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Abstract: The analysis of forest cover change at different scales is an increasingly important research
topic in environmental studies. Forest Landscape Restoration (FLR) is an integrated approach to
manage and restore forests across various landscapes and environments. Such restoration helps to
meet the targets of Sustainable Development Goal (SDG)–15, as outlined in the UN Environment’s
sixth Global Outlook, which includes the sustainable management of forests, the control of desertifi-
cation, reducing degradation, biodiversity loss, and the conservation of mountain ecosystems. Here,
we have used time series Landsat images from 1996 to 2016 to see how land use, and in particular
forest cover, have changed between 1996 and 2016 in the Lumbini Province of Nepal. In addition,
we simulated projections of land cover (LC) and forest cover change for the years 2026 and 2036
using a hybrid cellular automata Markov chain (CA–Markov) model. We found that the overall
forest area increased by 199 km2 (2.1%), from a 9491 km2 (49.3%) area in 1996 to 9691 km2 (50.3%)
area in 2016. Our modeling suggests that forest area will increase by 81 km2 (9691 to 9772 km2) in
2026 and by 195 km2 (9772 km2 to 9966 km2) in 2036. They are policy, planning, management factors
and further strategies to aid forest regeneration. Clear legal frameworks and coherent policies are
required to support sustainable forest management programs. This research may support the targets
of the Sustainable Development Goals (SDG), the land degradation neutral world (LDN), and the
UN decade 2021–2031 for ecosystem restoration.
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1. Introduction

Forest ecosystems are vital sources of food, medicine, and fuel for human beings.
Achieving sustainable forest management is an important step in the transition towards
sustainable development as well as for providing economic, social, and environmental
outputs [1]. Global forest coverage of the Earth’s terrestrial surface declined from 31.6% to
30.6% between 1990 and 2015 [2], and every year, 10 million hectares (ha) of forest are lost [3].
To maintain a sustainable environment, regeneration and reforestation programs have
become a top priority globally [4,5]. The Global 2030 Agenda for Sustainable Development
Goals (SDG 15) was accepted by all countries [6]. The 15th SDG aims to “Protect, restore
and promote the use of terrestrial ecosystems, environmental conservation, sustainably
manage forest resource, combat desertification and halt and reverse land degradation
and biodiversity loss” and has prioritized the monitoring of forests and the sustainable
management of forest resources. It further endorses the guarantee of resilient agricultural
practice, sustainable food production, and imaginative use of natural resources [7]. Many
countries have collectively committed to restore 150 million ha of degraded land by 2020
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in Bonn Challenges, and an additional 350 million ha forest by 2030 based on the New
York Declaration on Forests [8]. IUCN and the Worldwide Fund for Nature (WWF) first
proposed the Forest Landscape Restoration (FLR) initiative at the beginning of the 21st
century. The United Nations Framework Convention on Climate Change (UNFCCC), the
UN Framework Convention to Combat Desertification (UNCCD), the SDGs, the Rio+20
Land Degradation Neutrality (LDN) as well as the Reducing Emissions from Deforestation
and Forest Degradation (REDD+) programs all make restoring degraded landscape through
FLR a priority [8]. The United Nations has highlighted ecosystem restoration as part of
the decade 2021–2031 [9]. The Forest and Landscape Restoration Mechanism (FLRM) was
introduced by FAO to monitor and report on forest landscape restoration [2] and targets a
sustainable future environment with improved ecological functionality [5]. This approach
was introduced in the 2000s, and its background was set during the Earth Summit in 1992.
In Asia, forests increased by more than 1.2 million ha during 2010–2020 [10], as several
countries are setting ambitious targets. For example, India launched a program to increase
its forests by an 8 million ha area by 2030 [11]. Similarly, South Korea, Vietnam, Indonesia,
and China have launched forest restoration programs [12,13], with the Grain to Green
Program (GTGP) being introduced in China [14]. In the region of sub-Saharan African, 30
countries joined together in the African Forest Landscape Restoration Initiative, pledging
100 million ha in FLR targets by early April, 2020 [15]. Forest restoration in the Netherlands
was the combined effort of actions by the private sector and the government. In Europe,
forest landscape restoration is largely an outcome of the nineteenth century’s restoration
activities [16,17].

In Nepal, forest resources, which had been severely degraded during the 1960–1970s,
had substantially improved from a total stem volume of 880 million metric tons in 1990
to 897 million metric tons by 2005 [18,19] and to 982 million cubic meters and an average
growing stock of 164.76 cubic meter per ha by 2015 [20]. National forest cover increased
from 38% in 1978–1979 (Land resource mapping project-LRMP) to 40.36% by 2015 (exclud-
ing shrub land) [20]. The annual deforestation rate reduced from 1.31% during the period
of 1930–1975 to 0.51% in the period of 1975–1985, before falling to 0.14% from 1985–1995,
0.1% from 1995–2005, and stabilizing at 0.01% from 2005–2014 [21]. To conserve forests
and to enhance livelihoods [22], Community Forest User Groups (CFUGs) [23–25] were
formed under the legal provisions of Forest Act, 1993 [26], and the Forest Regulation Act,
1995 [27]. Since 1993, Nepal has gradually handed over large portions of national forest to
local communities, mainly in the hill areas of the country [28]. Similarly, the Government of
Nepal introduced a forestry decade (2014–2024) with the motto of “one house one tree, one
village one forest, one city several gardens”, which targets the restoration and plantation
of a minimum of 26,000 ha in the Tarai, Siwalik, and hill regions. The Ecosystem-Based
Adaptation (EbA) approach regards ecosystem services as an integral part of adaptation
strategies to address the impacts of climate change [29]. The UN REDD+ program empha-
sizes the economic benefits obtained from carbon stocks in forests [30], and the REDD+
results-oriented payments approach for the achievements in forest and land use cluster
is widely accepted and used by many developing countries, including Nepal [31]. The
REDD+ performance-based payment mechanism through the World Bank’s Forest Carbon
Partnership Facilities’ (FCPA) Carbon Fund (CF) agreed to provide USD 45 million to Nepal
for to reduce carbon emissions and to prevent deforestation and forest degradation by 2025
in the period from June 2018 to December 2024. Nepal is expected to reduce emissions by
9 million tons of carbon through forest conservation in the Tarai Arc Landscape (TAL) [32].

