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Abstract: It has been reported that global warming results in the increase of globally averaged
wave heights. What happened to the global-averaged wave heights during the global warming
slowdown period (1999–2013)? Using reanalysis products, together with remote sensing and in situ
observational data, it was found that the temporal variation pattern of the globally averaged wave
heights was similar to the slowdown trend in the increase in global mean surface temperature during
the same period. The analysis of the spatial distribution of trends in wave height variation revealed
different rates in global oceans: a downward trend in the northeastern Pacific and southern Indian
Ocean, and an upward trend in other regions. The decomposition of waves into swells and wind
waves demonstrates that swells dominate global wave height variations, which indicates that local
sea surface winds indirectly affect the slowdown in the rate of wave height growth.

Keywords: global warming slowdown; global wave height; ERA5; altimeters; buoys

1. Introduction

Coastal and offshore engineering projects are significantly affected by wind-generated
waves. When waves travel from deep to shallow waters, they often carry sediment, result-
ing in coastal change, erosion and siltation, especially in ports, channels, and estuaries.
Wave heights in the open ocean play an important role in safe and efficient ship trans-
portation. High wave heights affect the speed of the transportation of goods and may
cause ship accidents. Moreover, ocean surface waves are the media for air–sea exchanges,
such as energy budgets and upper ocean mixing. Changes in ocean wave conditions
influence air–sea interaction mechanisms, thus playing an important role in determining
the simulation accuracy of climate models [1–3].

The global warming trend, characterized by global mean surface temperature (GMST),
exhibited a slowdown between two large El Niño events in 1997/98 and 2015/16 [4–10].
The Intergovernmental Panel on Climate Change’s Fifth Assessment Report states that there
was a significant reduction in GMST over the 15 years from 1998 to 2012 compared with
the 60 years from 1951 to 2012 [11]. Debates are ongoing concerning this finding [12–14].

What has happened to global waves in recent decades? On a regional scale, a down-
ward trend in wave height in the mid-latitude North Pacific has been reported [15]. On a
global scale, trends in mean wave direction, significant wave height (SWH), mean wave
period, and wave energy flux between 1979 and 2010 have been assessed: they all varied
in time and space. Among them, the mean wave period and the mean wave direction
showed the most and least significant changes, respectively [16]. Furthermore, changes
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in global waves before 2008, and global winds and waves from 1985 to 2018, have been
examined using satellite data. These studies showed that both values increased slightly,
especially in extreme conditions, with the largest growth in the Southern Ocean [1,17]. A
proposed mechanism for these changes is that ocean warming was a crucial factor affecting
global winds and, hence, the waves they generate. Ocean warming in different basins may
affect wind conditions through sea surface temperature (SST), thus leading to an increase
in global wave energy [18].

Although the above-mentioned studies used multi-source data to analyze wave trends
in different ocean regions over different periods, none of them, focused on the characteris-
tics of the global wave climate during the global warming slowdown period. We seek to
fill this gap by investigating changes in the global wave climate in response to the global
warming slowdown between two large El Niño events from 1999 to 2013 through the
integrated use of buoy, satellite altimeter, and reanalysis datasets.

The paper is organized as follows: the data and methods used in the study are
described in Section 2. The trends of global significant wave heights during the period
of 1999–2013 are detailed in Section 3. A discussion and the conclusions are presented in
Section 4.

2. Materials and Methods
2.1. Data

To investigate the climatic characteristics and long-term trends in the global wave field,
reliable and extended time series of data are required. Almost all previous studies used
satellite altimeter data [1,17,19], numerical hindcast outputs [20,21], buoy data [22,23], ship
observations [24], and/or reanalysis data [25–27] to investigate the trend in ocean wave
conditions. We used ERA5 [28] and ERA-Interim [29] reanalysis datasets produced by the
European Center for Medium-Range Weather Forecast (ECMWF), satellite altimeter data
from the French Research Institute for the Exploitation of the Sea (IFREMER), and National
Data Buoy Center (NDBC) buoy data to statistically analyze global wave trends [30].

