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Abstract: As vital infrastructures, high-speed railways support the development of transportation.
To maintain the punctuality and safety of railway systems, researchers have employed manual
and computer vision methods to monitor overhead contact systems (OCSs), but they have low
efficiency. Investigators have also used light detection and ranging (LiDAR) to generate point clouds
by emitting laser beams. The point cloud is segmented for automatic OCS recognition, which
improves recognition efficiency. However, existing LiDAR point cloud segmentation methods have
high computational/model complexity and latency. In addition, they cannot adapt to embedded
devices with different architectures. To overcome these issues, this article presents a lightweight
neural network EffNet consisting of three modules: ExtractA, AttenA, and AttenB. ExtractA extracts
the features from the disordered and irregular point clouds of an OCS. AttenA keeps information
flowing in EffNet while extracting useful features. AttenB uses channel and spatialwise statistics to
enhance important features and suppress unimportant ones efficiently. To further speed up EffNet
and match it with diverse architectures, we optimized it with a generation framework of tensor
programs and deployed it on embedded systems with different architectures. Extensive experiments
demonstrated that EffNet has at least a 0.57% higher mean accuracy, but with 25.00% and 9.30% lower
computational and model complexity for OCS recognition than others, respectively. The optimized
EffNet can be adapted to different architectures. Its latency decreased by 51.97%, 56.47%, 63.63%,
82.58%, 85.85%, and 91.97% on the NVIDIA Nano CPU, TX2 CPU, UP Board CPU, Nano GPU, TX2
GPU, and RTX 2,080 Ti GPU, respectively.

Keywords: deep learning; embedded devices; overhead contact system; optimization; point cloud
segmentation; recognition

1. Introduction

High-speed railways have given rise to significant changes in the way people live and
work. For the safe operation of high-speed railways, the overhead catenary system (OCS)
must be monitored. The OCS includes an insulator, cantilever, pole, contact wire, catenary
wire, registration arm, steady arm, and dropper. The OCS components are susceptible
to natural conditions, such as weather and wind, and they may loosen and break due to
constant exposure to the outdoors. These problems cause security risks for the operation of
high-speed railways. Professional railway workers often manually recognize and measure
geometric parameters related to the spatial geometric positions of the catenary in an OCS,
such as lead height and pull-out values. The lead height is the vertical height of the contact
wire from a rail surface. The pull-out value is the offset between a contact wire and the
center of a pantograph skateboard in electrified trains. However, manual detection may
cause large errors and slow speed. Therefore, intelligent OCS recognition methods should
be developed to increase the accuracy and speed of inspection.
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Recently, as a noncontact measuring method, light detection and ranging (LiDAR)
emits laser beams and measures the distances from LiDAR to object points in various
scenarios. In addition, LiDAR measures the strength of the return. LiDAR is widely
applied in diverse fields such as three-dimensional (3D) object recognition [1], cultural
heritage representation [2], and OCS recognition [3], due to its high accuracy, reliability, and
efficiency. Through LiDAR, OCS components are scanned, and then, their point clouds are
generated. Based on point cloud segmentation, the OCS is recognized for railway system
inspection. Figure 1 shows that individual components of an OCS can be segmented from
LiDAR point clouds. Additionally, LiDAR is not affected by extraneous obstacles such as
trees in high-speed railway scenarios, as the obstacles are strictly restricted to places far
from an OCS. In sum, LiDAR has several advantages for OCS recognition:

• High accuracy: The result of LiDAR measurement is more accurate than the result of
manual measurement. In addition, the distance measurement of LiDAR is generally
more precise than that of computer vision methods [4–7];

• High efficiency: The measurement of LiDAR accelerates OCS recognition compared
with manual measurement. LiDAR point clouds do not require as much processing
time as high-resolution images produced by cameras;

• High reliability: Irrelevant interferents are easily filtered by LiDAR, such as the SICK
LMS511-20100 PRO LiDAR employed in this article. For example, the measurement er-
ror of the LMS511-20100 PRO LiDAR reaches the millimeter level. High measurement
accuracy enables high reliability for OCS recognition;

• Low requirements: LiDAR has almost no requirements on the measurement envi-
ronment, such as lighting conditions, while computer vision methods have strict
requirements for light conditions.

Insulator

Pole

Catenary wire

Contact wire

Registration arm

Cantilever

Steady arm

Point cloud recognitionInspection robot

Windproof cable

Windproof cable

Cantilever 

Figure 1. Recognizing an overhead contact system.

Researchers segmented point clouds for OCS recognition by proposing various ap-
proaches, such as traditional machine learning and deep learning technologies. However,
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traditional machine learning methods, such as [8,9], have low efficiency and high complex-
ity, overly relying on prior knowledge and handcrafted features. With the advancement of
deep learning [10], many researchers have adopted deep neural networks (DNNs) for OCS
recognition. For example, Qi et al. [11,12] developed the PointNet and PointNet++ models
to segment point clouds. Chen et al. [13] improved PointNet++ to concentrate global
and point-level features of a center point into local features for point cloud recognition.
Other methods [4,5,7] relied on images to inspect an OCS with DNNs, but high-resolution
images allowed a larger amount of calculation than point clouds. To further improve OCS
recognition, the approach in [14] leveraged the k-nearest neighbors algorithm (KNN) [15]
and DNNs to process point clouds of an OCS in real high-speed scenarios. As the point
density and distribution pattern influence point cloud segmentation, Lin et al. [14] adopted
data from a fixed scan area. They summed the previous and next frames and obtained
the 3D coordinate values of the current frame. Then, the above impact of density and
distribution was alleviated. Although these technologies achieved a certain increase in
accuracy, they faced the following challenges when running on embedded platforms:

• High computational complexity: The above methods usually use complex model struc-
tures to improve the accuracy of OCS recognition. The complex algorithm structures
increase the computational complexity;

• High latency: As the above methods have more computational operations, their
latency is higher than simple models. They are also rarely accelerated to achieve low
inference latency on embedded systems;

• High model complexity: Due to the intensive computation, the above methods have a
high model complexity, which is a burden for embedded devices.