The Constitution of Nepal 2015 also has provisions for the management of forest
under federal, provincial, local level governments for a diverse range of users [33] aims to
conserve, promote, and sustainably use forest resources and biodiversity and minimize the
adverse impacts of industrial and physical development. The Local Government Operation
Act, 2017, mandates local governments to facilitate community-based forest management
approaches to sustainably manage forests [28]. One example of this approach, the President
Chure Tarai–Madhesh–Conservation Program, which was introduced in 2016, is expected
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to make a positive contribution in controlling forest degradation and protecting vulnerable
landscapes [34]. Watershed management plans also contribute to landscape conservation
and include slope management through terracing, trenching, and re/afforestation [35].
There are 118 ecosystem services have been recorded in Nepal [36]. The National Parks and
Wildlife Conservation Act (1993), the fourth amendment, provisioned the investment of
30–50% of the total annual revenue of protected areas in local communities for biodiversity
conservation and livelihood improvements [37]. Recently, local-level administrations have
introduced urban plantation programs in urban areas, green road programs for major
urban areas, and plantation programs in barren lands in rural areas of this region. All of
these provide support for forest restoration, and we should expect forested area to continue
to increase in the future. Private forest programs (PF) provide another option to increase
the forested areas in Nepal [38] and are already in place in Lumbini Province. Against this
backdrop, we attempted to extract land cover (LC) changes for the Lumbini Province of
Nepal at decadal intervals from 1996 using remote sensing technology and to project future
LC for the years 2026 and 2036 using an LC change simulation model.

Several studies have examined the spatiotemporal land use land cover (LULC) change
of various parts of Nepal, such as the Sagarmatha National Park region during the period
of 1992–2011 [39], in Kathmandu during the period of 1990–2010 [40], in the Tanahun
district during the period of 1976–2015 [41], in Koshi river basin during the period of
1992–2010 [42], in the Bagmati river basin [43,44], and at the trans-boundary of the Gandaki
river basin [45]. In this study, we have chosen Lumbini Province to complete the LC
change analysis for several reasons. First, the forest in this region is the dominant LC in
the Province, particularly in the northern belt, while the southern part of the study area
comprises the rapidly urbanizing Tarai region, which is experiencing remarkable LULC
changes. Since landscape changes and anthropogenic factors affect habitat quality and
distribution [46,47], the monitoring of forest cover is crucial. Further, these socioeconomic
and environmental factors have characterized the heterogeneous composition and overtime
dynamics of forest cover. Third, to our knowledge, no other study has examined historical
forest cover changes or has made predictions for future changes in the Lumbini Province of
Nepal, and our research attempts to fill this gap. Understanding the dynamics of LULC and
making reliable projections are imperative in resource governance and for improving land
use [48] since forest resources and their management are essential for human well-being
and for the maintenance of ecosystem services [49]. As such, the obtained research outputs
will be the base for establishing the legal framework and for formulating coherent policies
in support of the global targets of the Sustainable Development Goals (SDGs), the land
degradation-neutral world (LDN), and the UN decade 2021–2031 for ecosystem restoration.

LC changes are a major driver of global environmental change and occur due to defor-
estation, reforestation, urban expansion, and the intensification of cultivated land [50,51].
LC change models can be used to predict the location and frequency of LC change [52]; to
aid land use planning and conservation [53], urbanization [54,55], Lake area evaluation [56];
and to monitor environmental changes [57]. A number of simulation models are widely
used, such as DINAMICA [53,58], SLEUTH [59], SERGoM [60], CLUE [61], GEOMOD [62],
LUCAS [63] ANN-CA [64], and the CA–Markov change model [65–68]. Here, we evaluate
past landscape change and predict future changes in forests and built-up areas. We use the
Cellular Automata (CA)-Markov chain (MC) (CA–Markov) model, as these models appear
to be excellent at predicting future LC changes and transitions [69] due to its strong hybrid
functions [70].

2. Methodology
2.1. Study Area

Lumbini Province is located in Western Nepal and is geographically located between
81.10–84.072 E to 27 323–28.833 N, covering about 19,256 km2. Elevation ranges from
±90 m to 5600 m above sea level (masl). It includes a total of 12 administrative districts (six
in Tarai and six in Hill region), covering 109 local administrative units. The total population
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of this Province was 3.45 million in 1991 and 4.96 million in 2011 (CBS, 2014). We have
chosen Lumbini Province as the subject for the LC change analysis, as the Province has
integrated national parks, hunting reserves, and conservation areas (Banke National Park,
Bardiya National Park, the Dhor Patan hunting reserve, and the Krishnasar conservation
areas) (Figure 1). It also includes Jagdishpur, a Ramsar-listed lake, and Lumbini, the
birthplace of Lord Gautam Buddha—a place listed as a UNESCO World Heritage site in
1997. Additionally, Devdaha lake, the Anoma river, the Jitgadh fort, Tansen, and Ridi Ruru
are also located within the Province.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 20 
 

 

2.1. Study Area 
Lumbini Province is located in Western Nepal and is geographically located be-

tween 81.10–84.072 E to 27 323–28.833 N, covering about 19,256 km2. Elevation ranges 
from ± 90 m to 5600 m above sea level (masl). It includes a total of 12 administrative dis-
tricts (six in Tarai and six in Hill region), covering 109 local administrative units. The total 
population of this Province was 3.45 million in 1991 and 4.96 million in 2011 (CBS, 2014). 
We have chosen Lumbini Province as the subject for the LC change analysis, as the 
Province has integrated national parks, hunting reserves, and conservation areas (Banke 
National Park, Bardiya National Park, the Dhor Patan hunting reserve, and the Krishna-
sar conservation areas) (Figure 1). It also includes Jagdishpur, a Ramsar-listed lake, and 
Lumbini, the birthplace of Lord Gautam Buddha—a place listed as a UNESCO World 
Heritage site in 1997. Additionally, Devdaha lake, the Anoma river, the Jitgadh fort, 
Tansen, and Ridi Ruru are also located within the Province. 

 
Figure 1. Location of the study area. 

