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Abstract: Velocity estimation of ocean surface currents is of great significance in the fields of the
fishery, shipping, sewage discharge, and military affairs. Over the last decade, along-track interfero-
metric synthetic aperture radar (along-track InSAR) has been demonstrated to be one of the important
instruments for large-area and high-resolution ocean surface current velocity estimation. The cal-
culation method of the traditional ocean surface current velocity, as influenced by the large-scale
wave orbital velocity and the Bragg wave phase velocity, cannot easily separate the current velocity,
characterized by large error and low efficiency. In this paper, a novel velocity estimation method of
ocean surface currents is proposed based on Conditional Generative Adversarial Networks (CGANs).
The main processing steps are as follows: firstly, the known ocean surface current field diagrams and
their corresponding interferometric phase diagrams are constructed as the training dataset; secondly,
the estimation model of the ocean surface current field is constructed based on the pix2pix algorithm
and trained by the training dataset; finally, the interferometric phase diagrams in the test dataset
are input into the trained model. In the simulation experiment, processing results of the proposed
method are compared with those of traditional ocean surface current velocity estimation methods,
which demonstrate the efficiency and effectiveness of the novel method.

Keywords: along-track interferometric synthetic aperture radar (along-track InSAR); ocean surface
current velocity; deep learning; Conditional Generative Adversarial Networks (CGANs)

1. Introduction

Ocean surface currents play a key role in momentum, heat, and gas [1], which can
affect weather and climate in the relevant sea areas [2–4]. Over the last few decades, several
research studies have measured the velocity of ocean surface currents using along-track
interferometric (ATI) data [5]. The ATI system is realized by two Synthetic Aperture Radar
(SAR) antennas that are some distance apart in the direction of flight and obtain two images
of the same scene with a time delay of millisecond magnitude [6,7]. The common along-
track ATI systems are divided into airborne ATI systems and space-borne ATI systems.
The first ATI observations from space were obtained from the Shuttle Radar Topography
Mission (SRTM) [5,8,9]. From the theory of along-track InSAR, it can be known that only
the velocity of ocean current in the range direction can be measured, which cannot meet
the practical requirements. To solve this problem, the dual-beam along-track InSAR system
and MA-ATI SAR have been proposed [10–13]. Through the observation in two different
directions, two-dimension current velocity can be measured.

The signal processing chain of along-track InSAR data mainly includes two steps.
The first step is SAR imaging and along-track interferometric phase extracting, where
many uncertainty sources (systematic and random errors, errors caused by the atmospheric
phase) may influence the extraction accuracy of the along-track interferometric phase [2].
The second step is the ocean current velocity measurement from the extracted along-track
interferometric phase, which is the focus of this paper. Several methods have been proposed
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to calculate the ocean current velocity from along-track interferometric phase. The first
method, which we call the direct estimation in this paper, obtains current velocity directly
through multiplying the interferometric phase calculated from along-track InSAR data by
a linear coefficient. From [14], it is known that the obtained velocity includes the phase
velocity of the Bragg wave and the orbital velocity of the large-scale wave; therefore, the
velocity estimation error of the direct estimation method is very large in a real-world
application. The second method is proposed in [6] to calibrate the surface current field
obtained by the along-track interferometric phase via the real current field data of discrete
points. However, using the field data to calibrate the surface current field is time consuming
and costly in practice. According to the principle that the proportion of the Bragg wave
components propagating in different directions of the L and C band is approximately equal,
the L and C dual-band forward orbit interferometric SAR data are proposed to eliminate the
phase velocity of the Bragg wave [7]. However, there are few forward orbit interferometric
SAR platforms that can receive both L and C band data at the same time. The only
known aircraft is JPL’s AIRSAR, which was decommissioned in 2004. Then, an iterative
estimation method is presented by using the established simulation model of along-track
interferometric SAR imaging based on the M4S software (the simulation software of ocean
surface microwave imaging) [15]. In this method, the optimal matching of the simulated
interference phase and the measured interference phase was achieved through iterative
correction, and the current field at this time was taken as the optimal solution of the ocean
surface current field measured [14–16]. Usually, the iterative estimation method, requiring
repeated iterations, is featured by low estimation accuracy. What is worse, the M4S model
take a long time to simulate, resulting in low efficiency. In this paper, a novel velocity
estimation method of ocean surface currents is proposed based on Conditional Generative
Adversarial Networks (CGANs), which can reduce velocity estimation error and improve
processing efficiency.

In recent years, with the continuous development of deep learning, this technology
has already been used in the field of ocean remote sensing for eddy detection and target
recognition [17,18]. However, the method of ocean current velocity measurement based on
deep learning has not been reported yet. After extensive research of many deep learning
network structures, it is found that the Generative Adversarial Networks (GANs) and their
improved networks are the most likely to be used for ocean current velocity estimation
with along-track InSAR data, which can realize the function of image translation. The
GANs [19,20] were proposed by Ian J. Goodfellow in 2014, containing a generative model
G to capture the data distribution and a discriminative model D to estimate the probability
that a sample was produced from the training data rather than G in this network. Since
then, many excellent neural network algorithms have emerged, such as the CGANs [21],
deep convolutional GANs (DCGANs) [22], and large-scale GANs (BigGANs) [23], which
give full play to human creativity to change human life. The greatest merit of the GANs is
that they no longer require a hypothetical data distribution, but use a specific distribution
to sample directly, so as to obtain data that are infinitely close to the sample in theory.
However, the disadvantage of this method is that it is too free since there is no need for pre-
modeling in this method. In the case of larger images with more pixels, the method based
on the GANs is difficult to control. As a result, the Conditional Generative Adversarial
Networks (CGANs) came into being as an extension of the original GANs. The most widely
used CGANs are cycleGAN [24] and pix2pix [25] networks. Mehdi Mirza proposed GANs
that are constrained by certain conditions. The conditional variable y is adopted into the
modeling of both generator (G) and discriminator (D), while the additional information y
is employed to add conditions to the model, so as to guide the process of data generation.
This conditional variable y can be developed from a variety of information. The generator
uses the U-Net [26] structure, and the discriminator uses the PatchGAN [25] structure. The
pix2pix structure draws on the idea of CGANs. When CGANs enter the G network, they
will input both the noise and the condition. The fake images generated by the G network
will be affected by specific conditions. Therefore, if an image is used as a condition, there