If computational/model complexity and latency are reduced, OCS recognition on
embedded devices will become possible. To this end, a lightweight neural network is
required. In general, lightweight neural networks refer to a more efficient DNN calculation
model. It is constructed by decreasing computational and model complexity while ensuring
that the loss of model precision is low. We designed a lightweight neural network, EffNet,
which contains three modules: ExtractA, AttenA, and AttenB. The ExtractA module extracts
features from the disordered and irregular point clouds of an OCS based on the work [14],
where some of the authors also participated in this paper. AttenA refines features relying
on the study [16]. AttenB enhances the vital features and fades out unimportant ones
based on the method in [17]. AttenA and AttenB are attention mechanisms. Here, the
attention mechanism is an approach that imitates human cognitive attention. It concentrates
on relevant features and overlooks the unimportant ones in deep learning [18]. The
advantages of AttenA and AttenB are different. AttenA focuses on the effectiveness of
extracted features. AttenB emphasizes the efficiency of attention mechanisms. AttenB is
more lightweight than AttenA, and AttenA extracts more features than AttenB. The three
modules are integrated for accurate OCS recognition. The interaction of these modules also
improves the efficiency of OCS recognition.

To further decrease the latency of EffNet and adapt it to different architectures, we
accelerated it with an Auto-scheduler [19]. When speeding up EffNet, we matched it
with different architectures so that it can be applied to embedded devices. For the adapt-
ability study of EffNet on diverse architectures, we selected prevalent devices, such as
the NVIDIA RTX 2080 Ti GPU with the Turing architecture, Jetson Nano GPU with the
Maxwell architecture, Nano CPU with the ARM architecture, UP Board CPU with the
Intel x86 architecture, Jetson TX2 GPU with the Pascal architecture, and TX2 CPU with the
ARM architecture. We matched EffNet with the x86 or ARM architectures using the low
level virtual machine (LLVM) [20] and adapted EffNet to the Pascal, Turing, or Maxwell
architectures using the Compute Unified Device Architecture (CUDA) [21]. To optimize
EffNet, we analyzed its computation graphs and divided them into subgraphs for a series
of tasks. These tasks were analyzed with the program sampler in the Auto-scheduler for
several tensor programs. Then, the performance of the tensor programs was fine-tuned
through an evolutionary search [22] and a learnable cost model [23]. We used a remote
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procedure call (RPC) framework to reduce the tuning time of EffNet. With the iterative
tuning process, the high-performance host generates the best performance tensor program
and sends it to the embedded devices for fast inference. Our contributions are summarized
below:

(1) We designed a lightweight neural network, EffNet, to segment point clouds for OCS
recognition. EffNet was integrated with ExtractA, AttenA, and AttenB. The three
modules have different functions and handle different tasks separately; that is, when
features need to be extracted, we employed the ExtractA module. We adopted the
AttenA module when it was necessary to make information flow in neural networks
and extract features, simultaneously. We used the AttenB module when needing to
focus on attention mechanism efficiency. Benefiting from these three modules, EffNet
increased the mean recognition accuracy of point clouds by 0.57% for OCS recognition
with lower model/computational complexity and a higher speed than others;

(2) We optimized EffNet with a generation framework of tensor programs (Auto-scheduler)
to further accelerate it and adapted to different device architectures. The Auto-
scheduler can generate corresponding tensor programs for each subgraph, according
to defined tasks. Then, the tensor programs were auto-tuned with RPC, which uses the
computing power of a high-performance host for fast calculation. The host conducted
the reproduction, crossover, and mutation of the configuration parameters relying
on a learnable cost and an evolutionary search model. The host generated possibly
higher-quality tensor programs. The tensor programs were adapted to different
hardware architectures on devices through different technologies such as LLVM and
CUDA. Then, with iterative tuning on the host, we could obtain the best-performing
tensor program, which had the least latency when running on the embedded devices;

(3) We performed extensive experiments to validate EffNet on different architectures
in complex high-speed railway scenarios. The experiments confirmed that EffNet
is effective at recognizing point clouds for OCS recognition. EffNet also matches
different architectures. The mean accuracy of EffNet was at least 1.13% higher in the
intersection over union (IoU) than that of similar methods. The optimized EffNet had
the same accuracy and computational/model complexity as before. Compared with
other methods, the optimized EffNet obtained the same accuracy range, but its model
and computational complexities were at least 9.30% and 25.00% lower. In addition,
the optimized EffNet reduced the inference latency by 91.97%, 51.97%, 82.58%, 56.47%,
63.63%, and 85.85% on the RTX 2,080 Ti GPU, Nano CPU, Nano GPU, TX2 CPU, UP
Board CPU, and TX2 GPU, respectively.

2. Related Work

Many intelligent approaches have been proposed for OCS recognition. They can be
classified into two groups: ones relying on traditional machine learning studies [8,9,24]
and ones based on deep learning technologies [5,7,11,12,14,25]. Specifically, Han et al. [8]
divided the cantilevers of an OCS into multiple parts using locally convex connected
patches (LCCPs) and super voxel clustering (SVC) algorithms. Then, the features of the
parts were extracted. Based on the features, the coordinates of the connection points of the
parts were calculated with the augmented random sample consensus (RANSAC) algorithm.
Furthermore, the coordinates were employed to detect the status of the connection points.
Pastucha et al. [9] also used RANSAC algorithms and geometric rules to recognize the
cantilever. Chen et al. [24] adopted spatial regularity and a smoothness constraint for
OCS recognition with the multiscale conditional random field (CRF). However, these
studies mainly recognized specified parts of an OCS, and they are difficult to extend to
new recognition tasks in an OCS. The reason for this is that point cloud features need
to be depicted artificially in these traditional approaches, so the choice of features has
a strong influence on the recognition precision. Selecting useful features still requires
a high cost of design and experiments. The features of manual description restrict the
expansion of such methods for new tasks. In summary, the traditional methods are limited
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by prior knowledge, applicable scenarios, and handcrafted information. Additionally,
these algorithms have high latency, which is a challenge for embedded platforms.