2.2. Data  
In the study, we collected Landsat satellite Level 1 data (TM and OLI) for the years 

1996, 2006, and 2016 from the USGS website (earthexplorer.usgs.gov) (Table 1). All of the 
images were verified for image processing. Radiometric correction of remote sensing 
data mainly involves the correction of digital image errors [71,72], where image en-
hancement and registration are conducted for image correction [72]. The L1T (level one 
terrain corrected) satellite images were converted from DN (digital number) to radiance. 
The digital number was converted, and the FLASH model and was applied for image 
processing using ENVI software. ENVI software is organized with radiance calibration, 

Figure 1. Location of the study area.

2.2. Data

In the study, we collected Landsat satellite Level 1 data (TM and OLI) for the years
1996, 2006, and 2016 from the USGS website (earthexplorer.usgs.gov) (Table 1). All of the
images were verified for image processing. Radiometric correction of remote sensing data
mainly involves the correction of digital image errors [71,72], where image enhancement
and registration are conducted for image correction [72]. The L1T (level one terrain cor-
rected) satellite images were converted from DN (digital number) to radiance. The digital
number was converted, and the FLASH model and was applied for image processing
using ENVI software. ENVI software is organized with radiance calibration, geometric,
and atmospheric correction for satellite images. A root mean square (RMS) error of the
geometric rectification images that was less than 0.5 (<15 m) pixels was accepted. A 30-m
shuttle radar topography mission (SRTM) digital elevation model (DEM) was used for the
image registration for the years 1996, 2006 and 2016.
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Table 1. Satellite images.

Path/Row 1996 (Landsat 5 TM) 2006 (Landsat 5 TM
and ETM +) 2016 (Landsat 8 OLI)

142/041 10-November 5-October TM 1-November

143/040/41 17-November 2-March TM 8-November

144/040 10-December 27-October-ETM+ (SLC, OFF) 30-October

The overlay function was conducted to fill the no data gaps in the ETM+ scenes where
the TM data were unavailable (Table 1). There are multiple methods that can be used to
fill in the gaps of the SLC-off Landsat images for years after 2003. The local histogram
matching method (LHMM) was applied by Storey et al. in 2005 [73]. Similarly, the geo-
statistical interpolation method is another option that can be used to fill in the gaps of
missing data [74]. A further option, a deep convolution neural network (CNN) model, can
also be used to recover missing information resulting from the SL-off problem [75]. To
fill in the gaps of the SLC-off images, auxiliary images were used to recover the missing
data [76]. In our study, a small part of the covered area comprised SLC-off images for 2006,
so we collected the topographical data developed by the Survey Department of Nepal for
the scale of 1:25,000 [77]. Similarly, the LC data for the year 2000 [78] and further verified
satellite images (Landsat TM) got 2008, November Nine (11–09) were used to verify the LC
information of the missing data. Additionally, we collected Google images of the study
area for the year 2006, and this provided the best information for the missing data for the
year 2006. After all of the available auxiliary images were verified, the classified satellite
images for 2006 were overlaid with the corrected missing data, and the final LULC map of
2006 was prepared.

Topographical data developed by the Survey Department of Nepal, 1996, and Google
Earth images were used as the reference data for the image classification [79] of the entire
study area. For the extraction of the LC data, we used the modified LC classification
scheme recommended in Anderson et al. [80] (Table 2) and explored nine major LC classes:
agriculture, forest, shrub, grassland, sand, barren land, water bodies, ice and snow cover,
and other areas (including settlement road networks, industrial areas, infrastructure, and
other planned areas).

Table 2. LULC classification schemes.

LULC Types Description

Cultivated land Orchards, wet and dry crop lands

Forest
Evergreen broad leaf forest, deciduous forest, temperate forest,

low-density sparse forest, degraded forest, mix of trees, and other
natural covers

Shrub Mix of short trees, other natural covers, and highly degraded forest

Barren land Cliffs/small landslides, bare rocks, other unused land

Sand sandy areas, river banks, other areas

Water Reservoir, river, lake/pond, canal, and swamp areas

Grass Mainly grass fields (dense coverage grass, moderate coverage grass,
and low coverage grass)

Ice and snow cover Perpetual/temporary snow cover, perpetual ice/glacier

Other Areas

Airports, public service areas (e.g., school, college, hospital, and
occupied areas), industrial areas, construction areas, residential areas
(urban and rural settlements), commercial areas, road networks, and

other areas
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To extract the nine LC classes, all of the images for different tiles were stacked, subset,
and analyzed using ENVI v5.3 software. We applied a non-parametric supervised support
vector machine (SVM) to extract the LC for a specific area. A number of parametric and
non-parametric algorithms [81] are frequently used for LC classification, such as minimum
distance (MD), maximum likelihood (ML), support vector machines (SVM), artificial neural
networks (ANN) and decision trees, and ML classifiers such as MD, BC, ANN, and fuzzy
classification (FC) [82]. We applied supervised-learning SVM non-parametric and non-
linear approaches for the highly accurate extraction of LC change data [79,83,84].

Generally, this approach is organized into four major kernels functions, such as
polynominal, linear, radial, and sigmode. In this study, the radial basic function (RBF)
kernel [85,86] was applied with a 100 penalty parameter to be addressed in the ENVI
software, and each kernel equation is listed in the following equations:

Linear : K (xi, yi) = xT
i · xj (1)

Polynomial : K (xi, yi) = (g.xT
i · xj + r)

d
, g > 0 (2)

Radial basis function : K (xiyi) = e−g(xi−xj)
2
, g > 0 (3)

Sigmoid : K (xi, yi) = tan h (g.xT
i · xj + r) (4)

where, xi, yi are training vectors, and g, d, and r are the user-controlled parameters of
kernel function.

2.3. Simulation of LC Change

The CA–Markov hybrid approach is a suitable method for the simulation of LC change
in places where cognition and characterizing landscape relationships are difficult [87].
This hybrid model has been widely used to effectively recognize and estimate landscape
changes [88]. The CA–Markov model uses Markov chain matrices to identify the quantity
of changes and Cellular Automata (CA) to spatially allocate these changes. The CA
model addresses spatial allocation and the location of change via five parameters: (a) cell
(b) neighborhood, (c) rules, (d) time, and (e) state [65,89]. In most cases, the steps of the CA–
Markov model consist of [65]: (1) the classification of satellite images to generate LC maps;
(2) the computing of transition area matrices; (3) the creation of transition potential images
through driving parameters; (4) the estimation the model’s capability to predict future
changes based on evaluation indices; and (5) simulating the LC maps for future years.

