental Demonstration of Secure Communications via Chaotic
Synchronization. Int. J. Bifurcations Chaos Appl. Sci. Technol. 1992, 2, 709–713. [CrossRef]

24. Cuomo, K.M.; Oppenheim, A.V. Circuit Implementation of Synchronized Chaos with Applications to Communications. Phys.
Rev. Lett. 1993, 71, 65–68. [CrossRef]

25. Dedieu, H.; Kennedy, M.P.; Hasler, M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-
synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1993, 40, 634–642. [CrossRef]

26. Kolumban, G.; Kennedy, M.P.; Chua, L.O. The Role of Synchronization in Digital Communications Using Chaos-Part I: Funda-
mentals of Digital Communications. IEEE Trans. Circuits Syst.-Part I Fundam. Theory Appl. 1997, 44, 927–935. [CrossRef]

27. Mazzini, G.; Setti, G.; Rovatti, R. Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and
results. IEEE Trans. Circuits-Syst.-Part I Fundam. Theory Appl. 1997, 44, 937–947. [CrossRef]

28. Rulkov, N.F.; Tsimring, L. Communication with Chaos over Band-Limited Channels. Int. J. Circuit Theory Appl. 1999, 27, 555–567.
[CrossRef]

29. Abel, A.; Schwartz, W.; Goetz, M. Noise Performance of Chaotic Communication Systems. IEEE Trans. Circuits-Syst.-Part I
Fundam. Theory Appl. 2000, 47, 1726–1732. [CrossRef]

30. Williams, C. Chaotic Communications over Radio Channels. IEEE Trans. Circuits Syst.-Part I Fundam. Theory Appl. 2001, 48,
1394–1404. [CrossRef]

31. Abel, A.; Schwarz, W. Chaos communications-principles, schemes, and system analysis. Proc. IEEE 2002, 90, 691–710. [CrossRef]
32. Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garcia-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore,

K.A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005, 438, 343–346. [CrossRef]
[PubMed]

33. Blakely, J.N.; Hahs, D.W.; Corron, N.J. Communication waveform properties of an exact folded-band chaotic oscillator. Phys. D
Nonlinear Phenom. 2013, 263, 99–106. [CrossRef]

http://dx.doi.org/10.1109/TSP.2016.2569479
http://dx.doi.org/10.1109/TSP.2018.2831624
http://dx.doi.org/10.1109/TAES.2017.2717518
http://dx.doi.org/10.1109/TCOMM.2020.2973976
http://dx.doi.org/10.1109/TAES.2013.6558027
http://dx.doi.org/10.1049/iet-map.2012.0450
http://dx.doi.org/10.1109/TAES.2010.5545182
http://dx.doi.org/10.1109/MCOM.2016.7497771
http://dx.doi.org/10.1109/TAES.2017.2776698
http://dx.doi.org/10.1049/iet-rsn.2015.0484
http://dx.doi.org/10.3390/s21020631
http://dx.doi.org/10.1109/JSEN.2020.3043085
http://dx.doi.org/10.1109/MSP.2019.2900571
http://dx.doi.org/10.1109/TAES.2011.5751265
http://dx.doi.org/10.1142/S0218127492000823
http://dx.doi.org/10.1103/PhysRevLett.71.65
http://dx.doi.org/10.1109/82.246164
http://dx.doi.org/10.1109/81.633882
http://dx.doi.org/10.1109/81.633883
http://dx.doi.org/10.1002/(SICI)1097-007X(199911/12)27:6<555::AID-CTA82>3.0.CO;2-X
http://dx.doi.org/10.1109/81.899925
http://dx.doi.org/10.1109/TCSI.2001.972846
http://dx.doi.org/10.1109/JPROC.2002.1015002
http://dx.doi.org/10.1038/nature04275
http://www.ncbi.nlm.nih.gov/pubmed/16292256
http://dx.doi.org/10.1016/j.physd.2013.08.009


Remote Sens. 2021, 13, 4113 20 of 20

34. Kaddoum, G.; Soujeri, E. NR-DCSK: A Noise Reduction Differential Chaos Shift Keying System. IEEE Trans. Circuits Syst. II
Express Briefs 2016, 63, 648–652. [CrossRef]