Currently, researchers usually adopt deep learning technologies to improve model
accuracy [5,7,11,12,14,25]. For example, the method [5] leveraged Faster R-CNN net-
works [26] and a denoising autoencoder to detect the insulator surface in an OCS based
on images. Wei et al. [7] used DNNs to monitor the pantograph in an OCS by processing
images. These methods relied on images that were captured by cameras. Cameras are
limited by severe weather conditions. When the light is poor, cameras need auxiliary
light for clear images. In contrast, LiDAR does not need auxiliary light to generate point
clouds. The point cloud can be used for OCS recognition without the influence of weather
conditions. For instance, the classic work [11] proposed PointNet for point cloud segmen-
tation. PointNet also enhances the precision of object segmentation and recognition, but
it considers no features of local structures in neighborhoods. Thus, relevant features are
easily lost, and the effect is poor for large-scale scene recognition. To alleviate this issue,
PointNet++ [12] adopted PointNet [11] several times to design local area building blocks
among points for multilevel information extraction. To improve recognition precision,
Lin et al. [14,25] employed KNN to recognize eight components in an OCS. Tu et al. [25]
also used KNN to recognize OCS, and then, they only deployed their model on one TX2
device. They overlooked the compatibility of algorithms with different devices, that is some
devices may support their algorithms, whereas some devices may not. Thus, their methods
are not highly reliable for all inspection devices in high-speed railways. In addition, these
technologies improved recognition precision by complex DNN structures, and they had
high latency. For the high safety of railway operation, the real-time performance of OCS
recognition on embedded inspection devices needs to be guaranteed.

3. Proposed Methods

In Section 3.1, we propose an efficient neural network called EffNet for point cloud
segmentation to recognize the OCS in high-speed railways. In Section 3.2, we optimize
EffNet with an existing framework to produce high-performance programs of tensors for
the speedup and adaptability of EffNet on different architectures.

3.1. Recognizing Point Clouds

Basic principles of the proposed methods: We completed different tasks in point cloud
segmentation based on three principles. The first principle consists of three parts. The first
part is that the KNN algorithm can be used to build a local area with each point as the
center point. According to KNN, points whose distances are close can be considered to be
in a local area. The KNN algorithm enables us to extract the local features of each point in
point clouds.

In the local area constructed by KNN, a two-dimensional (2D) convolution (https:
//pytorch.org/docs/stable/generated/torch.nn.Conv2d.html, accessed on 20 July 2021)
can be adopted to extract the local features of each center point. The principle of the 2D
convolution is as follows:

output(Bi, Noj) = b(Noj) +
Ni−1

∑
s=0

w(Noj , s) ? input(Bi, s), (1)

where input is the input values of the 2D convolution; output is the output values of the
2D convolution; (B, Ni, Hi, Wi) is the input size of the 2D convolution; (B, No, Ho, Wo) is
the output size of the 2D convolution; Bi represents the batch size; i is a batch index; j is
an output channel index; Ni is the number of input channels; No is the number of output
channels; b is the learnable bias of the 2D convolution; w is the kernel of the 2D convolution;
s is an input channel index; ? denotes a valid cross-correlation operation; Wi and Wo are
the width in pixels; Hi and Ho are the height in pixels.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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The second part of the first principle is the following equation:

L = Σ(P · F), (2)

where F is the local feature set of the center point in a local area; the local features can be
extracted with the 2D convolution; P is the weight set of F; P can be obtained with the
nonlinear function of the distance between the center point and neighboring points. The
nonlinear function can be achieved with a one-dimensional (1D) convolution.

Through Equation (2), the local features of each center point were multiplied by
different weights, because each center point has its unique local features. If each local
feature is multiplied by the same weight, the relationship between points will be ignored,
and local information will not be extracted sufficiently. Therefore, different local features
can be extracted with Equation (2).

The third part of the first principle is the concatenation and 1D convolution operations.
To fully extract the features of point clouds, we concatenated the center point feature and its
local features with the “torch.cat” function in PyTorch (https://pytorch.org/docs/stable/
generated/torch.cat.html, accessed on 20 July 2021). The 1D convolution was used to
strengthen the concatenation.

The second principle is that the attention mechanism [16] can increase the effectiveness
of DNNs that are built based on the first principle, and convolutions can enhance the
representation ability of networks. The 1D convolutions can be integrated into the attention
mechanism to form an enhanced one as follows:

O = x× s(C(C(x)) + C(C(x)))× s(C(Cat(Tmean, Tmax))), (3)

where O is the output of the equation; x is the input of the equation; s is a sigmoid
function; Cat is the concatenation “torch.cat” operation in PyTorch; Tmean is the “torch.mean”
operation in PyTorch; Tmax is the “torch.max” operation in PyTorch; C is a 1D convolution.
The 1D convolutions improve the extraction ability of the attention mechanism. Through
Equation (3), the important features can be reinforced, and the unimportant ones can be
suppressed, effectively. The principle of the 1D convolution (https://pytorch.org/docs/
stable/generated/torch.nn.Conv1d.html, accessed on 20 July 2021) is as follows:

out(Bk, Coj) = bias(Coj) +
Ci−1

∑
m=0

w(Coj , m) ? in(Bk, m), (4)

where out denotes the output value of a 1D convolution; (B, Co, L) is the output size of
the 1D convolution; Bk represents the batch size; k is a batch index; Co is the number of
output channels; j is an output channel index; Ci is the number of input channels; bias is
the learnable bias of the 1D convolution; m is an input channel index; w is the kernel of the
1D convolution; ? denotes a valid cross-correlation operation; in represents the input value
of the 1D convolution; (B, Ci, L) is the input size of the 1D convolution; L represents the
length of a signal sequence.