The transition area matrix (TAM) was calculated using the Markov model. The TAM
shows the number of pixels that are expected to shift from one LC type to another in the
coming years. TAMs were calculated based on changes made in consecutive time periods
(i.e., 1996–2006, 2006–2016, and 1996–2016) to show how each LC type was projected to
shift. The TAM of 2006–2016 was used to simulate the LC projection to 2026, and the period
of 1996–2016 was used to project the 2036 LC map.

The preparation of suitability maps is a difficult preliminary step in modeling LC
change and depends on access to information and data [65]. In our study, the transition
potential maps (TPMs) of LC types were prepared using multi-criteria evaluation (MCE),
analytic hierarchy process (AHP) models, and fuzzy membership functions. The TPMs
demonstrate the capacity of a cell to shift to a new category or to remain unchanged in each
transition based on driving parameters [90]. In our study, the effective layers in the LC of
the region, including slope, distance from roads, distance from water resources, distance
from built-up areas, and distance from forest were chosen as the driving parameters based
on the specialized knowledge and research history (e.g., [65,87,91]. The distance layers were
standardized through the fuzzy membership method (Table 3). The factors were rescaled
to special ranges (0–255) based on particular functions. Table 3 shows the standardization
properties of the criteria for each factor. After standardization, all of the factors were
weighed using the AHP method [88]. In this method, the factors are considered and
compared in a pairwise form based on their relative importance for use. After all of the
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possible combinations are compared between the two factors, the module, weights, and
consistency are calculated, and if the value is less than 0.1, it means that the pairwise
comparisons have an acceptable level of compatibility.

Table 3. Extracted weights based on AHP and fuzzy standardization.

Factors Suitability Control Points Functions Weights

Distance roads
High

Medium
No

0–500 mts
500–5000 mts

>5000 mts
J-shaped 0.25

Distance forests
No

Medium
High

0–500 mts
500–5000 mts

>5000 mts
Linear 0.12

Distance water bodies
No

Medium
High

0–100 mts
100–7500 mts

>7500 mts
Linear 0.12

Distance from Other area
High

Medium
Low

0–100 mts
100–5000

>5000
Linear 0.35

Slope
High

Medium
No

0%
0–15%
>15%

Sigmoid 0.16

2.4. Land-Cover Modeling and Validation

In order to validate the CA–Markov model, the simulated LC map of the year 2016 was
compared with the real map obtained from the classification of the satellite images from
that year [92]. An accuracy of more than 80% indicates the model’s simulation capability.
The model was verified using several kappa variables: Klocation (the location accuracy
of pixels in the simulation), Kstandard (a criterion of the ability of the model to achieve a
complete classification), and Kno (the number of correctly classified pixels compared to
the pixels that are expected to be classified correctly, without considering the quantity or
the location error [65]. Therefore, researchers consider the Kno as a modified and more
reliable version of Kstandard. The two indices—quantity disagreement and allocation
disagreement, suggested by Pontius and Millones [93]—were also calculated and analyzed.

2.5. Accuracy Assessment

Accuracy assessment is one of the most fundamental tasks when LC data are prepared
using remote sensing tools [94–96]. However, there is a challenge to find high-resolution
data that can be used for the accuracy assessment. In this study, a total of 2844 sample
points were designed for each of the LC-classified images for the years 1996, 2006, and 2016.
A minimum of 300 sample points for each LC class and the user accuracy (UA), producer
accuracy (PA), and overall accuracy (OA) were identified. The accuracy assessment of the
classified images was prepared based on GPS points that had been collected from field
observations using topographical maps developed by the Survey Department, 1998 (scale
1:25,000 and 1:50,000) [77], and high resolution Google Earth images (http://earth.google.
com, accessed on 30 August 2021). The overall accuracy of the results obtained for the
individual years were 85.61% (1996), 84.95% (2006), and 86.91% (2016).

3. Results
3.1. LC Dynamics

Over the period of 1996–2016, remarkable LC changes were observed. The areas of
other land, mainly settlement areas, increased, particularly in the second decade. Forest
cover decreased slightly in the first period but increased in the second, whereas shrub land
showed the opposite trends. Changes in the barren land, water body, sand, and grassland
areas were minimal. Small parts of the northern area fluctuated among ice and snow

http://earth.google.com
http://earth.google.com
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cover, barren land, and grassland. Decreases in ice and snow cover resulted in increases
in grassland and barren land in the highlands of Nepal. Overall, other areas increased by
18.09% from 1996 to 2006 and by 55.70% from 2006 to 2016. Cultivated land declined by
0.57% and 1.20%, respectively, in the same periods. Forest cover area decreased by 0.46%
during 1996–2006 but increased by 2.58% between 2006 and2016. However, shrub land
increased by 7% and by 28.46% during the same time periods. Water body and sand areas
fluctuated due to changes in rainfall patterns. The ice and snow cover gradually decreased
by 45.61% during the period of 1996–2006 and by 35.39% during the period of 2006–2016
(Table 4 and Figures 2 and 3).

Table 4. Distributions of LULC change between 1996 and 2016.

LC Classes 1996 % 2006 % Change in %
(1996–2006) 2016 % Change in %

(2006–2016)

Other Area 183.24 0.95 216.38 1.12 18.09 336.9 1.75 55.7
Cultivated Land 6542.50 33.98 6504.93 33.78 –0.57 6426.91 33.38 –1.2

Forest Land 9491.65 49.29 9447.80 49.06 –0.46 9691.15 50.33 2.58
Shrub Land 1248.76 6.49 1339.45 6.96 7.26 958.28 4.98 –28.46
Barren Land 291.07 1.51 334.08 1.73 14.77 350.25 1.82 4.84

Sand 476.27 2.47 556.36 2.89 16.82 476.98 2.48 –14.27
Water body 272.99 1.42 302 1.57 10.62 310 1.61 2.65
Grassland 596.36 3.10 471.99 2.45 –20.86 652.08 3.39 38.16

Ice and snow cover 153.7 0.80 83.6 0.43 –45.61 54.01 0.28 –35.39

Total 19,256.00 100 19,256.00 100 19,256.00 100
Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

  
Figure 2. LC change trends in the study area, 1996–2016. 