Remote Sens. 2021, 13, 4088 3 of 26

should a corresponding relationship between the generated fake image and the conditional
image, thus realizing an image-to-image translation process [25,27].

In this study, combing with CGANs technology, a novel ocean current velocity estima-
tion method based on the data of along-track InSAR is proposed. By virtue of some image
data quality assessment indicators [28], including the root mean squared error (RMSE),
correlation coefficient (r), and bias [29], the ocean current velocity estimation results of the
newly proposed method are compared and analyzed with those of two commonly used
traditional estimation methods (the direct estimation method and the iterative estimation
method). The main contributions of this paper are listed as follows in more detail.

1. The deep learning method is applied to the estimation of ocean surface current
velocity for the first time. The CGANs extend their retrieval of the current field, with
their effectiveness proved. The result of comparing the deep learning method with
the traditional methods verifies the superiority of the deep learning method featured
by high precision. It is worth noting that the error in velocity measurement is reduced
from 0.104 m/s (the direct method) and 0.084 m/s (the iterative method) to 0.022 m/s
(the proposed method).

2. After optimization of network parameters, the network with the best ocean surface
velocity retrieval effect and the lowest error rate is established, which can be of
significant use in optimizing the network design in the future.

3. The generalization ability of the above-mentioned optimal neural network is verified
by changing the input interferometric phases under different system parameters,
wind field speed, and multi-looks.

2. Description of the Traditional Methods and the Proposed Method

In this section, the basic theories of the traditional ocean current velocity estimation
methods including the direct method and the iterative method are introduced. Then, the
detailed description of the novel method based on CGANs is presented, including the
processing flow of the new method, paired datasets for training network, the principle of
CGANs, and the network architecture of the new method. Finally, the Image Data Quality
(IQA) indexes are presented, which are used in simulation experiments to evaluate the
quality of the proposed method and the two conditional methods.

2.1. The Traditional Methods

1. The Direct Method

The interferometric phase can be used to directly calculate the velocity component of
the radar line of sight:

u0 = − λV
4πB sin θ

ϕ0, (1)

where u0 represents the guessed current field, ϕ0 represents the actually obtained along-
track interference phase, λ represents the wavelength of radar, B represents the effective
baseline length, V represents the platform velocity, and θ represents the angle of incident.

2. The Iterative Method

The target velocities obtained by the along-track interferometric phase are Doppler
velocities, which are the vector sum of the target radial velocities in all observation areas. In
addition to the velocity component of the ocean surface current field, the Doppler velocities
also include the velocity resulting from the ocean surface wind, the large-scale wave orbit
velocity, and the Bragg wave phase velocity.

uDoppler = uc + uwind + uo + ub, (2)

where uc represents the surface current field, uwind represents the velocity produced by
the ocean wind, uo represents the large-scale wave orbital velocity, and ub represents the
Bragg wave phase velocity. Among them, the sum of the surface velocity caused by the
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ocean surface wind field and the ocean surface current field velocity is considered to be the
required surface velocity, that is, us = uc + uwind.

The iterative algorithm current is shown in Figure 1.
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Specific operation process includes the following steps:

(1) The parameters needed for the correction process of the current field should be
initialized. Parameter N is the number of iterations. Parameter T1 is the threshold of
root mean square error (RMSE) of the interferometric phase, and the RMSE is used as
the error measure in iteration. Parameter T2 is the interferometric phase deviation
threshold. Parameter Fij is the flow field correction mark.

(2) The calculated surface current field, wind field, simulation system, and other parame-
ters into the M4S software should be input to calculate the actual interferometric phase.

(3) The interferometric phase of the first-guessed current field simulation should be
compared with the actual interferometric phase. If the RMSE of the interferometric
phase is less than T1, this iteration should be stopped. By this time, the current field is
the best current field, otherwise, it will display the same result as the last iteration
process. The RMSE shall be compared. When it grows larger, the iteration is proved
to have diverged, so one should stop the iteration and the output of the current field
of the previous iteration. If not, skip to step 4.

(4) A point-wise comparison should be made between the simulated interferometric
phase image and the actual interferometric phase image. If the interferometric phase
difference at a certain point is less than T1, the corresponding current field at that
position should not be corrected. If the interferometric phase difference at a certain
point is greater than T1, the current field should be corrected. Then the corrected
surface current field should be input into the M4S software for iterative recalculation.
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2.2. The New Method Based on CGANs
2.2.1. The Flow of the New Method

Taking the current field and the interferometric phase as input, the CGANs were
trained to learn the nonlinear mapping function to obtain the corresponding retrieval cur-
rent field as the output. The specific method can be divided into three steps (see Figure 2).
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1. Paired dataset preparation: the current field diagrams and the corresponding interfero-
metric phase diagrams were constructed as the training set to train the pix2pix algorithm.