The third principle is that the attention mechanism [17] improves attention mechanism
efficiency. The channelwise statistic Z is calculated for the output of channel attention M′r1:

Z = F (Mr1) =
1
L

L

∑
i=1

Mr1(i), (5)

where i is the spatial index of L; L is the spatial dimension of 1D features; Mr1, Mr2 ∈
RN/2Y×L; R denotes the set of all 2D real numbers; N is the number of input channels; Y
is the number of groups after we group the feature map M ∈ RN×L along the channel
dimension; M has Y groups, which have been divided two branches Mr1 and Mr2; F is the

https://pytorch.org/docs/stable/generated/torch.cat.html
https://pytorch.org/docs/stable/generated/torch.cat.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
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operation of global averaging pooling; Z is a channelwise statistic, and Z ∈ RN/2Y×1. The
output of channel attention M′r1 is calculated as:

M′r1 = S(E(Z)) ·Mr1 = S(P1Z + p1) ·Mr1, (6)

where S is a sigmoid function; p1 ∈ RN/2Y×1 and P1 ∈ RN/2Y×1 are the parameters
that shift and scale the channelwise statistic Z . The output of spatial attention M′r2 is
also calculated as:

M′r2 = S(P2 · G(Mr2) + p2) ·Mr2, (7)

where P2 and p2 are the parameters with size RN/2Y×1; S is a sigmoid function; G is the
group normalization operation [27]. Then, M′r1 and M′r2 are aggregated to communicate
information among subfeatures. The above three principles are respectively achieved
through three modules: ExtractA, AttenA, and AttenB. We describe the implementation of
these principles in detail as follows:

ExtractA module: Based on the first principle, we developed the ExtractA module
to extract effective features, inspired by Lin et al. [14]. ExtractA solves the issues of the
disorder and irregularity in point clouds. In Figure 2, the operations of reshape and
transpose are to change feature dimensions; the

⊗
is the operation of point multiplication;

the
⊕

is the summation operation. We constructed a local area with each point pj and
j = {1, ..., n}, relying on KNN. The construction process is as follows:

• Assume that each point pj is a center point;
• Calculate the distance value between the center point and neighboring points in a 3D

coordinate system;
• Sort these distance values in the order of smallest to largest;
• Select the top M points (pk, where k = {1, ..., m}) according to the sorted results;
• Construct a local region containing the center point and first M points near it.

+

Concatenation

Transpose Reshape

Conv2d

C

Conv1d

KNN

In

Out

Figure 2. The ExtractA module.

This construction process improves the accuracy of feature extraction. The reason for
this is that when the 3D distance between two points is smaller than a specified threshold,
they can be classified into one category. The distance among points belonging to the same
category is relatively small, while the distance between points of different categories is
relatively large, that is the distance among points can reflect their category relationship.
The distance can also reflect the spatial relationship among points.



Remote Sens. 2021, 13, 4110 8 of 21

After the above construction, we calculated the local feature Lpj of the center point pj:

Lpj = ∑
pj ,pk∈N(pj ,pk)

C2(d(pj, pk)) · F0
pk

, (8)

where N(pj, pk) is a local region; pj is a center point; pk is the neighboring point near pj;
d(pj, pk) is the distance between pj and pk in 3D coordinates; C2 is a 2D convolution with
weight sharing; F0

pk
is the feature of the neighboring point pk. Equation (8) is depicted in the

second row of Figure 2. In this equation, the multiplication corresponds to the operation⊗
in the figure; the summation corresponds to the operation

⊕
in the figure.

Equation (8) shows how the disorder and irregularity in point clouds are overcome.
In detail, the feature F0

pk
of the neighboring points is only related to points and has no

relationship with the order of points. The weight C2(d(pj, pk)) has no relationship with the
order of points. The output value of the summation operation does not change with the
order of points. Thus, the local feature Lpj is only related to the center and neighboring
points, and it has no relationship with the order of the input point clouds.

Then, we combined the features of the center and local points:

F1
pj
= C1(Cat(pj, pk)), (9)

where F1
pj

denotes the new feature of the center point pj; pk (k = {1, ..., m}) is the neighboring
point near pj; Cat represents the concatenation operation in Figure 2; C1 denotes a 1D
convolution. The concatenation avoids that centroid features are not considered. The 1D
convolution is to re-extract the concatenated features. Therefore, F1

pj
contains the features

of the center and neighboring points and overcomes the shortcomings of prior methods
that only extract single features.

AttenA module: As shown in Figure 3, relying on the second principle, we enhanced
the representation ability of ExtractA along spatial and channel dimensions, inspired by
Woo et al. [16]. The channel dimension part is shown in the upper two lines of Figure 3; the
spatial dimension part is depicted in the bottom two lines of this figure. In the channel
dimension part, the purpose of the 1D convolutions is to extract information along two
different directions. Then, we added the outputs of 1D convolutions from two different
directions, as shown in the upper two lines of Figure 3. The accumulated value was
normalized with a sigmoid function, which guided adaptive and accurate selection. The
normalized value and the input were multiplied for the broadcast of attention values.

In

Conv1d

Conv1d

Conv1d

Conv1d

Sigmoid

Conv1d

Out

Sigmoid

Max

Mean

C

Concatenation

Figure 3. The AttenA module.
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The output of the above channel dimension part was used as the input of the spatial
dimension part. Specifically, based on the output, the operations of average-pooling
and max-pooling were performed, and their outputs were concatenated for effective
features. Relying on the concatenation values, we encoded the location that was suppressed
or emphasized with spatial attention generated by the last 1D convolution, shown in
Figure 3. Then, we normalized attention values from the 1D convolution by a sigmoid
function. Finally, we multiplied the normalized values and the output of the above channel
dimension part to broadcast the attention values again.

The AttenA module effectively makes information flow in EffNet. The spatial and
channel dimension parts enhance the representation ability of ExtractA along the spatial
and channel dimensions. The applications of 1D convolutions allow more useful features
to be extracted by AttenA. This improves OCS recognition. In addition, the AttenA module
has low computational complexity, as its multiply-and-accumulate operations (MACs) are
approximately zero compared with the MACs of EffNet.

AttenB module: AttenB is based on the third principle in [17] with channelwise and
spatialwise statistics. As shown in the upper part of Figure 4, we obtained channelwise
statistics through a global averaging pooling “Avg-Pool” following Zhang et al. [17].
Thus, the global information of points was embedded. Then, a parameter function was
adopted for the extraction of channel attention. The outputs of the parameter function
were used as the inputs of a sigmoid function. The sigmoid function was employed
for normalization and feature refinement. To broadcast channel attention values, we
multiplied the normalized values from the sigmoid function and the outputs of the branch
In1. Through the above steps, the interchannel relationship was explored.

Group

In1

In2

Avg-Pool

GroupNorm

Sigmoid

Concatenation

WIn+Bias

WIn+Bias

C

Sigmoid

In

Out

Figure 4. The AttenB module.