 
Figure 3. LC map of Lumbini Province (a) 1996; (b) 2006; (c) 2016. 

3.2. Spatial Transitions  
The gains and losses of different LULC in different classes between 1996 and 2006 

are presented in Table 5. Other areas(including settlements) increased by 18.09%, from 
183.24 km2 to 216.38 km2. This increase was mainly due to the conversion of 26.31 km2 of 
cultivated land, 1.16 km2 of forest, 3.2 km2 shrub land, and 1.68 km2 of sandy areas into 
other areas, most of which were settlement areas. However, cultivated land declined by 
37 km2 (from 6542 km2 to 6504 km2) during this period, which was mainly due to con-
versions to shrub land (32.98 km2), sandy areas (17.96 km2), forest (8.30 km2), and water 
bodies (7.88 km2). 

Similarly, despite the conversion of an 80 km2 area from other classes (e.g., 74 km2 
from shrub land), forest cover witnessed an overall loss of 43 km2 (9491 km2 to 9447 km2), 
with roughly 132 km2 forest being converted to other classes. In contrast, shrub land in-
creased by 90 km2, mainly because of the conversion of 36 km2 of grassland areas into 
grassland areas. Sandy areas increased by 80 km2 (from 476 km2 to 556 km2) mostly due to 
the conversion from forest and grassland areas. Barren land mainly increased due to re-
ductions in snow and ice cover (Table 5 and Figure 4). 

  

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Other Area Cultivated
Land

Forest Land Shrub Land Barren Land Sand Waterbodies Grassland Ice and snow
cover

1996 2006 2016Year

A
re

a 
sq

.k
m

2

Figure 2. LC change trends in the study area, 1996–2016.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

  
Figure 2. LC change trends in the study area, 1996–2016. 

 
Figure 3. LC map of Lumbini Province (a) 1996; (b) 2006; (c) 2016. 

3.2. Spatial Transitions  
The gains and losses of different LULC in different classes between 1996 and 2006 

are presented in Table 5. Other areas(including settlements) increased by 18.09%, from 
183.24 km2 to 216.38 km2. This increase was mainly due to the conversion of 26.31 km2 of 
cultivated land, 1.16 km2 of forest, 3.2 km2 shrub land, and 1.68 km2 of sandy areas into 
other areas, most of which were settlement areas. However, cultivated land declined by 
37 km2 (from 6542 km2 to 6504 km2) during this period, which was mainly due to con-
versions to shrub land (32.98 km2), sandy areas (17.96 km2), forest (8.30 km2), and water 
bodies (7.88 km2). 

Similarly, despite the conversion of an 80 km2 area from other classes (e.g., 74 km2 
from shrub land), forest cover witnessed an overall loss of 43 km2 (9491 km2 to 9447 km2), 
with roughly 132 km2 forest being converted to other classes. In contrast, shrub land in-
creased by 90 km2, mainly because of the conversion of 36 km2 of grassland areas into 
grassland areas. Sandy areas increased by 80 km2 (from 476 km2 to 556 km2) mostly due to 
the conversion from forest and grassland areas. Barren land mainly increased due to re-
ductions in snow and ice cover (Table 5 and Figure 4). 

  

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Other Area Cultivated
Land

Forest Land Shrub Land Barren Land Sand Waterbodies Grassland Ice and snow
cover

1996 2006 2016Year

A
re

a 
sq

.k
m

2

Figure 3. LC map of Lumbini Province (a) 1996; (b) 2006; (c) 2016.



Remote Sens. 2021, 13, 4093 9 of 20

3.2. Spatial Transitions

The gains and losses of different LULC in different classes between 1996 and 2006
are presented in Table 5. Other areas(including settlements) increased by 18.09%, from
183.24 km2 to 216.38 km2. This increase was mainly due to the conversion of 26.31 km2

of cultivated land, 1.16 km2 of forest, 3.2 km2 shrub land, and 1.68 km2 of sandy areas
into other areas, most of which were settlement areas. However, cultivated land declined
by 37 km2 (from 6542 km2 to 6504 km2) during this period, which was mainly due to
conversions to shrub land (32.98 km2), sandy areas (17.96 km2), forest (8.30 km2), and water
bodies (7.88 km2).

Table 5. LULC transition from 1996 to 2006.

Year 2006

1996

LULC UB CL FL SL BL SA WB GL SC Total

OA 182.33 0.52 00.00 00.00 0.01 0.33 0.04 0.00 00.00 183.24
CL 26.31 6448.64 8.30 32.98 0.03 17.96 7.88 0.41 0.00 6542.50
FL 1.16 7.65 9359.18 58.14 0.59 33.01 29.25 2.67 0.00 9491.65
SL 3.20 13.43 74.04 1125.23 0.30 27.99 0.64 3.93 0.00 1248.76
BL 0.55 0.07 0.46 2.73 256.57 1.90 0.35 27.29 1.16 291.07
SA 1.68 19.85 4.34 1.51 2.78 413.61 27.77 4.72 0.00 476.27
WB 0.85 13.05 0.29 0.63 1.08 25.10 231.29 0.71 0.00 272.99
GL 0.31 1.72 1.19 118.14 4.63 36.46 4.37 429.50 0.05 596.36
SC 00.00 00.00 00.00 0.09 68.10 00.00 0.36 2.77 82.38 153.70

Total 216.38 6504.93 9447.80 1339.45 334.08 556.36 301.96 471.99 83.59 19,256.54

Note: OA: Other area, CL: cultivated land, FL: forest land, SL: shrub land, BL: barren land, SA: sand area, WB: water bodies, GL: grass
land, SC: snow and ice cover.

Similarly, despite the conversion of an 80 km2 area from other classes (e.g., 74 km2

from shrub land), forest cover witnessed an overall loss of 43 km2 (9491 km2 to 9447 km2),
with roughly 132 km2 forest being converted to other classes. In contrast, shrub land
increased by 90 km2, mainly because of the conversion of 36 km2 of grassland areas into
grassland areas. Sandy areas increased by 80 km2 (from 476 km2 to 556 km2) mostly due
to the conversion from forest and grassland areas. Barren land mainly increased due to
reductions in snow and ice cover (Table 5 and Figure 4).
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Figure 4. Gains and losses of LC classes between 1996 and 2006 (area in km2) based on the total LC values.