35. Myneni, K.; Barr, T.A.; Reed, B.R.; Pethel, S.D.; Corron, N.J. High-precision ranging using a chaotic laser pulse train. Appl. Phys.
Lett. 2001, 78, 1496–1498. [CrossRef]

36. Beal, A.N.; Cohen, S.D.; Syed, T.M. Generating and detecting solvable chaos at radio frequencies with consideration to multi-user
ranging. Sensors 2020, 20, 774. [CrossRef] [PubMed]

37. Flores, B.C.; Solis, E.A.; Thomas, G. Assessment of chaos-based FM signals for range–Doppler imaging. IEE Proc.-Radar Sonar
Navig. 2003, 150, 313–322. [CrossRef]

38. Lin, F.; Liu, J. Ambiguity functions of laser-based chaotic radar. IEEE J. Quantum Electron. 2004, 40, 1732–1738. [CrossRef]
39. Liu, Z.; Zhu, X.; Hu, W.; Jiang, F. Principles of chaotic signal radar. Int. J. Bifurc. Chaos 2007, 17, 1735–1739. [CrossRef]
40. Shi, Z.; Qiao, S.; Chen, K.S.; Cui, W.; Ma, W.; Jiang, T.; Ran, L. Ambiguity functions of direct chaotic radar employing microwave

chaotic Colpitts oscillator. Prog. Electromagn. Res. 2007, 77, 1–14. [CrossRef]
41. Willsey, M.S.; Cuomo, K.M.; Oppenheim, A.V. Quasi-orthogonal wideband radar waveforms based on chaotic systems. IEEE

Trans. Aerosp. Electron. Syst. 2011, 47, 1974–1984. [CrossRef]
42. Sprott, J.C. Introduction. In Chaos and Time-Series Analysis; Oxford University Press: New York, NY, USA, 2003; pp. 1–19.
43. Sprott, J.C. Strange Attractors. In Chaos and Time-Series Analysis; Oxford University Press: New York, NY, USA, 2003; pp. 127–158.
44. Lorenz, E.N. Synchronisation of bistatic radar systems. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
45. Shaw, R. Strange attractors, chaotic behavior, and information flow. Z. Für Naturforschung 1981, 36, 80–112. [CrossRef]
46. Chua, L.O.; Wu, C.W.; Huang, A.; Zhong, G.Q. A universal circuit for studying and generating chaos—Part. I: Routes to chaos.

IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 732–744. [CrossRef]
47. Carroll, T.L. Chaotic communications that are difficult to detect. Phys. Rev. E 2003, 67, 026207-1–026207-6. [CrossRef]
48. Tlelo-Cuautle, E.; Mu noz-Pacheco, J.M.; Martínez-Carballido, J. Frequency scaling simulation of Chua’s circuit by automatic

determination and control of step-size. Appl. Math. Comput. 2007, 194, 486–491. [CrossRef]
49. Cuenot, J.B.; Larger, L.; Goedgebuer, J.P.; Rhodes, W.T. Chaos shift keying with an optoelectronic encryption system using chaos

in wavelength. IEEE J. Quantum Electron. 2001, 37, 849–855. [CrossRef]
50. Geist, K.; Parlitz, U.; Lauterborn, W. Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys.

1990, 83, 875–893. [CrossRef]
51. Li, C.; Sprott, J.C. Amplitude control approach for chaotic signals. Nonlinear Dyn. 2013, 73, 1335–1341. [CrossRef]
52. Pecora, L.M.; Carroll, T.L. Synchronization in Chaotic Systems. Phys. Rev. Lett. 1990, 64, 821–824. [CrossRef]
53. Pecora, L.M.; Carroll, T.L. Synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 097611. [CrossRef]

[PubMed]
54. Ziemer, R.E.; Tranter, W.H. Angle Modulation and Multiplexing. In Principles of Communication Systems, Modulation and Noise, 7th

ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 156–213.
55. Weib, M. Synchronisation of bistatic radar systems. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) 2004, 3, 1750–1753.
56. Sandenbergh, J.S. Synchronising Coherent Networked Radar using Low-Cost GPS-Disciplined Oscillators. Ph.D. Thesis, Univer-

sity of Cape Town, Cape Town, South Africa, 2019.
57. Carroll, T.L. Chaotic system for self-synchronizing Doppler measurement. Chaos Interdiscip. J. Nonlinear Sci. 2005, 15,

013109-1–013109-5. [CrossRef] [PubMed]
58. Sorrentino, F.; DeLellis, P. Estimation of communication-delays through adaptive synchronization of chaos. Chaos Solitons Fractals

2012, 45, 35–46. [CrossRef]
59. Pappu, C.S.; Flores, B.C. High Resolution Imaging of Chaotic Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2011, 56, 871–886.