To acquire spatialwise statistics, we employed group normalization to process the
branch In2. The outputs of group normalization were used as the inputs of a parameter
function. The purpose of the parameter function is spatial attention extraction. To refine
the features, we adopted the outputs of the parameter function as the inputs of a sigmoid
function. The values from the sigmoid function and the outputs of the branch In2 were also
multiplied for the broadcast of channel attention values. With these steps, the interspatial
relationship was explored. Then, we concatenated the outputs of the upper and lower
parts of Figure 4 for information fusion.

As features from the concatenation operation are discrete, we aggregated them in
accordance with Zhang et al. [17]. Along a channel dimension, channel shuffles were
performed for the exchange of information among different subfeatures of EffNet. The
efficiency of AttenB was improved by grouping the channel dimension features into various
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subfeatures and processing them simultaneously. The AttenB module has fewer parameters
and is more lightweight than the AttenA module, but AttenA extracts more features. With
these modules, we completed different tasks in point cloud segmentation by constructing
EffNet. We describe the detailed design process of EffNet as follows.

As depicted in Figure 5, we aggregated ExtractA, AttenA, and AttenB and built EffNet
to segment point clouds for OCS recognition. The “depthwise” in this figure represents the
depthwise separable 1D convolution. We employed depthwise separable 1D convolutions
instead of original 1D convolutions in EffNet to reduce the model and computational
complexity. The depthwise layer was used in the last layer of the second ExtractA module,
as listed in the first row of Figure 5. The second and third rows also have a depthwise layer
before each AttenB module. The depthwise layers reduced the parameters and MACs with
group convolutions. Thus, the model and computational complexities were decreased. We
adopted a ReLU layer after each depthwise layer or original convolutions to increase the
nonlinear relationship in EffNet.

Concatenation

ExtractA AttenA

Conv1d

C

Conv1d

In ExtractA AttenA ExtractA

AttenACConv1d

Out Log_softmax Reshape

Concatenation

AttenB Conv1dAttenB

Conv1d

AttenB

Conv1d AttenB

AttenBAttenB

Depthwise Depthwise Depthwise

Depthwise

Depthwise

Figure 5. The proposed EffNet.

The input and output of EffNet are, respectively, denoted by In and out. The input
and output of each module are also represented by In and out, respectively, below. Each
input point consists of 3D feature dimensions. The ExtractA module was used for feature
extraction, while overcoming the challenges of the disorder and irregularity in point clouds.
To suppress redundant features and enhance important ones, we combined the ExtractA
module with the AttenA module. The inputs of each ExtractA module consisted of the
combination of the original input In and the outputs of AttenA. Through the process, the
jump connection was formed. The following concatenation structures also make up the
jump connection.

To further exchange point cloud features, we adopted the AttenB module, which
has fewer parameters than general attention mechanisms. The output from the AttenB
module was concatenated with the outputs from all AttenA modules. To extract features
again, we employed a depthwise layer. The AttenB module followed closely behind for
information communication. As shown in the second row of Figure 5, the output from
the AttenB module was concatenated with the outputs from all AttenA modules. After
the concatenation, the extracted features of point clouds contained local neighborhood
information and self-information. Simultaneously, the features of different layers were
combined, and the global features were obtained. Additionally, the characteristics of
different layers were transferred through concatenation.
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Following the first concatenation, a depthwise layer and the AttenB modules were
connected sequentially for the extraction of useful features and suppression of useless
features. Following the second concatenation, a depthwise layer and the AttenB modules
were connected sequentially three times. The outputs of each depthwise layer and the
AttenB modules were used as the input of the next ones. Then, a 1D convolution was
employed to extract features. Following the 1D convolution, AttenB and a 1D convolution
were adopted again to enhance valuable features. Then, the reshape operation was used
to adjust the shapes of features. To predict the probability of which category each point
belongs, we employed the log_softmax function used in most classification tasks. In
EffNet, the direct connection helps multiple different features be extracted. The jump
connection combines different features in different modules, enriching the extracted local
and global features. Thus, EffNet has high efficiency, while ensuring comparable accuracy.
We confirmed this effect in the experiments.

3.2. Accelerating Recognition of Point Clouds

As depicted in Figure 6, EffNet was optimized with the Auto-scheduler [19] on dif-
ferent architectures for the generation of high-performance tensor programs. Here, the
high-performance tensor programs minimized the latency of EffNet on different archi-
tectures. Specifically, we analyzed the computation graphs of EffNet and divided them
into subgraphs to obtain a series of tasks. A task is defined as a process of generating
a high-performance program for a subgraph. The computation graphs of EffNet were
divided into 30 tasks. The Auto-scheduler iteratively selects these tasks. It allocates time
resources for them. In each iteration, a task was selected, and a program sampler generated
a batch of tensor programs for each task, that is the program sampler was employed to
construct a larger search space, sampling various programs. Based on the front sampled
programs, the tensor program performance was auto-tuned. The performance of tensor
programs was fine-tuned with an evolutionary search and a learnable cost model.

Performance tuner

Tasks

EffNet

CUDA

Evolutionary searchCost model

The model for recognition of overhead contact system

NVIDIA GPU devices

Tensor programs

Sampler

Evaluation and RPC

Computation graph

LLVM LLVM

NVIDIA CPU devices Intel CPU devices

Turing 
architecture

ARM CPU x86 CPUMaxwell
architecture

Evaluation and RPC

Pascal
architecture

Figure 6. Accelerating recognition of point clouds.
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In each iteration, the performance of the tensor programs was measured on different
architectures with an RPC tuning framework. We employed the platform RTX 2080 Ti GPU
as a host. The host sent the batches of sampled tensor programs to different embedded
devices with diverse architectures for execution. The execution time of EffNet on embedded
devices was measured. The embedded devices returned the execution latency to the host,
and the performance of the current program configuration parameters was evaluated on
the host. Specifically, the host uses the measured performance results as inputs, trains
the cost model, and executes reproduction, crossover, and mutation for configuration
parameters using evolutionary search. Our model was adapted to the Pascal, Turing, or
Maxwell architectures by CUDA and the ARM or x86 CPU architectures by LLVM. Then,
a new tensor program with potentially higher quality was generated. Through multiple
iterations of trials, we could obtain the best-performing tensor program, which refers to the
program with the least latency. The best-performing tensor program was sent to embedded
devices. Through the above process, we obtained the overall minimum latency of EffNet
on embedded devices with different architectures.