In this study, we used the ERA5 global wave (wind) reanalysis data at a spatial
resolution of 0.5◦ × 0.5◦ (0.25◦ × 0.25◦) and at monthly intervals from January 1979 to
December 2019. The ECMWF regularly uses its models and data assimilation systems to
re-analyze archived observations, creating global datasets describing the recent history of
the atmosphere, land surface, and oceans. ERA5 is the fifth generation ECMWF reanalysis
of the global climate and weather for the past four to seven decades, and contains detailed
records from 1950 onwards. It is a relatively high-resolution, long-duration time series,
and offers a wide spatial coverage. The SWH from ERA5 is approximately equal to the
average height of the highest third of the surface ocean waves generated by wind and
swell. The SWH can be partitioned into remotely generated swell (swell wave height) and
locally generated wind-sea (wind wave height). The wind speed is usually characterized
by measurements at a reference height of 10 m. The surface ocean wave field consists
of a combination of waves with different heights, lengths, and directions (known as the
two-dimensional wave spectrum). The wave spectrum can be decomposed into wind-sea
waves, which are directly affected by local winds, and swell, waves that are generated by
wind at a different location and time. More strictly, the significant wave height is four times
the square root of the integral in all directions and all frequencies of the two-dimensional
wave spectrum [28].

The ERA-Interim wave reanalysis from the ECMWF is at a spatial resolution of 1◦ × 1◦

and covers the whole globe. The data are available from January 1979 to December 2017 at
6-hourly intervals. The ECMWF periodically uses its forecast models and data assimilation
systems to re-analyze archived observations, creating global datasets describing the recent
history of the atmosphere, land surface, and oceans.

The National Data Buoy Center (NDBC) is part of the National Oceanic and Atmo-
spheric Administration’s (NOAA) National Weather Service (NWS). It provides hourly
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observations from a network of approximately 90 buoys and 60 Coastal Marine Automated
Network (C-MAN) stations.

The monthly mean altimeter data of SWH have a spatial resolution of 2◦ × 2◦, and
are available from January 1993 to December 2016. Continuous altimeter measurements of
SWH are available over 24 years (1993–2016) from the nine altimeter missions: ERS-1&2,
TOPEX-Poseidon, GEOSAT Follow-On (GFO), Jason-1, Jason-2, ENVISAT, Cryosat, and
SARAL.

The global annual mean surface air (land and ocean) temperature (GMST) from 1979
to 2019 is provided by the NOAA. These two datasets are blended into a single product
to produce combined global land and ocean temperature anomalies. The available time
series of global-scale temperature anomalies are calculated with respect to the 20th-Century
average, while the mapping tool displays global-scale temperature anomalies with respect
to the base period of 1981–2010.

2.2. Calculation of Global Time Series

The monthly SWH time series are aggregated by years to calculate the globally aver-
aged time series. The global signals for both SWH and 10-m sea surface wind speed (SSW)
anomalies are obtained by spatially averaging as follows:

Vglobal =
∑n

i S(lati ,loni)
· Vi

∑n
i S(lati ,loni)

(1)

where Vi represents an annual mean variable at each location at grid i and S is the surface
area of the grid cell at the specified latitude and longitude.

2.3. Mann–Kendall test for Monotonic Trend

The Mann–Kendall (MK) time series trend analysis method proposed by Mann and
Kendall [31,32] is used to statistically assess a monotonic trend in a variable of interest. In
the MK test, for a time series of x over length n, an indicator function can be calculated by:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (2)

where S is the test statistics and n is the number of observations in the set. The parameter β
is used to determine the trend:

β = Median
( xi − xj

i − j

)
1 < j < i < n (3)

β > 0 signifies an upward trend, and β < 0 signifies a downward trend.
All the estimates of trend are associated with statistical variability. The most common

way to address such issues is by determining whether the trends are statistically significant.
In this study, all the spatial distributions of trends were used in this way and regions where
the trend is significant at the 95% level were shaded.