2. CGANs model training: The estimation model of sea surface current field based on the
pix2pix algorithm was constructed. The paired ocean current field diagrams and inter-
ferometric phase diagrams were input to train the estimation model until convergence.

3. Accuracy assessment: The interferometric phase diagrams under different parameters
in the test dataset were input into the trained current field estimation model to obtain
the corresponding ocean surface current field diagrams. Finally, we compared the
estimation results and carried out the error analysis to reach some useful conclusions.

2.2.2. Paired Datasets for Training Network

M4S is a software toolkit for numerical simulations of the microwave radar imaging
of oceanic surface current features and of wind features near the ocean surface, which
cause signatures in radar images via hydrodynamic and aerodynamic modulation of the
surface wave spectrum. The M4S model mainly includes two calculation modules, namely,
the M4Sw (computation of spatially varying wave spectra) and M4Sr (computation of
radar signatures). The M4Sw generates the corresponding wave spectrum according to the
wave–current interaction model, with the given input of ocean current field and wind field,
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which was established on the basis of the combined ocean surface model. SAR amplitude
images and alignment interferometric phases are generated under different radar bands,
polarization modes, incident angles, baseline lengths, and other parameters. The principles
of the M4S software are shown in Figure 3.
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In this paper, the dataset was constructed by the Ocean Surface Current Analyses
Real-Time (OSCAR) dataset [30]. The OSCAR data were obtained from JPL Physical
Oceanography DAAC and developed by ESR [31]. The horizontal velocity is directly
estimated according to the sea surface height, the surface vector wind, and the sea surface
temperature, all of which were collected from various satellites and instruments. The
network common data form (netCDF) format was adopted for the ocean surface velocity
files. Then, we constructed 400 current field maps of 256*256 randomly in the various ocean
surface velocity files mentioned above. Finally, the 400 current velocity diagrams were
input into the M4S model to produce the corresponding interferometric phase diagrams.
The current field diagrams and the matching interferometric phase diagrams can be input
into the generated confrontation network as the training dataset.

2.2.3. Conditional Generative Adversarial Networks (CGANs)

The CGANs are the GANs featured by conditional constraints. In the modeling of
both the generation model (D) and the discriminant model (G), the conditional variable y is
the input to supplement the model with the additional information y, so as to guide the
process of data generation.
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The closer the discriminant result of the generated network’s data are to 1, the greater
the value of the output D(G(X)) of the discriminant network. Therefore, the loss function
LG can be expressed as:

LG = minEX(ln(1− D(G(X)))). (3)

The goal of the discriminant network is to make the discriminant result of the real
sample close to 1 and the generation data close to 0, so that both the expectation function
EY,X(ln D(Y)) and the value of EX(ln(1−D(G(X)))) are large enough. Therefore, the loss
function LD is expressed as:

LD = max
{

EY,X ln(D(Y)) + EX ln(1− D(G(X)))
}

. (4)

Previous approaches have found it beneficial to mix the GAN objective with a more
traditional loss, such as L1 and L2 distance [32]. The L1 norm loss function minimizes the
sum of the absolute difference between the target value and the estimated value. The L2
norm loss function minimizes the sum of squares of the difference between the target value
and the estimated value. We selected the L1 distance rather than L2, as L1 encourages less
blurring. Meanwhile, the L1 distance aims to prevent the model from overfitting for higher
accuracy. Therefore, the loss function is expressed as:

L1(G(X)) = EX,Y(‖Y− G(X)‖1). (5)

By doing so, the whole objective function can be defined as:

G∗ = arg min
G

max
D

{
EY,X(ln D(Y)) + EX(ln(1− D(G(X))))

}
+ λL1(G(X)), (6)

where λ represents the weight parameter.

2.2.4. Network Architecture

The model of ocean surface current velocity estimation based on the pix2pix algorithm
consists of the generator and the discriminator. Generator G, with a U-Net structure, can
help share the underlying information between the input and output. The purpose of
generator G is to “fool” the discriminator, that is, to hope that the discriminator will regard
the fake image as true. The input to the generator is x, and the output is its forged image
G(x). Discriminator D, with a conditional discriminator PatchGan structure, can map the
input to the patch X of N *N, in which the value of Xij represents the probability that all
patches are true samples, and the mean value of Xij is the final output of the discriminator.
The purpose of discriminant D is to correctly distinguish between real samples and forged
samples. When the discriminant is unable to distinguish the sample G(x) generated by
the generator from the real sample, the error between the ocean surface current velocity
graph obtained and the input velocity graph is small and the accuracy is high, reaching the
point of surreal.

The inputs of the generator are the interferometric phases, while the inputs of the
discriminator are the current fields and interferometric phases. The outputs of the discrimi-
nator are the generated current fields [33] (see Figure 4).
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3. Experiment

This section introduces the configuration of the environment and system parameters
for the proposed current velocity calculation, the superiority of the method compared with
traditional velocity calculation methods, the influence of network structure parameters on
the training results, and the generalization ability of the network in detail.

3.1. Experimental Environment and System Parameters

Table 1 shows the experimental hardware and software parameters. On this exper-
imental platform, the pix2pix algorithm is used for training and testing in accordance
with the algorithm flow in Figure 2. For the parameter selection in the pix2pix algorithm,
we adopted the Pytorch framework, selecting U-Net as the backbone feature extraction
network and PatchGan as the discriminator, which can recover the low-frequency part
of the image well. Both the inputs and outputs in the velocity estimation experiment are
images with the dimension of 256 × 256 × 3. Meanwhile, we used the Adam structure as
the optimizer to greatly reduce the loss, so as to get a better network structure. The setting
of the other super parameters is described in detail in Section 3.4.
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Table 1. Experimental environment.