4. Experiments

In this section, we present real experimental scenarios in Section 4.1 containing real
experimental platforms, evaluation metrics, and datasets. In Section 4.2, EffNet is com-
pared with the state-of-the-art on accuracy. In Section 4.3, the model and computational
complexities of EffNet are evaluated. In Section 4.4, the latency of EffNet before and
after optimization is assessed on different devices. The model latency under different
tuning times is also evaluated. In Section 4.4, the visualized results of EffNet are compared
with others.

4.1. Real Experimental Scenarios

Experimental platforms and metrics: We conducted experiments in real scenarios, as
listed in Figure 7. Here, the inference of the original and optimized EffNet was performed
on TX2 with Max-N mode on an inspection robot. This robot can also be equipped with
other popular embedded devices, such as the UP Board CPU, Nano CPU, TX2 CPU, or Nano
GPU. The inspection robot walks with LiDAR that generates the point cloud data of an
OCS. The data were leveraged as ground truths. The data were also employed as the inputs
of our models. Based on the inputs of real scenarios, the original and optimized EffNet
networks predicted the recognition results of an OCS. The results contained the comparison
of the intersection over union (IoU) of each category, number of parameters/MACs, mean
accuracy, latency, and precision of each category. Apart from parameters/MACs and
latency, other indicators are better the higher they are. To validate the results, we compared
them with similar methods, as shown in the following tables and figures.

Datasets: The OCS recognition dataset [14] was employed for model training on the
RTX 2080 Ti GPU and model testing on different devices. The dataset contains point clouds
generated by 2D SICK LiDAR (LMS511-20100 PRO) installed on an inspection robot. The
LMS511-20100 PRO LiDAR can accurately measure the size and distance of objects. It is
mainly used when high measurement accuracy is required outdoors. The measurement
of the LiDAR device can achieve millimeter accuracy. When measuring distance, it filters
out external interfering objects, such as dust and insects. In addition, it is small in size
and light in weight. Its maximum measurement range is 80 m, and its maximum field of
view is 190◦. We set the scanning frequency of the LiDAR device to 25 Hz, the angular
resolution to 0.1667◦, and the scanning angle range to 90◦–180◦. These parameters can also
be set to other values. More detailed characteristics of the LiDAR device are shown on the
website (https://www.sick.com/us/en/detectionandrangingsolutions/2dlidarsensors/
lms5xx/lms51120100pro/p/p216240, accessed on 20 July 2021).

https://www.sick.com/us/en/detectionandrangingsolutions/2dlidarsensors/lms5xx/lms51120100pro/p/p216240
https://www.sick.com/us/en/detectionandrangingsolutions/2dlidarsensors/lms5xx/lms51120100pro/p/p216240
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Figure 7. The actual inspection robot.

The robot controlled the start and end of measurement by embedded devices such as
Jetson TX2. The walking speed of the robot carrying the LiDAR device was 1 m/s. While
moving over rails, the robot used an odometer to continuously record the displacement
of the LiDAR sensor. An odometer is relatively stable compared with a global navigation
satellite system (GNSS) positioning device. In detail, when the robot carrying an odometer
passes through tunnels, the odometer can still record the displacement. On the contrary,
the signal of a GNSS positioning device is easily blocked in tunnels. Then, the displacement
may not be recorded accurately by the GNSS positioning device in tunnels. In addition,
GNSS positioning devices are extremely susceptible to electromagnetic interference. There-
fore, we employed an odometer to record the displacement of the LiDAR device along
the rails.

The scanning planes of the LMS511-20100 PRO LiDAR device were perpendicular
to the rails, facing the OCS [28]. The scanning direction of LiDAR was used as the XY
direction, and the moving direction of LiDAR was employed as the Z direction. Thus, the
3D data were formed and denoised by the dataset [14], where Lin et al. marked 16 km
of the LiDAR data. They also averaged and summed the 3D coordinate values of several
frames of data near the current frame. The reason for this is that adjacent frames are nearly
identical, and the average and sum operations can reduce abnormal data fluctuations.
Additionally, the dataset was divided into training and testing datasets. The training and
testing datasets had 1,292,483 and 314,714 points, respectively. Their point densities were
respectively 1052 points/m2 and 1003 points/m2.

4.2. Evaluating the Accuracy Results

The precision/IoU in each category and mean accuracy of EffNet were compared
with those of the state-of-the-art, as listed in Table 1. Here, the best results are in bold;
PointNet++ (MSG) or (SSG), respectively, refer to PointNet++ with multiscale grouping
(MSG) or single-scale grouping (SSG). For a fair comparison, the neighboring points of the
KNN were set to be the same as those of the latest work [14,25]. Our method outperformed
others on multiple categories of OCS recognition. Specifically, our precision was slightly
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higher than that of [14] in the categories of the steady arm, cantilever, pole, registration
arm, dropper, insulator, contact wire, and catenary wire. Our IoU was respectively at least
3.22%, 0.05%, 3.10%, 1.89%, 2.01%, and 0.23% higher than that of the research [25] in the
categories of the steady arm, pole, cantilever, registration arm, insulator, and catenary wire.
Our mean accuracy of IoU was also at least 1.13% higher than that of other methods. In
summary, our methods had the best accuracy for OCS recognition.

Table 1. Evaluating accuracy results. Point cloud categories are C1: pole, C2: catenary wire, C3: contact wire, C4: insulator,
C5: dropper, C6: steady arm, C7: registration arm, C8: cantilever.