2.4. Swell Index

The swell index [33,34] is used to quantitatively analyze whether the swell is dominant
in global waves:

Si =
h2

s Ts

h2
mTm

(4)

where Si is the swell index, hs is swell-wave height, Ts is the mean wave period of swells,
hm is SWH, and Tm is the mean wave period of mixed waves.
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3. Results
3.1. Slowdown in Trend of Global Average SWH from 1999 to 2013

Both observations and model simulations suggested that the rate of increase in the
annual GMST anomaly slowed down over the 15 years from 1998 to 2012, with the ocean
being widely viewed as an important element in this phenomenon [6]. Waves are an
important player in air–sea interactions, and wave characteristics are greatly affected by
the climate. Figure 1 shows the time series of the global mean SWH anomaly (SWHA)
and GMST [35] from 1979 to 2019 (41 years). The wave data is from the ECMWF (ERA5
and ERA-Interim), and the GMST data was obtained from the National Oceanic and
Atmospheric Administration (NOAA) (see Methods and Data availability). The GMST
time series was correlated with the ERA5 (0.68) and ERA-Interim (0.71) global mean SWHA
time series. The long-term time series trends for GMST and SWHA were first calculated
using the Mann-Kendall (MK) test (see Methods) and linear fitting. It was found that the
growth rate of the GMST slowed down significantly after 1998, and accelerated again after
2013. Figure 1 shows that SWHs increased by 0.36 cm per year from 1979 to 2019 (ERA5)
and by 0.23 cm per year from 1979 to 2018 (ERA-interim). SWH exhibited a slowdown
between the two large El-Niño events (1999–2013). The slope of SWHA from the ERA5 was
−0.100 cm per year, and that from the ERA-Interim was 0.003 cm per year over this period.
Over the first 20 years (1979–1998), SWHs increased by 1.00 cm per year (ERA5) and by
0.51 cm per year (ERA-interim). In other words, the SWH growth rate for the first 20 years
of data was much larger than that for the global warming slowdown period.
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Figure 2. Spatial distribution of global annual mean SWH trend (units: cm/yr.) from ERA-Interim (a: 1979–1998; c: 1999–2013) and 
ERA5 (b: 1979–1998; d: 1999–2013). The grey shaded areas represent points that are statistically significant at a 95% confidence lev-
el. 

  

Figure 1. Significant wave height annual anomalies (with respect to the 1979–2019 average of 2.47 m) averaged over the
global oceans using ERA5 reanalysis data (solid red line; units: m), (with respect to the 1979–2018 average of 2.36 m) from
ERA-Interim reanalysis data (solid blue line) and global mean surface temperature with respect to the 1981–2010 average
(solid black line; units: ◦C). The blue dotted line is the linear trend of global SWH anomalies. The two thick red lines (ERA5)
and two blue dotted lines (ERA-Interim) represent the slopes of global SWH anomalies during 1979–1998 and 1999–2013,
respectively. The thick black line is the slope of the global mean surface temperature during the global warming slowdown
period. The years corresponding to strong El-Niño events in 1998/99 and 2015/16 are annotated on the graph. The solid
lines represent the linear trends of SWHA from ERA5 (light red), SWHA from ERA-Interim (light blue) and global mean
surface temperature from NOAA (grey).
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3.2. Uneven Geographical Distribution in SWH Trends from 1999 to 2013

To better understand the global SWH trend, the global spatial distribution of the
annually averaged SWH trend from 1979 to 2013 was investigated. Figure 2a (ERA-interim)
and Figure 2b (ERA5) display global distributions of SWH variation from 1979 to 1998,
showing a clear global upward trend. The SWH in the Southern Ocean and high-latitude
northern Atlantic showed a stronger positive trend (2.5 cm per year) than the other oceans.
The SWH increase in the northwestern Pacific and Arabian Sea was approximately 1.5 cm
per year. However, the eastern equatorial Pacific Ocean demonstrated a weak negative
trend, and the regions of decreasing wave height in the ERA-interim data were larger
than those for ERA5. Figure 2c (ERA-interim) and Figure 2d (ERA5) show the spatial
distributions of the SWH slowdown over the period from 1999 to 2013. Weaker SWH-
increasing trends can be found in the high latitudes of the northern Atlantic (1.5 cm per
year), and a weak negative trend can be observed near Greenland (1.0 cm per year). Large
regions of the Indian Ocean and high latitudes of the northern Pacific demonstrated a
stronger decreasing trend, reaching a maximum of −1.5 cm per year. There was a clearly
increasing trend of approximately 0.5 cm per year in the equatorial east Pacific, the southern
Atlantic, and south of Madagascar. Similar negative trend distributions occurred in the
southern Indian Ocean and the high latitudes of the northern Pacific, as also observed by
the altimeter (Figure A1).
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Figure 2. Spatial distribution of global annual mean SWH trend (units: cm/yr.) from ERA-Interim (a: 1979–1998;
c: 1999–2013) and ERA5 (b: 1979–1998; d: 1999–2013). The grey shaded areas represent points that are statistically significant
at a 95% confidence level.