The major LC changes during this period include (a) overall increases in other areas
in terms of settlement, barren land, forest, water body, and grass areas and (b) declines in
cultivated land, shrub land, sandy areas, and ice/snow cover. Other areas with urban areas
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increased by 120.52 km2 (from 216.38 km2 to 336.9 km2), mainly due to the conversion
of cultivated land (97.44 km2), forest (9.45 km2), sand areas (5.86 km2), and shrub land
(4.78 km2).

Large portions of cultivated land were converted into other areas, particularly urban
settlement areas, forests (9.45 km2), shrub land (4.78 km2), barren land (1.67 km2), and
sand (5.86 km2), collectively resulting in the decline of cultivated land by 78.02 km2

(from 6504.93 km2 to 6426.91 km2). Overall, forest cover increased by 244 km2 (from
9447.8 km2 to 9691.45 km2), as large areas of shrub land (317.36 km2), sand (44.02 km2), and
grassland (27.35 km2) transformed into forest cover. Shrub land reduced from 1339.45 km2

to 958.28 km2 due to its conversion to grassland (123.3 km2), forest (317.36 km2), cultivated
land (28.08 km2), and other LC classes.

Similarly, 40 km2 of water body areas were converted to sand areas, and 37 km2 of
sand areas were converted into water bodies. Based on this transition (Table 6), there were
9 km2 increases in water body areas and an 80 km2 sand area decrease. Around 31 km2

of snow- and ice-covered areas in the Himalayan region was converted from barren land
alone; however, barren land still increased from a 334 km2 to a 350 km2 area. The majority
of the grassland areas that were acquired were gained from cultivated land, forest land,
shrub area, barren land, and sand and snow and ice cover areas, and grassland areas
increased by 181 km2 (471 km2 to 652 km2) (Table 6 and Figure 5).

Table 6. LC transition from 2006 to 2016.

Year 2016

2006

LULC UB CL FL SL BL SA WB GL SC Total

OA 215.67 0.10 00.00 00.00 0.01 0.50 0.10 00.00 00.00 216.38
CL 97.44 6275.04 11.69 39.25 12.47 12.12 17.88 39.04 0.00 6504.93
FL 9.45 69.85 9281.43 44.61 0.68 4.49 7.26 30.04 0.00 9447.80
SL 4.78 28.08 317.36 849.33 5.41 4.38 6.72 123.30 0.10 1339.45
BL 1.67 1.21 0.72 10.52 282.62 6.60 0.84 22.12 7.78 334.08
SA 5.86 36.20 44.02 9.28 1.06 405.14 37.23 16.55 1.02 556.36
WB 1.28 9.83 8.88 0.38 0.13 40.40 238.75 2.30 0.00 301.95
GL 0.76 6.61 27.35 4.91 16.62 3.10 1.20 411.44 00.00 471.99
SC 00.00 00.00 00.00 00.00 31.27 0.04 0.02 7.28 45.11 83.72

Total 336.90 6426.91 9691.45 958.28 350.26 476.78 310.00 652.06 54.01 19,256.66

Note: OA: Other Areas: CL: cultivated land, FL: forest land, SL: shrub land, BL: barren land, SA: sand area, WB: water bodies,
GL: grass land, SC: snow and ice cover.
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3.3. CA–Markov Model
3.3.1. Analysis of Transition Matrix

For the analysis and prediction of the LC data, we computed a transition potential
matrix based on LC conditions for the period of 1996, 2006, and 2016 to identify how each
LC class was projected to change in the years 2026 and 2036. During the simulation, several
LCs were converted into each other while some remained almost constant over time. The
transition probability matrix predicted that cultivated land will be converted into other
(urban/built-up) areas and that shrub land will be converted into forest. This probability
matrix showed the transition of each LC class (Appendix A Table A1).

3.3.2. Analysis of the Simulation Results

Major changes predicted for 2016–2036 include increases in other areas, including
settlement, forest, and water bodies; declines in shrub land, barren land, and cultivated
land; and fluctuations for sand and grassland. According to the actual LC statistics and
simulations, urban areas are predicted to increase from 1.75% in 2016 to 2.58% by 2026 and
to 3.08% by 2036 (Table 7, Figures 6 and 7). In contrast, cultivated land will decrease from
33.38% in 2016 to 32.01% by 2026 and to 31.63% by 2036. The simulations also suggest that
forests will continue to increase and will increase from 50.33% in 2016 and to 50.74% and
51.76% by 2026 and 2036, respectively. However, shrub area will continue to decrease in
2026 and 2036, mainly because of its conversion to forests. Similarly, cultivated land will
also continue to be converted into forests.

Table 7. LULC change of the study area during 2016–2036 (in km2 and percent).

LULC 2016 2026 2036 Change
2016–2026

Change
2016–2036

Change
2026–2036

Other area 336.9
1.75%

496.46
2.58%

593.79
3.08%

159.56
47.36%

256.89
76.25%

97.33
19.6%

Cultivated Land 6426.91
33.38%

6164.51
32.01%

6089.78
31.63%

–262.4
–4.08%

–337.13
–5.24%

–74.73
–1.21%

Forest Land 9691.15
50.33%

9771.05
50.74%

9966.29
51.76%

79.9
0.82%

275.14
2.84%

195.24
1.99%

Shrub land 958.28
4.98%

913.85
4.75%

815.21
4.23%

–44.43
–4.64%

–143.07
–14.92%

–98.64
–10.79

Barren Land 350.25
1.82%

338.61
1.76%

320.05
1.66%

–11.64
–3.32%

–30.2
–8.62

–18.56
–5.48

Sand 476.98
2.48%

554.65
2.88%

422.91
2.20%

77.67
16.28%

–54.07
–11.33%

–131.74
–23.75

Water Body 310
1.61%

323.39
1.68%

359.71
1.87%

13.39
4.32%

49.71
16.03%

36.32
11.23%

Grassland 652.08
3.39%

639.94
3.32%

645.74
3.35%

–12.14
–1.86%

–6.34
–0.97%

5.8
0.9%

Ice and Snow Cover 54.01
0.28%

53.55
0.28%

42.51
0.22%

–0.46
–0.85%

–11.5
–21.29%

–11.04
–20.62
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4. Discussion

Our results show that overall forest cover increased during the period of 1996–2016.
Community-based forest management and other programs were responsible for the overall
increase in forest cover in the study area. Similarly, the National Biodiversity Strategy and
Action Plan provided a strategic roadmap for biodiversity conservation in Nepal [97]. As a
result, by 2018, the country had a total of 12 National Parks, 1 wildlife reserve, 1 hunting
reserve, 6 conservation areas, and 13 buffer zones, accounting for 23.39% (34,419 km2)
of the total land area (http://www.dnpwc.gov.np/en/, accessed on 30 August 2021).
Additionally, different local and international level donor agencies such as IUCN, UNDP,
WWF, and ICIMOD [98] supported environmental management and forest conservation.
This increased forest cover has enhanced the conservation of endangered species and has
enhanced animal biodiversity [99].