Method Accuracy C1 C2 C3 C4 C5 C6 C7 C8 Mean

PointNet
Precision 99.73 98.99 99.14 96.03 89.67 92.02 93.59 87.03 94.52

IoU 99.34 98.12 98.74 91.68 76.84 82.23 88.64 77.87 89.18

PointNet++(SSG)
Precision 99.85 98.57 99.37 97.26 97.22 91.12 95.42 92.60 96.42

IoU 99.65 97.93 98.28 94.45 93.15 83.33 89.83 87.88 93.06

PointNet++(MSG)
Precision 99.86 98.61 99.51 97.10 96.96 90.80 95.39 93.38 96.45

IoU 99.64 98.06 98.47 94.21 93.72 84.51 90.61 87.75 93.37

Lin et al. [14]
Precision 99.80 99.45 99.79 97.36 96.39 95.27 95.23 92.81 97.01

IoU 99.64 99.16 99.60 93.59 91.91 86.44 92.11 87.23 93.71

Tu et al. [25]
Precision 99.91 99.65 99.89 97.18 97.16 95.97 94.70 93.87 97.17

IoU 99.76 99.51 99.75 94.12 93.68 85.68 91.38 88.68 94.07

Ours
Precision 99.91 99.87 99.87 98.96 97.13 95.90 95.54 94.78 97.72

IoU 99.81 99.74 99.74 96.01 93.01 88.44 93.11 91.43 95.13

4.3. Evaluating the Number of Parameters and MACs

Evaluating the number of parameters: As depicted in Figure 8, to measure the model
complexity, we calculated the number of parameters. In the figure, “[M]” represents
106. The number of parameters has no relationship with the inputs. The comparison
demonstrated that our model complexity is lower than that of other methods. For example,
compared with the parameters of the recent research [14], ours are 40.00% fewer. EffNet
has 55.17% fewer parameters than the classic study [11]. EffNet has at least 9.30% fewer
parameters than the work [12]. These results denote that our model complexity is lower.
The optimization of EffNet does not change the model complexity. Then, we evaluated the
computational complexity of EffNet as follows.
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Figure 8. Evaluating the number of parameters.
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Evaluating the number of MACs: As shown in Figure 9, to measure the computational
complexity of the models, we calculated the number of MACs. In the figure, “[G]” repre-
sents 109. For a fair comparison, 300 point cloud points were employed as the inputs of
all methods in this figure. The comparison showed that our computational complexity is
lower than that of other studies. For instance, our MACs are 36.84% fewer than those of the
recent work [14]. Our MACs are also 53.85% fewer than those of the classic method [11].
In short, compared with other similar methods, the MACs of EffNet are fewer, that is our
computational complexity is low, and EffNet is lightweight. The optimization of EffNet
does not change the computational complexity, but reduces the latency. The latency of
EffNet was further evaluated on different platforms as follows.
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Figure 9. Evaluating the number of MACs.

4.4. Evaluating the Latency on Different Platforms

Evaluating the latency on the RTX GPU: As shown in Figure 10, our latency was
compared with the state-of-the-art on the RTX 2080 Ti GPU. The comparison methods
were implemented, and their latency was measured. In this figure, “Ours” and “Ours
(Auto-scheduler)”, respectively, represent the latency of the original and optimized EffNet
networks on the RTX 2080 Ti GPU. The inputs of all models were 1000 point cloud points.
The dimension of each point was three. The unit of latency was milliseconds. The following
comparison was also set up the same as this. Before optimizing EffNet, we have at least
93.64% less latency than the work [12]. The latency of the original EffNet is at least 11.23%
lower than other methods [11,14]. When optimizing EffNet, we set the maximum number
of trials to 10,000 on the RTX 2080 Ti GPU. We used the latency corresponding to the
maximum number of tuning. After optimization, EffNet decreases the latency by 91.97%,
while its accuracy is the same as before optimization on the RTX GPU. The latency of the
optimized EffNet is at least an order of magnitude lower than similar recognition methods.
Then, we evaluated the latency of EffNet before and after its optimization on embedded
devices with different architectures.

Evaluating the latency on the TX2 GPU: We compared the latency of the original
and optimized EffNet networks with the state-of-the-art on the TX2 GPU. As depicted
in Figure 11, “Ours (Auto-scheduler)” and “Ours”, respectively, represent the latency
of the optimized and original EffNet on the TX2 GPU. The same expression is used in
the following figures, which show the comparison on other embedded devices. The
maximum number of trials was set to 10,000 for optimization on the TX2 GPU and the
following embedded devices. We adopted the latency corresponding to the maximum
number of tuning. The optimized EffNet has at least 99.46% lower latency than the
prevalent PointNet++ (MSG) or (SSG). Compared with other similar studies in the figure,
the optimized EffNet has at least 86.84% less latency. The optimized EffNet reduces the
latency by 85.85%, while its accuracy is the same as before optimization on the TX2 GPU.
Compared with the others, the latency of the optimized EffNet is an order of magnitude
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less. Therefore, the optimized EffNet is efficient whether on the TX2 GPU or RTX GPU. We
evaluated the latency on other embedded architectures below.
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Figure 10. Comparison of the latency on the RTX GPU.
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Figure 11. Comparison of the latency on the TX2 GPU.

Evaluating the latency on the TX2 CPU: As shown in Figure 12, a significant difference
is presented between our methods and other similar technologies on the Jetson TX2 CPU.
In the figure, the original EffNet has at least 97.28% less latency than the classic work [12].
The optimized EffNet has at least 64.67% lower latency than the others. It decreases the
latency by 56.47% while keeping the accuracy unchanged before and after optimization on
the TX2 CPU. What is striking in the figure is that the optimized EffNet reduces the latency
by an order of magnitude on the TX2 CPU. Generally speaking, the higher the accuracy,
the more complex the model/computation is, and the higher the latency. However, our
accuracy is slightly higher, the model and computational complexities are lower, and the
latency is less than the others. The above comparison reports that the optimized EffNet
is lightweight on the TX2 CPU, TX2 GPU, and RTX GPU. We compared the latency of
different methods on the Nano GPU below.
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Figure 12. Comparison of the latency on the TX2 CPU.