3.3. Reliability of Reanalysis Data for Estimating SWH Trends

Figure 3 shows scatter plots comparing the monthly values of the two reanalysis
datasets compared to those from the NDBC buoys and satellite altimeters. These compar-
isons were in good agreement, although they demonstrated differences in spatial averaging
and temporal mis-matches. Globally averaged changes in wave climate, as suggested by
the reanalysis data, were confirmed by comparison of time series with the remotely sensed
altimeter data, as shown in Figure 4. The comparison shows that the differences between
the reanalysis and observations were small. While the wave height fields from the reanal-
ysis datasets (ERA5 and ERA-Interim) were slightly underestimated compared to those
from the buoy observations, the overall trends were consistent, and the statistical relative
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error was measured at 0.18 m between the two reanalysis datasets. The root-mean-square
(rms) error of monthly averages between ERA5 (ERA-Interim) and the altimeter data was
0.09 m (0.12 m). The rate of increase in the annually averaged SWH from the altimeter
data was 0.045 cm per year during the global warming slowdown period (Figure 4). These
results demonstrate that the reanalysis data produced comparable results to buoys for the
absolute SWH and to altimeters for globally averaged trends.
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The 14 buoys were provided by the NDBC. The root-mean-square error between the ERA5 and al-
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Figure 3. Correlation scatter plots of monthly SWH (units: m) with density from (a) ERA5 and buoy,
(b) ERA-Interim and buoy, (c) ERA5 and altimeter, and (d) ERA-Interim and altimeter data. The
ordinate represents the observed wave height, and the abscissa represents the reanalysis wave height.
The small insert in the lower right corner of (a) shows the buoys’ geographical locations. The 14
buoys were provided by the NDBC. The root-mean-square error between the ERA5 and altimeter
data was 0.09 m. The rms error of monthly averages between the ERA-I and altimeter data was
0.12 m. There were 288 monthly mean global SWH values from the altimeter and the reanalysis. Each
buoy had 468 monthly mean SWH records.
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Figure 4. Time series of monthly-averaged SWH measured by altimeter, ERA5 and ERA-Interim (the solid lines are
24-month low-pass-filtered values). The root-mean-square error of monthly averages between ERA5 and altimeter was
0.09 m. The rms error of monthly averages between the ERA-I and the altimeter was 0.12 m. The small insert in the
lower right corner shows the monthly average time series from 1993 to 2016. The three dotted lines represent the linear
fittings of SWH measured by altimeter, ERA5 and ERA-Interim from 1999 to 2013, respectively. The SWH slope from the
altimeter was 0.04 cm/month; the SWH slope from ERA5 was −0.1 cm/month; and the SWH slope from ERA-Interim was
−0.02 cm/month.

To validate the trends obtained from the reanalysis data, the same analysis was ap-
plied to the data from the 14 deep-water buoys. Based on their geographical positions,
the following areas were identified: the western Atlantic, the Gulf of Mexico, the north-
east of the United States, Alaska Bight, the northwest of the United States, and the seas
surrounding Hawaii. Table 1 presents the annual rate of change in SWH and SSW from
the buoys. We can see that after 1998, these areas, which are normally characterized by
wave-height-increasing trends, demonstrated reduced trends, and those areas normally
featuring downward trends demonstrated accelerated trends. The buoys located in the Pa-
cific Ocean were notable in this regard. The SSWs at each buoy location showed decreased
trends during the global warming slowdown period (1999–2013).

Table 1. Trend estimates for the annual mean SWH and SSW at buoy locations from NDBC data.

Region Station
SWH

1979–1998
cm/yr.

SWH
1999–2013

cm/yr.

SSW
1979–1998

cm/s/yr.

SSW
1999–2013

cm/s/yr.