Forest area increases were mainly due to greater community level conservation prac-
tices and forest management strategies [22]. Further, urban area increases due to population
growth resulted in migration from the highlands to the lowlands [55], causing abandoned
cultivated land in upstream areas, which have turned into vegetation cover, leading to
increases in forest cover [100,101]. Political conflict between 1996 and 2006 caused many
people to migrate to more secure urban areas from agricultural areas in the mid-hills, result-
ing in the abandonment of agricultural lands and increased forest cover [102]. However,
forest encroachment was higher in the Tarai region over the same period. Erosion, lowland
flooding, urbanization, and deforestation are major causes of forest degradation in the
lowlands (Tarai) of Nepal. The forest cover in Tarai was found to decrease between 2001
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and 2010, and major losses occurred in the Kapilbastu district [103]. Similarly, our results
also showed an overall decline in forest cover during the period from 1996 to 2006.

About 38% of people in Asia use wood fuel [2], and 70% of the total energy that is
produced by people in rural Nepal is from firewood [104]. However, the consumption
of fuel wood for cooking has reduced by 3.3 times over the last decade and has been
replaced by the use of liquefied petroleum gas [105]. Community forest programs pro-
vide strong support for energy management and carbon storage [20]. Nepal’s decade of
forestry (2014–2024) aims to conserve forest resources and to create urban greenery in
cities and towns throughout the country. Operational plans for community-managed forest
programs emphasize the control of forest fires [106], encroachment and illegal logging,
forest awareness campaigns and monitoring, and silvicultural practices for the sustainable
utilization of forest resources [107]. As a result, such programs should play an important
role in mitigating greenhouse gases and reducing the impacts of climate change as well as
preserving forest biodiversity.

Local-level plans and strategies also provide support for the future restoration of
forests. The Tilottama municipality located in the Rupandehi district (Appendix B Figure A1:
Map 1), for example, has introduced a plantation (about 0.3 million plants) program that
will cover the period of 2017–2022. Butwal sub-metropolitan city has a similar program
for the Tinau corridor and other areas, and the Sainamaina municipality has identified
forest zones where they are promoting forest development on barren land. In total, 20 local
governments have plantation programs in this region. These include roadside plantations,
trees and green spaces in urban areas, the “one house two plantations program”, riparian
plantation programs, barren land plantations, and the promotion of agroforestry and
private forests [108].

The Nepalese government is promoting agroforestry in the region and has put a
forestry decade into place (2014–2024) with the motto of “one house one tree”. Many of the
suggested changes are in keeping with landscape and watershed level plans to adapt to
climate change as set out in the 2010 National Adaptation Programme of Action (NAPA)
and the 2011 Local Adaptation Plan of Action (LAPA). Plans at the national level empha-
size forest preservation, the control of forest fires and invasive species, community-based
integrated forest management, wetland and riverine forest conservation, and agroforestry.
The action plan identifies local adaptations that are needed to mitigate climate change
vulnerabilities while boosting resilience [109]. The trade agreement between the Nepalese
government and the World Bank’s Forest Carbon Partnership Facilities (FCPF) also encour-
age forest conservation in Nepal. Agroforestry practices (combined agriculture practices
with forest and fruits) also support the maintenance of a green environment.

Community forestry has been successful in improving forest stocks, with increases
in canopy cover [18], tree species diversity [110], growing stock, and biodiversity [111]
being observed, all of which are due to reduced human pressure on forests [110]. Similar
trends have been observed in provincial-level studies in Province One and in the Gandaki
Province in Nepal [79,112]. Several studies have shown that forest cover of Nepal has
increased in different regions. Tuladhar et al., 2019, explored forest cover changes in the
entire catchment areas of the Bagmati river basin and found that forest cover increased
by 4.1% between 1975 and 2005 in the middle section and overall for the basin. However,
the forest change ratio differs in the upper and downstream sections of the catchment
area [44]. Similarly, the overall forest cover area increased in the Phewa watershed during
the periods of 1995–2017 [113] and 1975–2015 [114] and in the Tanahun district during the
period of 1976–2015 [41]. At the national level, the annual deforestation rate decreased
from 1.31% during the period of 1930–1975 to 0.01% in 2005–2014, and forest patch areas
increased from 6925 km2 in 1930 to 42,961 km2 in 2014 [21], whereas national forest cover
increased from 38% in 1978–1979 to 40.36% by 2015 [20]. A similar trend was observed in
our study, where forested areas increased between 2006 and 2016.
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5. Conclusions

Our analysis revealed that during 1996–2016, the study area witnessed declines in
cultivated land, shrub land, sand areas, and ice/snow cover and increases in other LC,
including urban areas, forest cover, barren land, water bodies, and grassland. Meanwhile,
our predictions suggest that other areas, forested areas, and water bodies will continue to
increase and that shrub land, barren land, and cultivated land will decline during the period
of 2016–2036. We analyzed national forest management practices and policies and found
multiple factors that were associated with historical and future trends of forest cover change.
Community forest management practices, watershed management strategies, and forest
carbon partnership facilities (FCPF) also encourage forest conservation at the local level.
However, settlement expansion, forest encroachment, illegal logging, and forest fires are
major challenges for the Tarai region (southern plains). As such, effective forest planning,
particularly urban forest management, is essential for sustaining environmental equilibrium
in the future. For this to occur, it is essential that forest protection and restoration plans
and programs are formulated and are implemented at the national, provincial, and local
levels in order to maintain the minimum amount of forested area.