Setting Software Setting Software

System Ubuntu16.04 Tool Anaconda3
RAM 16 GB Programming Python3.6
CPU Intel i5-9600KF 3.7GHz × 6 IDE Eclipse
GPU NVIDIA GTX 1080Ti Framework Pytorch-GPU

Auxiliary tools MATLAB Others CUDA9.0

Table 2 shows the experimental system simulation parameters. The Gaofen-3 satellite
is the first civil C-band multipolar SAR satellite in China. The system parameters used in the
simulation analysis refer to the relevant parameters of the Gaofen-3 satellite standard band
mode, in which the incident angle of alignment interference can be adjusted as required.

Table 2. System simulation parameters.

System Parameter Value System Parameter Value

Center Frequency 5.4 GHz Polarization Mode VV
Effective Baseline 28 m Spatial Resolution 25 m
Platform Height 755 km Platform Speed 7000 m/s
Incident Angle 35◦ NESZ −25 dB

The Number of Multi-Look 100 Wind Speed 5 m/s–15 m/s

3.2. Image Data Quality (IQA)

Reasonable evaluation indicators can help us better evaluate the quality of the gen-
erated image. In this paper, in order to quantitatively evaluate the relationship between
the ocean surface velocity m obtained through the deep learning training and the input
velocity, the following indicators were used for visual comparison: RMSE, r, and bias. The
mean square error (MSE) is the mean quadratic sum of the difference between the real
and predicted values. The RMSE is the square root of the MSE, also known as the fitting
standard deviation of the regression system. The smaller the RMSE value is, the higher the
image quality and accuracy of the generated image will be.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2, (7)

where m represents the observation times, yi represents the real value, and ŷi represents
the observed value.

The sum of squares for regression (SSR): the quadratic sum of the difference between
the mean values of the predicted data and the original data; the sum of squares for total
(SST): the quadratic sum of the difference between the original data and the mean values.
Meanwhile, r, which measures the ratio of SSR and SST, shows the fitting quality through
the changes in data. The closer r is to 1, the better the model fits the data.

r =

√
SSR
SST

. (8)

Bias measures the difference between the original data and the predicted data. The
mean value of 256*256 data (the dimension of images in the training dataset is 256*256)
of the input current field matrix and the predicted current field matrix are respectively
calculated. The bias represents the difference between these mean values. The closer
the bias is to 0, the higher the quality of the generated image will be. Suitable IQA
measurements are conducive to the assessment of translation performance, comparison of
translation systems, and visual quality improvement.
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3.3. Current Velocity Estimation Results Based on the CGANs

In this experiment, nine different groups of ocean surface current velocity diagrams
were applied, as shown in Figure 5. Besides, M4S software was used to generate the corre-
sponding interferometric phase diagrams. In the experiment, nine groups of interferometric
phase diagrams are input into the trained neural network to obtain the corresponding
estimation of current velocity diagrams, which are shown in Figure 6. In the current
field diagram, the resolution in range and azimuth direction is set to 25 m and the multi-
look number is set to 10 (range direction) and 10 (azimuth direction). After multi-look
processing, the interferometric phase diagram has a resolution of 250 m in range and
azimuth direction.
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Figure 6. The estimation ocean surface current field velocity: (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4,
(e) sample 5, (f) sample 6, (g) sample 7, (h) sample 8, and (i) sample 9.

The input current velocity diagram is compared with the current velocity diagram
obtained by the neural network test. The IQA consists of RMSE, r, and bias. After listing the
IQA indexes of the nine groups of samples, the corresponding three statistical values are
calculated. According to the statistical values, it is superior to calculate the ocean surface
current velocity by using deep learning which guarantees small error. Table 3 shows the
image quality assessment (IQA) results for different inputs.

Table 3. Statistics of the estimation results.

RMSE (m/s) r Bias (m/s)

Sample 1 0.019 0.760 0.028
Sample 2 0.027 0.703 0.019
Sample 3 0.017 0.818 0.015
Sample 4 0.019 0.785 0.009
Sample 5 0.026 0.764 0.028
Sample 6 0.027 0.724 0.019
Sample 7 0.018 0.779 0.013
Sample 8 0.025 0.795 0.008
Sample 9 0.020 0.782 0.014

Statistical average 0.022 0.768 0.017
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In Sections 3.4–3.6, the input current velocity diagram shown in Figure 7 is the pic-
ture randomly taken from the nine groups of samples in Section 3.3, with the following
experiments carried out on the basis of this diagram.
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3.4. Influence of Changing Network Architecture Parameters

We compared the optimal network of the four hyper-parameters in this experiment. To
quantitatively assess the accuracy of the current velocity estimation diagrams, we employed
the RMSE, r, and bias values in the input current velocity and the estimation of current
velocity. To display the results clearly, we employed a scatter diagram to show the density
distribution of data using MATLAB. The scatter diagram shows the reflectivity relationship
between the generated values and the actual values of the ocean surface current velocity,
and the 1:1 line was adopted in the scatter diagram. The closer the points are to the straight
line, the more correlated the velocity graph generated by the algorithm is with the input
velocity graph, presenting a smaller error and higher accuracy.