Atlantic (West)
41001

–0.39 0.03 –4.85 –0.1241002

Gulf of Mexico
42001 0.07 0.73 1.48 –1.42
42002 0.02 –0.34 1.86 –1.30
42003 –0.15 0.02 1.86 –2.93

USA-Northeast 1 44008
0.85 0.46 3.09 –2.2944011

Gulf of Alaska 46001 0.05 –1.78 0.14 –2.16

USA-Northwest
46002

1.63 –2.70 –2.04 –5.6946005
46006

Hawaii 2
51002

0.55 –1.73 3.48 –3.1351003
51004

1 The duration of the buoy time series for USA-Northeast was from 1984 to 2012. 2 The duration of the buoy time
series for Hawaii was from 1984 to 2013.

The trends in SWHs for another set of six coastal buoys near the USA-Northeast and
two buoys in the Gulf of Mexico were examined (Figure 5a). The detailed information from



Remote Sens. 2021, 13, 4096 8 of 16

these stations is listed in Table 2. Increasing SWH trends were apparent at Station 46026,
Station 46012, and Station 42001. The other stations exhibited a negative trend from 1999 to
2013. The annual numbers of null values of the hourly measured wave height data were
lower during this period (Figure 5b).
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Table 2. Information on the data of buoys located near USA-Northeast and the Gulf of Mexico.

Station Longitude (◦E) Latitude (◦N) Missing Data (%)

42001 −89.7 25.9 10
42002 −93.8 26.1 20
46012 −122.9 37.4 18
46013 −123.3 38.2 10
46014 −124.0 39.2 7
46026 −122.9 37.8 7
46028 −121.9 35.8 9
46042 −122.5 36.8 6

Although the buoy comparisons described above generally supported the observed
trends form the reanalysis datasets, these buoy data should be treated with some caution.
As pointed out by Gemmrich et al. [36], buoy data can be non-homogeneous due to changes
in buoy hull types and the processing methods of long time series.

3.4. Different Trends in Wind-Generated Waves and Swell

Global warming has an impact on the sea surface wind field [37]. Furthermore, the
spatio-temporal changes of the sea surface wind field can affect the wave field. When
directly generated and affected by local winds, waves are called wind sea. After the
wind ceases to blow, waves propagate away from their areas of generation and experience
changes in their properties, becoming swells. Figure 6 shows a comparison of globally
averaged SSW, SWH, swell wave height, and wind sea wave height over the study period.
The correlation coefficient between the mean SSW and SWH was 0.67. The correlation
coefficient between SSW and wind sea wave height was 0.97, as expected. There was also a
good agreement between the wind speed anomalies and the wind-wave height anomalies.
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Figure 7a displays the spatial trend of global 10-m SSW speed from 1999 to 2013. The
variations of SWH in the northern Indian Ocean, the area south of the Aleutian Islands, the
eastern equatorial Pacific, and the waters surrounding Hawaii were positively correlated
with SSW speed, and their trends were similar. Decreasing trends of 10-m SSW speed were
found in the Arabian Sea and the Bay of Bengal (−6 cm/s per year). The negative patterns
in these seas were the same as those of SWH, as shown in Figure 2d. In the equatorial
Pacific Ocean, large regions of the northern Pacific, Indian Ocean near Australia, and the
mid-latitudes of the southern Atlantic Ocean demonstrated negative trends. The surface
wind trend grew more slowly or even reversed in the northern Pacific, the Indian Ocean,
the Caribbean Sea, the Scotia Sea, and the waters surrounding Hawaii compared to the first
20 years (1979–1998) of the study period (Figure A2a).