We recognize a number of limitations of our study. We applied medium-resolution
satellite imagery due challenges in capturing real-time high-resolution data [101]. Further,
we only identified nine major LC classes. Accurate assessment of planted forests was
difficult due to the low resolution of the available satellite images. Other uncertainties
are related to natural factors, which include complex topography and seasonal snow- and
ice-covered areas where ground truthing was not possible. We evaluated the LC changes at
the provincial level, and we did not attempt to identify individual forest types or species,
which we will consider in the future. Hence, we recommend the use of high-resolution
satellite images for the finer evaluation of LC classes with forest species changes in the
future. Existing policies should prioritize different forest species and tree-based ecosystem
service-oriented management goals [115] in different geographical regions (mountain, hill,
and Tarai). These will help maximize the benefits to local people and will help to maintain
sustainable forest management in different ecological zones. Similarly, decision makers and
scientists will need to apply suitable quantitative tools such as machine learning techniques
and artificial intelligent (AI) methods for further data analysis and for the forecasting of
environmental change.
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Appendix A

Table A1. Transition probability matrix calculated using land-cover maps of 1996–2006, 2006–2016, and 1996–2016.

LULC. Other Area. Cultivated. Forest. Shrub. Barren. Sand. Water. Grass. Ice & Snow.

1996–2006

Other area. 0.9357 0.0122 0.0424 0.0007 0.0002 0.0078 0.0010 0.0000 0.0000

Cultivated 0.0189 0.9364 0.0044 0.0224 0.0000 0.0122 0.0054 0.0003 0.0000

Forest 0.0005 0.0035 0.9368 0.0279 0.0003 0.0157 0.0140 0.0013 0.0000

Shrub 0.0037 0.0156 0.0863 0.8561 0.0003 0.0326 0.0008 0.0046 0.0000

Barren 0.0026 0.0003 0.0018 0.0129 0.8377 0.0090 0.0016 0.1287 0.0055

Sand 0.0046 0.0555 0.0120 0.0042 0.0078 0.8260 0.0778 0.0121 0.0000

Water 0.0040 0.0610 0.0012 0.0029 0.0050 0.1175 0.8050 0.0033 0.0000

Grass 0.0006 0.0032 0.0020 0.2237 0.0088 0.0690 0.0083 0.6844 0.0001

Ice & Snow 0.0000 0.0000 0.0000 0.0001 0.3183 0.0020 0.0013 0.0191 0.6593

2006–2016

Other area 0.9500 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063

Cultivated 0.0383 0.9202 0.0038 0.0154 0.0006 0.0028 0.0070 0.0118 0.0000

Forest 0.0036 0.0281 0.9333 0.0179 0.0003 0.0018 0.0029 0.0121 0.0000

Shrub 0.0039 0.0228 0.1575 0.7025 0.0044 0.0036 0.0053 0.1000 0.0001

Barren 0.0064 0.0046 0.0028 0.0402 0.8041 0.0252 0.0032 0.0876 0.0259

Sand 0.0120 0.0743 0.0903 0.0190 0.0022 0.7215 0.0562 0.0242 0.0004

Water 0.0051 0.0388 0.0350 0.0015 0.0005 0.1593 0.7518 0.0081 0.0000

Grass 0.0022 0.0188 0.0777 0.0140 0.0472 0.0088 0.0034 0.8280 0.0000

Ice & Snow 0.0000 0.0000 0.0000 0.0000 0.1960 0.0006 0.0003 0.0922 0.7110

1996–2016

Other area 0.9459 0.0165 0.0151 0.0040 0.0001 0.0081 0.0102 0.0000 0.0000

Cultivated 0.0443 0.9149 0.0039 0.0161 0.0005 0.0045 0.0053 0.0104 0.0000

Forest 0.0034 0.0245 0.9307 0.0188 0.0004 0.0018 0.0102 0.0102 0.0000

Shrub 0.0077 0.0187 0.1942 0.7278 0.0043 0.0211 0.0062 0.0198 0.0001

Barren 0.0091 0.0050 0.0032 0.0456 0.7460 0.0290 0.0040 0.1503 0.0077

Sand 0.0120 0.0497 0.0429 0.0069 0.0072 0.7580 0.1004 0.0226 0.0002

Water 0.0089 0.0540 0.0068 0.0034 0.0034 0.1878 0.7246 0.0111 0.0000

Grass 0.0029 0.0154 0.0533 0.0425 0.0179 0.0601 0.0161 0.7918 0.0000

Ice & Snow 0.0000 0.0000 0.0000 0.0000 0.2789 0.0031 0.0017 0.0795 0.6368



Remote Sens. 2021, 13, 4093 16 of 20

Appendix B

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 20 
 

 

Water 0.0051 0.0388 0.0350 0.0015 0.0005 0.1593 0.7518 0.0081 0.0000 
Grass 0.0022 0.0188 0.0777 0.0140 0.0472 0.0088 0.0034 0.8280 0.0000 

Ice & Snow 0.0000 0.0000 0.0000 0.0000 0.1960 0.0006 0.0003 0.0922 0.7110 

1996–2016 

Other area 0.9459 0.0165 0.0151 0.0040 0.0001 0.0081 0.0102 0.0000 0.0000 
Cultivated 0.0443 0.9149 0.0039 0.0161 0.0005 0.0045 0.0053 0.0104 0.0000 

Forest 0.0034 0.0245 0.9307 0.0188 0.0004 0.0018 0.0102 0.0102 0.0000 
Shrub 0.0077 0.0187 0.1942 0.7278 0.0043 0.0211 0.0062 0.0198 0.0001 
Barren 0.0091 0.0050 0.0032 0.0456 0.7460 0.0290 0.0040 0.1503 0.0077 
Sand 0.0120 0.0497 0.0429 0.0069 0.0072 0.7580 0.1004 0.0226 0.0002 
Water 0.0089 0.0540 0.0068 0.0034 0.0034 0.1878 0.7246 0.0111 0.0000 
Grass 0.0029 0.0154 0.0533 0.0425 0.0179 0.0601 0.0161 0.7918 0.0000 

Ice & Snow 0.0000 0.0000 0.0000 0.0000 0.2789 0.0031 0.0017 0.0795 0.6368 

Appendix B 

 
Figure A1. Map 1: Protected area, Sub-Metropolitan City, Municipality and Rural Municipality of Lumbini Province. 
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