(1) Comparison of Different Epochs

It can be seen from Figure 8 and Table 4 that, with other conditions unchanged, the
change of epoch has a relatively great impact on the estimation accuracy. When under
300 epochs, the root mean square error is the smallest, with the largest correlation and the
smallest bias value between the input current field and the estimation of the current field.
In addition, the estimation accuracy is also the highest. The update times of the weights in
the neural network increases with the increase with the number of epochs, and the curve
also turns from under-fitting to over-fitting. Therefore, in the case of the relatively small
datasets, the number of epochs can be increased as many as possible. However, too many
epochs will cost too much time, leading to inefficiency. At the same time, the error will be
enlarged, which is worthless.

Table 4. Statistics of the estimation results under different epochs.

Epoch RMSE (m/s) r Bias (m/s)

100 0.022 0.670 0.015
200 0.018 0.755 0.004
300 0.017 0.795 0.002
400 0.019 0.763 0.005
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Figure 9. The estimation velocity of ocean surface currents under the different batch sizes from (a–d): (a) the batch size of 
1, (b) the batch size of 2, (c) the batch size of 3, and (d) the batch size of 4. The scatter density map between the estimation 

Figure 8. The estimation velocity of ocean surface currents under the different epochs from (a–d): (a) 100 epochs,
(b) 200 epochs, (c) 300 epochs, and (d) 400 epochs. The scatter density map between the estimation velocity of ocean
surface currents and the control group velocity of the input ocean surface currents under the different epochs from (e–h):
(e) 100 epochs, (f) 200 epochs, (g) 300 epochs, and (h) 400 epochs.

(2) Comparison of Different Batch Sizes

It can be seen from Figure 9 and Table 5 that, with other conditions unchanged, the
smaller the batch size is, and the better the predicted effect is. When the batch size is 1,
the root mean square error is the smallest, with the largest correlation and the smallest
bias value between the input current field and the estimation of the current field. With the
growing batch sizes, the generalization ability of the model decreases. Besides, it takes
longer to process the same amount of data, requiring more epochs to achieve the same
accuracy. On the one hand, the large set of batch size results in fast convergence, less
training time, and a stable increase in accuracy. On the other hand, low accuracy affects the
factor of randomness.

Table 5. Statistics of the estimation results under different batch sizes.

Batch Size RMSE (m/s) r Bias (m/s)

1 0.017 0.795 0.002
2 0.025 0.736 0.009
3 0.026 0.693 0.010
4 0.027 0.661 0.015



Remote Sens. 2021, 13, 4088 14 of 26

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 25 
 

 

    
(e) (f) (g) (h) 

Figure 8. The estimation velocity of ocean surface currents under the different epochs from (a–d): (a) 100 epochs, (b) 200 
epochs, (c) 300 epochs, and (d) 400 epochs. The scatter density map between the estimation velocity of ocean surface 
currents and the control group velocity of the input ocean surface currents under the different epochs from (e–h): (e) 100 
epochs, (f) 200 epochs, (g) 300 epochs, and (h) 400 epochs. 

Table 4. Statistics of the estimation results under different epochs. 

Epoch RMSE (m/s) r Bias (m/s) 
100 0.022 0.670 0.015 
200 0.018 0.755 0.004 
300 0.017 0.795 0.002 
400 0.019 0.763 0.005 

(2) Comparison of Different Batch Sizes 
It can be seen from Figure 9 and Table 5 that, with other conditions unchanged, the 

smaller the batch size is, and the better the predicted effect is. When the batch size is 1, 
the root mean square error is the smallest, with the largest correlation and the smallest 
bias value between the input current field and the estimation of the current field. With 
the growing batch sizes, the generalization ability of the model decreases. Besides, it 
takes longer to process the same amount of data, requiring more epochs to achieve the 
same accuracy. On the one hand, the large set of batch size results in fast convergence, 
less training time, and a stable increase in accuracy. On the other hand, low accuracy af-
fects the factor of randomness. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9. The estimation velocity of ocean surface currents under the different batch sizes from (a–d): (a) the batch size of 
1, (b) the batch size of 2, (c) the batch size of 3, and (d) the batch size of 4. The scatter density map between the estimation 
Figure 9. The estimation velocity of ocean surface currents under the different batch sizes from (a–d): (a) the batch size of 1,
(b) the batch size of 2, (c) the batch size of 3, and (d) the batch size of 4. The scatter density map between the estimation
velocity of ocean surface currents and the control group velocity of the input ocean surface currents under the different
batch sizes from (e–h): (e) the batch size of 1, (f) the batch size of 2, (g) the batch size of 3, and (h) the batch size of 4.

(3) Comparison of Different Sample Sizes

According to Figure 10 and Table 6, it can be found that with other conditions un-
changed, the predicted effect will improve with the increasing number of samples in the
training set. When there are 400 samples, the root mean square error is the smallest, with
the largest correlation and the smallest bias value between the input current field and the
estimation of the current field. However, it takes a lot of time to obtain the corresponding
interferometric phase diagram through the M4S software. Even worse, the ocean surface
current velocity diagram is difficult to get, apart from difficulties in the construction of
the dataset. Therefore, the dataset can be expanded through certain image enhancement
methods, such as clipping, translation, rotation, brightness, saturation, etc. The richer
the dataset is, the better the velocity graph obtained by deep learning is, and the smaller
the error is.

Table 6. Statistics of the estimation results under different sample numbers.