Evaluating the latency on the Nano GPU: As shown in Figure 13, the comparison
further supports the idea that our models match the Maxwell GPU architecture of the Nano
GPU and outperform other similar methods in latency. In this figure, the original EffNet
has 3.92% lower latency than the lightweight PointNet. Compared with the prevalent
technologies [12,14], the original EffNet is at least 41.12% lower in latency. After optimiza-
tion, our model decreases the latency by 82.58%, but the precision remains unchanged on
the Nano GPU. The latency of our optimized EffNet is 83.26% less than that of comparison
methods. Our low latency makes the fast operation of models running on the Maxwell
GPU architecture a reality. The above experiment results show that the optimized EffNet is
lightweight on the Nano GPU, TX2 CPU, TX2 GPU, or RTX GPU. We evaluated the latency
of the models on the Nano CPU below.
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Figure 13. Comparison of the latency on the Nano GPU.

Evaluating the latency on the Nano CPU: As depicted in Figure 14, the latency of the
original and optimized EffNet networks is an order of magnitude lower than others. Our
models also adapt to the ARM CPU architecture on the Nano CPU. The original EffNet has
61.05% less latency than PointNet. The optimized EffNet decreases the latency by 51.97%
with unchanged accuracy. Our latency after model optimization is at least 75.44% less than
that of the recent approach [14]. The comparison fully demonstrated that our methods are
efficient and suitable for embedded devices, such as the Nano CPU, Nano GPU, TX2 CPU,
TX2 GPU, or RTX GPU. We evaluated the results on the UP Board CPU as follows.
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Figure 14. Comparison of the latency on the Nano CPU.

Evaluating the latency on the UP Board CPU: As shown in Figure 15, we compared
the proposed approaches with the state-of-the-art on the UP Board CPU. The comparison
confirmed that the optimized EffNet adapts to the Intel x86 CPU architecture on the UP
Board CPU and improves the speed of OCS recognition. The original and optimized EffNet
networks both outperform other technologies in latency. For example, the original EffNet
network has at least 15.65% lower latency than the work [11,12,14]. The optimized EffNet
reduces latency by 63.63% with stable accuracy on the UP Board CPU. The latency of the
optimized EffNet is at least 69.32% lower than that of the lightweight study [11]. Compared
with other recent studies, the optimized EffNet has 71.90% less latency. Through all the
above verification, we can conclude that the optimized EffNet is effective and efficient on
different devices with different architectures. We evaluated the latency of the optimized
EffNet under different tuning times below.
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Figure 15. Comparison of latency on the UP Board CPU.

Evaluating the latency under different tuning times: We present the latency of the
optimized EffNet under different tuning times, as depicted in Figure 16. The latency
changes with the number of trials on the UP Board CPU, Nano CPU, Nano GPU, TX2
CPU, TX2 GPU, and RTX GPU. In the figure, the abscissa shows the number of trials. The
ordinate presents the latency. The inputs of all models were 1000 point cloud points. The
dimension of each point was three. On the UP Board CPU, Nano CPU, and TX2 CPU,
the latency decreases as the number of trials increases. On the Nano GPU, TX2 GPU, and
RTX GPU, when the number of trials is less than 4000, the latency reduces with increasing
tuning times; when tuning times exceed 4000, the latency decreases slowly as tuning times
increase. When tuning times reach 10,000, the latency is lower than that under other tuning
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times in this figure. Therefore, we adopted the optimized model under 10,000 tuning times
and deployed it to different embedded devices as the optimized EffNet. Through multiple
tunings, we could find a suitable model for embedded devices. Therefore, this figure
guides the choice of the optimized EffNet under different tuning times. We evaluated the
visualized results of the optimized EffNet as follows.
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Figure 16. Comparison of the latency under different tuning times.

4.5. Evaluating the Visualized Results

A visualization of the comparison methods is shown in Figure 17. We obtained the
visualization results by testing the optimized EffNet in real experimental scenarios. In the
figure, different colors in the rightmost position indicate different predicted components.
The boxes represent the deviation between the comparison methods and ground truths. The
comparison demonstrated that the optimized EffNet outperforms others. For instance, the
visualization of the optimized EffNet is closer to that of the ground truths. The comparison
research [25] mistook a registration arm for a catenary wire, while our prediction is similar
to the ground truths. When recognizing a shoulder, our method has a smaller deviation
than the others. In fact, the larger the number of neighboring points in a local area, the
better the recognition. We set the number to 16, while Qi et al. [12] set it to 32. Thus, we
achieved accurate prediction with a smaller number of neighboring points. Additionally,
the recent work [12] had errors in the prediction of the steady arm and cantilever, while
our estimation is closer to the ground truths. In summary, the optimized EffNet achieves
more accurate OCS recognition than the others.

Ground Truth PointNet++ (SSG) Tu et al. Our EffNet

Catenary wire

Dropper

Contact wire

Insulator

Pole

Cantilever

Registration arm

Steady arm

Shoulder

Windproof cable

Figure 17. Evaluating the visualized results.

5. Conclusions

To segment point clouds for OCS recognition in complex high-speed railway scenarios,
we developed a lightweight neural network EffNet containing ExtractA, AttenA, and
AttenB. To further accelerate EffNet and match it with different architectures, we optimized
it using a generation framework of tensor programs. The optimized EffNet adapts to
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diverse architectures of different devices such as the NVIDIA TX2 CPU, RTX 2080 Ti GPU,
Nano GPU, Nano CPU, UP Board CPU, and TX2 GPU. Extensive experiments confirmed
that our methods are effective and efficient. Compared with other methods, EffNet has at
least a 0.57% higher mean accuracy, with 9.30% and 25.00% lower model and computational
complexities, respectively. The optimization did not change the precision or model and
computational complexity. The optimized EffNet has at least 92.87%, 83.26%, 69.32%,
18.85%, 61.05%, and 86.84% lower latency on the RTX 2080 Ti GPU, Nano GPU, UP Board
CPU, TX2 CPU, Nano CPU, and TX2 GPU, respectively, than the others. Our latency
measurement under different tuning times guided the choice of models with high speed.
Our visualization also outperformed others in real high-speed railway scenarios. To the
best of our knowledge, this paper presents a fast model with lower computational/model
complexity and slightly higher accuracy than existing methods for OCS recognition. The
optimized model reduces inference latency by an order of magnitude in complex high-
speed railway scenarios, while matching different embedded systems. As we emphasize
algorithms, the same dataset was adopted to validate algorithm performance; LiDAR
point density and digital elevation models were not considered. We will make up for this
shortcoming in future work.
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