Surface gravity waves in the open ocean are complex, and they are classified into two
categories: locally generated wind sea waves and swell [1,38]. In every area of the ocean,
a mixture of both wind sea waves (Figure A2b) and swells (Figure A2c) can be observed.
The global wave field is dominated by swells, especially in the low latitudes [39,40] (see
Figures A3 and A4). For swell wave height, the strong positive trends across the majority
of the global oceans were statistically significant (2 cm per year), and the trends were
similar to those of the SWH during the period 1979–1998. Statistically significant trends in
wind-wave height (Figure 7b) and swell-wave height (Figure 7c) in the global warming
slowdown period were identified. Decreasing trends in significant wind sea wave height
and wind speed were found in the same seas, and their spatial correlation reached 0.71.
The decreasing trend in the waters surrounding Hawaii was about 1 cm per year. Large
high-latitude regions in the northern Pacific demonstrated a stronger decreasing trend,
reaching a maximum of 2 cm per year. Some regions of the global oceans nonetheless
demonstrated positive trends in wind-generated waves for the period 1999–2013. By
contrast, there were more regions characterized by negative trends in swell-wave height.
The decreasing trend in swell in large regions of the Pacific and Indian Oceans was 1.5 cm
per year. The trend in swells in the Indian Ocean was in good agreement with that of
SWH (Figure 2d), because swells play a dominant role in mixed waves throughout most of
the Indian Ocean, especially in the tropical waters. The swell-wave height in the Roaring
Forties of the Indian Ocean is generated by local winds and propagates to the tropical
waters [41]. The increasing trend in swell wave height slowed down over most of the
Atlantic during the global warming slowdown period.
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4. Discussion and Conclusions

We examined global trends in SWH through a comprehensive analysis of reanalysis,
satellite altimeter, and buoy data. We found clear effects of the global warming slowdown
on the global wave climate. The global mean SWH trend was similar to that of the global
mean surface (land and ocean) temperature: the increasing trend of the mean SWH slowed
down during the global warming slowdown period (Figure 1). Large regions of the Pacific
and Indian oceans showed rapidly decreasing trends in mean SWH from 1999 to 2013
(Figure 2). Changes in wave height caused by sea surface wind energy transfer and sea
surface temperature have an important influence on the global wind pattern [18]. Surface
winds are influenced by surface pressure patterns and it has been demonstrated that
changes in surface temperature are altering these surface pressure patterns. For instance,
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high-latitude, low pressure systems are strengthening and moving closer to the poles. In
addition, warmer oceans provide a greater source of energy for storms. Hence, there is
growing evidence of more frequent and more intense storm systems [42].

The spatial distributions of the GMST trend during the global warming slowdown
period are shown in Figure 8. GMST-decreasing trends were found in the eastern Pacific
and Southern Ocean. The SWH and GMST showed a negative correlation in the Indian
Ocean and a positive correlation in the eastern tropical Pacific. Figure A4 shows that swells
were the dominant wave component in the Indian Ocean. Given that the variation of
wave height was generally affected by SSW, the wind-generated wave followed the trend
in wind speed, but swell variation showed more complex patterns in the study period
(Figures 6 and 7). Reguero et al. [18] found that SWH and GMST are linked by atmospheric
teleconnections and pointed out that wave power is affected by upper-ocean warming. The
global warming slowdown between 1998 and 2013 left its footprint in many ways. This
study focused on how global surface waves adjusted during the slowdown.
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It should be noted that there was a slight jump from 1991 to 1992 in the time series of
SWH anomalies from ERA5 and ERA-Interim, shown in Figure 1, which might have been
caused by the start of the data assimilation of the altimeter products into the reanalysis
datasets. After the adjustment period, the trend in global SWH provided by ERA5 is similar
to that of the altimeter data during 1993–2016 (Figure 4). The spatial patterns in SWH trends
between the ERA5 and altimeter data were similar from 1999 to 2013 (Figure A1). Moreover,
the slight jump did not affect the slopes of the trend before or after 1999; therefore, the
effect of the data assimilation on the reanalysis did not appear to change the conclusions
obtained in the present study.
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Data Availability Statement: The ERA-Interim wave reanalysis from the ECMWF used in this
study can be accessed online (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/).
The ERA5 global wave (wind) reanalysis data from the ECMWF were downloaded in July 2020,
and can be accessed at https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset. The in
situ wave data were downloaded from the National Data Buoy Center, and can be accessed at
https://www.ndbc.noaa.gov/. The altimeter data were obtained from the IFREMER, and can
be accessed at http://globwave.ifremer.fr/products/demo-products/item/417-merged-altimeter-
wave-height-product. The global annual mean surface (land and ocean) temperature (GMST) data
were downloaded in July 2020, and can be accessed at https://www.ncdc.noaa.gov/cag/.
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