The Number of
Samples RMSE (m/s) r Bias (m/s)

100 0.024 0.652 0.017
200 0.023 0.664 0.014
300 0.021 0.670 0.009
400 0.017 0.795 0.002
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Figure 10. The estimation velocity of ocean surface currents under the different sample sizes from (a–d): (a) 100 samples,
(b) 200 samples, (c) 300 samples, and (d) 400 samples. The scatter density map between the estimation velocity of the ocean
surface currents and the control group velocity of the input ocean surface currents under the different sample sizes from
(e–h): (e) 100 samples, (f) 200 samples, (g) 300 samples, and (h) 400 samples.

(4) Comparison of Different Learning Rates

In order to give full play to the gradient descent method, the value of the learning
rate should be set within an appropriate range. The learning rate determines how fast the
parameters move to the optimal value. If the learning rate is set too low, the convergence
will be accelerated greatly with more training time. An excessive learning rate may cause
the parameters to oscillate back and forth between the optimal solution on both sides. The
algorithm fails to converge for a long time. It can be seen from Figure 11 and Table 7 that
with other conditions unchanged, the initial learning rate is not very high. Besides, when
the initial learning rate is 0.0002, the root mean square error is the smallest, with the largest
correlation and the smallest bias value between the input current field and the estimation
of the current field, thus indicating the highest estimation accuracy.

Table 7. Statistics of the estimation results under different learning rates.

Learning Rate RMSE (m/s) r Bias (m/s)

0.0001 0.022 0.700 0.008
0.0002 0.017 0.800 0.002
0.0003 0.021 0.736 0.006
0.0004 0.022 0.728 0.007
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Figure 11. The estimation velocity of ocean surface currents under the different learning rates from (a–d): (a) 0.0001,
(b) 0.0002, (c) 0.0003, and (d) 0.0004. The scatter density map between the estimation velocity of the ocean surface currents
and the control group velocity of the input ocean surface currents under the different learning rates from (e–h): (e) 0.0001,
(f) 0.0002, (g) 0.0003, and (h) 0.0004.

3.5. Comparison of Different Methods Based on the Simulated Data

According to the result specified in Section 3.4, when the hyper-parameters of the
training network are under 300 epochs and 400 samples, with the batch size of 1 and
the initial learning rate at 0.0002, the test result is obviously better than those of the
networks using other hyper-parameters. Compared with the direct estimation method
and the iterative method, the machine learning method using the above-mentioned hyper-
parameters is obviously preferred, featured by minimum error and high efficiency in the
calculation of the current field velocity. The comparison results of the traditional methods
and the new method can be seen from Figure 12, Figure 13, Figure 14 and Table 8.
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ity obtained through the trained pix2pix network, and (c) the scatter density map of the input and calculated current ve-
locities. 
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Figure 14. The velocity calculation results based on the proposed method: (a) the input velocity, (b) the calculated velocity
obtained through the trained pix2pix network, and (c) the scatter density map of the input and calculated current velocities.

Table 8. Statistics of the estimation results under different methods.

Method RMSE (m/s) r Bias (m/s)

Direct Method 0.104 0.714 0.028
Iterative Method 0.084 0.641 0.010
Proposed Method 0.017 0.795 0.002

According to the table and Equation (7) discussed above, it is found that:

u0 = −1.9269ϕ0 (9)

The comparison results of the traditional methods and the new method can be seen
from Figure 12, Figure 13, Figure 14 and Table 8.

Figure 12b, as a result of transformation from the interferometric phase diagram to
the horizontal line-of-sight velocity component is also the initial guessed current field of
velocity retrieval through the iterative method. It is obvious that the RMSE and bias are
the worst among the three methods in terms of their values. This is because the velocity
diagram of the direct method is obtained directly by multiplying the interferometric phase
data by a coefficient, so that there is a large amount of noise interference in the direct
velocity retrieval diagram. According to the mainstream iterative method to calculate the
sea surface velocity algorithm [14], it is known that the RMSE between the predicted current
field and the input current field is about 0.05 m/s, but the iteration error we measured
was slightly greater than 0.05 m/s in this paper. The retrieval error mainly results from
insufficient filtering, multi-look, and other processing of the image edge. Consequently, it
can be hard to get rid of the edge noise. Obviously, the RMSE of the velocity calculation
method based on deep learning proposed in this paper is around 0.02 m/s, leading to
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higher accuracy in retrieval. Meanwhile, r is the highest and bias is the lowest among the
three methods, which also proves the superiority of the proposed method.

3.6. Influence of Changing Parameters

Based on the above optimal network structure, this section changed the three parame-
ters of wind speed, multi-look, and incident angle to verify the generalization ability of
the network.

(1) Comparison of Different Wind Velocities

According to Figure 15 and Table 9, it is discovered that with other conditions un-
changed, the change of the wind field speed can impact the estimation accuracy significantly.
When the wind field speed of the test dataset is consistent with that of the training set, the
input current field is consistent with the estimation of the current field. Given the smallest
root mean square error, the estimation accuracy is the highest. Nevertheless, the greater
the wind speed is, the greater the error is.
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Figure 15. The estimation velocity of ocean surface currents under the different wind velocities from (a–c): (a) 5 m/s,
(b) 10 m/s, and (c) 15 m/s. The scatter density map between the estimation velocity of ocean surface currents and the
control group velocity of the input ocean surface currents under the different wind velocities (d–f): (d) 5 m/s, (e) 10 m/s,
and (f) 15 m/s.

Table 9. Statistics of the estimation results under different wind velocities.