[CrossRef]
60. Willis, N.J. Special Problems and Requirements. In Bistatic Radar; Scitech Publishing Inc.: Raleigh, NC, USA, 2005; pp. 245–260.
61. Tsao, T.; Slamani, M.; Varshney, P.; Weiner, D.; Schwarzlander, H.; Borek, S. Ambiguity function for a bistatic radar. IEEE Trans.

Aerosp. Electron. Syst. 1997, 33, 1041–1051. [CrossRef]
62. Trees, H.L. Parameter estimation: Slowly-Fluctuating point targets. In Detection, Estimation, and Modulation Theory, Part III:

Radar-Sonar Signal Processing and Gaussian Signals in Noise; Wiley: New York, NY, USA, 2001; pp. 275–340.
63. Borkar, V.G.; Ghosh, A.; Singh, R.K.; Chourasia, N.K. Radar cross-section measurement techniques. Def. Sci. J. 2010, 60, 204.

[CrossRef]
64. Chen, V.C.; Qian, S. Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans. Aerosp. Electron. Syst. 1998,

34, 486–499. [CrossRef]
65. Son, J.S.; Thomas, G.; Flores, B.C. ISAR Concepts. In Range-Doppler Radar Imaging and Motion Compensation; Artech House: Boston,

MA, USA, 2001; pp. 9–25.
66. Flores, B.C.; Ugarte, A.; Kreinovich, V. Choice of an entropy-like function for range-Doppler processing. Autom. Object Recognit.

III Int. Soc. Opt. Photonics (SPIE) 1993, 1960, 47–56.
67. Abramovich, Y.I.; Frazer, G.J. Bounds on the volume and height distributions for the mimo radar ambiguity function. IEEE Signal

Process. Lett. 2008, 15, 505–508. [CrossRef]

http://dx.doi.org/10.1109/TCSII.2016.2532041
http://dx.doi.org/10.1063/1.1355663
http://dx.doi.org/10.3390/s20030774
http://www.ncbi.nlm.nih.gov/pubmed/32023879
http://dx.doi.org/10.1049/ip-rsn:20030728
http://dx.doi.org/10.1109/JQE.2004.836811
http://dx.doi.org/10.1142/S0218127407018038
http://dx.doi.org/10.2528/PIER07072001
http://dx.doi.org/10.1109/TAES.2011.5937277
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1515/zna-1981-0115
http://dx.doi.org/10.1109/81.246149
http://dx.doi.org/10.1103/PhysRevE.67.026207
http://dx.doi.org/10.1016/j.amc.2007.04.052
http://dx.doi.org/10.1109/3.929583
http://dx.doi.org/10.1143/PTP.83.875
http://dx.doi.org/10.1007/s11071-013-0866-z
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1063/1.4917383
http://www.ncbi.nlm.nih.gov/pubmed/26428564
http://dx.doi.org/10.1063/1.1855034
http://www.ncbi.nlm.nih.gov/pubmed/15836263
http://dx.doi.org/10.1016/j.chaos.2011.09.004
http://dx.doi.org/10.1109/TAES.2019.2923299
http://dx.doi.org/10.1109/7.599331
http://dx.doi.org/10.14429/dsj.60.341
http://dx.doi.org/10.1109/7.670330
http://dx.doi.org/10.1109/LSP.2008.922514

	Introduction
	Contributions of Our Work
	Generation of CBFM Waveforms for Joint Radar-Communications
	Communication Receiver
	Bistatic Radar Receiver Synchronization and Ambiguity Function
	Synchronizing the Bistatic Radar Receiver
	Cross-Ambiguity Functions
	Signature Analysis for the Bistatic Radar Configuration
	Cross-Ambiguity Functions in the Presence of Noise

	Monostatic Radar Signal Processing
	Ambiguity Surface of Monostatic CBFM Radar
	Signature Analysis for the Monostatic Radar Configuration
	Ambiguity Functions in the Presence of Noise

	Conclusions
	References