Wind Velocity (m/s) RMSE (m/s) r Bias (m/s)

5 0.017 0.795 0.002
10 0.020 0.701 0.003
15 0.030 0.373 0.019

(2) Comparison of Different Multi-Looks

From Figure 16 and Table 10, we can see that with other conditions unchanged, the
impact of multi-looks on the estimation accuracy is limited. Regardless of changes in
looks, the RMSE between the input current field velocity and the estimation of current field
velocity hardly changes.
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Figure 16. The estimation velocity of ocean surface currents under the different multi-looks from (a–c): (a) 16 looks,
(b) 64 looks, and (c) 100 looks. The scatter density map between the estimation velocity of ocean surface currents and
the control group velocity of the input ocean surface currents under the different multi-looks from (d–f): (d) 16 looks,
(e) 64 looks, and (f) 100 looks.

Table 10. Statistics of the estimation results under different multi-looks.

Multi-Look RMSE (m/s) r Bias (m/s)

16 0.020 0.728 0.002
64 0.019 0.750 0.002

100 0.017 0.795 0.002

(3) Comparison of Different Incident Angles

Figure 17 and Table 11 indicate that, with other conditions unchanged, changes in
the incident angle have a relatively large influence on the estimation accuracy. When the
incident angle equals that of the training set, which is 35◦, the root mean square error
between the input current field velocity and the estimation of current field velocity is the
smallest with the highest estimation accuracy.

Table 11. Statistics of the estimation results under different incident angles.

Incident Angle (◦) RMSE (m/s) r Bias (m/s)

20 0.031 0.296 0.016
28 0.020 0.704 0.003
35 0.017 0.795 0.002
43 0.018 0.761 0.005
50 0.026 0.508 0.014
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Figure 17. The estimation velocity of ocean surface currents under the different incident angles from (a–e): (a) 13◦, (b) 28◦,
(c) 35◦, (d) 43◦, and (e) 50◦. The scatter density map between the estimation velocity of ocean surface currents and the
control group velocity of the input ocean surface currents under the different incident angles from (f–j): (f) 13◦, (g) 28◦,
(h) 35◦, (i) 43◦, and (j) 50◦.

3.7. Verification of the Real Data

To verify the effectiveness of the proposed algorithm, real data of the two-channel
along-track InSAR mode from the Gaofen-3 spaceborne SAR system are processed. It
should be pointed out that the ocean current velocity measurement mode is not designed for
Gaofen-3 spaceborne SAR system; therefore, the corresponding cooperation experiments
are not carried out. The basic SAR processing and interferogram generation were performed
at the Aerospace Information Research Institute, Chinese Academy of Sciences. Figure 18
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shows the real data after SAR imaging with the size of 13182(azimuth)*15316(range). In
Figure 18, the sea surface area of 8192(azimuth)*8192(range) is extracted for the real data
verification, which is marked with red rectangle. According to local weather records, the
wind speed is around 4.5m/s and the wind direction is about 130◦ along the SAR azimuth
direction. After the flat-earth phase removal and phase calibration, the interferometric
phase of the extracted area is shown in Figure 19, and no useful information can be found
due to the relatively low SNR. Therefore, 1024 multi-looks and three times 10*10 element
boxcar averaging are performed, and the result is shown in Figure 20 with the size of
256(azimuth)*256(range). From Figure 20, it can be found that the texture structure of the
extracted interferometric phase is in accordance with the texture structure of extracted SAR
image in Figure 18. Due to the lack of real current field data of the extracted area, in the
following experiment, the three different algorithms are compared based on the extracted
interferometric phase in Figures 21–23.
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Figure 20. The extracted interferometric phase from the Gaofen−3 along−track InSAR data after
1024 multi−looks and three times 10*10 element boxcar averaging (size: 256(azimuth)*256(range)).

In our experiment, the current field is first calculated with the aforementioned three
methods and the results are shown in Figures 21a, 22a and 23a. Then, the calculated
current field is input into the M4S software to simulate the corresponding interferometric
phases, which are presented in Figures 21b, 22b and 23b. Since the real ocean current
flow field data of the observed area are unknown, the simulated interferometric phases
with the aforementioned three methods are compared with the extracted interferometric
phase, and the corresponding statistics results are shown in Table 12, which can exhibit the
performance of these three methods indirectly.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 20. The extracted interferometric phase from the Gaofen−3 along−track InSAR data after 
1024 multi−looks and three times 10*10 element boxcar averaging (size: 256(azimuth)*256(range)). 

In our experiment, the current field is first calculated with the aforementioned three 
methods and the results are shown in Figures 21a, 22a and 23a. Then, the calculated 
current field is input into the M4S software to simulate the corresponding interferomet-
ric phases, which are presented in Figures 21b, 22b and 23b. Since the real ocean current 
flow field data of the observed area are unknown, the simulated interferometric phases 
with the aforementioned three methods are compared with the extracted interferometric 
phase, and the corresponding statistics results are shown in Table 12, which can exhibit 
the performance of these three methods indirectly. 

   
(a) (b) (c) 

Figure 21. Results of the direct method: (a) the calculated current filed, (b) the simulated interferometric phase, and (c) 
the scatter density map of simulated and extracted interferometric phases. 

   
(a) (b) (c) 

Figure 22. Results of the iterative method: (a) the calculated current filed, (b) the simulated interferometric phase, and (c) 
the scatter density map of simulated and extracted interferometric phases. 

Figure 21. Results of the direct method: (a) the calculated current filed, (b) the simulated interferometric phase, and (c) the
scatter density map of simulated and extracted interferometric phases.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 20. The extracted interferometric phase from the Gaofen−3 along−track InSAR data after 
1024 multi−looks and three times 10*10 element boxcar averaging (size: 256(azimuth)*256(range)). 

In our experiment, the current field is first calculated with the aforementioned three 
methods and the results are shown in Figures 21a, 22a and 23a. Then, the calculated 
current field is input into the M4S software to simulate the corresponding interferomet-
ric phases, which are presented in Figures 21b, 22b and 23b. Since the real ocean current 
flow field data of the observed area are unknown, the simulated interferometric phases 
with the aforementioned three methods are compared with the extracted interferometric 
phase, and the corresponding statistics results are shown in Table 12, which can exhibit 
the performance of these three methods indirectly. 

   
(a) (b) (c) 

Figure 21. Results of the direct method: (a) the calculated current filed, (b) the simulated interferometric phase, and (c) 
the scatter density map of simulated and extracted interferometric phases. 

   
(a) (b) (c) 

Figure 22. Results of the iterative method: (a) the calculated current filed, (b) the simulated interferometric phase, and (c) 
the scatter density map of simulated and extracted interferometric phases. 
Figure 22. Results of the iterative method: (a) the calculated current filed, (b) the simulated interferometric phase, and (c)
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Table 12. Statistics of the estimation results under different methods.

Method RMSE (rad) r Bias (rad)

Direct Method 0.113 0.759 0.109
Iterative Method 0.066 0.658 0.026
Proposed Method 0.042 0.791 0.007

Through the aforementioned real-data processing results, it can be found that the
proposed method has a significant advantage over the direct method. While comparing to
the iterative method, the current velocity estimation performance of the proposed method
has a slight improvement. However, the iterative method takes a long time to finish
the iteration in real-world applications. This low efficiency can be well solved by the
proposed method.

4. Discussion

Table 3 summarizes the quantitative indicators of the nine groups of test samples.
According to the statistics shown in the table, it can be found that the mean values of the
RMSE, r, and bias are 0.022 m/s, 0.768, and 0.017 m/s, respectively. Compared with the
traditional calculation methods of ocean surface velocity based on the iterative method in
Section 3.5, the velocity measurement accuracy of the proposed method increased from
0.084 m/s to 0.017 m/s. This is the most important advantage of the new method proposed
in this paper.

In the experiments of the influence of the changing network structure on training
results, Table 4 summarizes the quantitative indicators under different epochs. Based
on the values in the table, with the rising epoch number, the RMSE decreases before it
increases. When the number of the epoch is 300, the velocity measurement accuracy is
the highest and the correlation is the strongest, proving that in the process of network
training, the curve will change from under-fitting to over-fitting with the increase in the
epoch number. Therefore, there is a need to find the optimal critical value. In addition,
Table 5 summarizes the quantitative indicators under the different batch sizes. The values
in the table indicate that, when the batch size is 1, the velocity measurement accuracy is the
highest and the correlation is the strongest. Moreover, the larger the batch size is, the lower
the accuracy is. This is because the number of samples in the training set in this experiment
is a small dataset. After reducing the batch size, the convergence was slowed down and
the generalization ability of the model was enhanced. Table 6 summarizes the quantitative
indicators under different datasets. The larger the number of samples in the dataset is,
the higher the accuracy of the current measurement is. This is because the generator can
capture more data features with a larger training sample. If the network level remains
unchanged, the feature training will be sufficient, so as to produce better prediction results.
Table 7 summarizes the quantitative indicators under different learning rates. As shown in
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the table, with the increasing learning rate, the RMSE decreases before it increases. This is
because the smaller the learning rate is, the slower the speed of the loss gradient descent is,
and the longer the convergence time is. However, for the excessive learning rate, the steps
of gradient descent might be too large to capture the optimal value.

In the experiments on how changing system parameters affect the training results, the
optimal network based on the above network parameters was selected. Table 9 summarizes
the quantitative indicators under different wind velocities. According to the chart, the accu-
racy of the current measurement is worsened with the increasing wind speed. Based on the
M4S software, both wind speed and current rate affect the generation of the interferometric
phase. Therefore, the more the wind speed of the test dataset deviates from that of the
training set, the greater the error between the velocity obtained through deep learning and
the input velocity will be. Table 10 summarizes the quantitative indicators under different
numbers of multi-look. The chart suggests that there is little relation between the multiple
vision and the accuracy of the current measurement, so that the interference source of the
multi-vision can be eliminated from the error analysis in the subsequent experimental
studies. Table 11 summarizes the quantitative indicators under different incident angles.
The chart reveals that, with the increase in the incident angle, the accuracy of the current
measurement climbs up and then declines. This is because the vertical velocity accounts
for a large proportion when the incident angle is too small, while the proportion of the
horizontal velocity will increase with the incident angle. However, in the case of a large
incident angle, the backscattering from the sea surface and the signal-to-noise ratio will
decrease. What is more, the accuracy of the current measurement will also decrease.

As for real-data verification, as far as we know, the Gaofen-3 SAR satellite is de-
signed with different operating modes but does not include an ocean current velocity
measurement mode. The real data used in our experiment are from the two-channel SAR-
GMTI/SAR-MMTI mode with the radar beam pointing to the sea surface area. Since the
ocean current velocity measurement mode is not designed for the Gaofen-3 SAR system,
the corresponding cooperation experiments are not carried out and the real ocean current
flow field data of the observed area are not known. However, the good news is that the
ocean current velocity measurement mode is being designed and demonstrated for a new
spaceborne along-track InSAR system in China, which will be launched in the near future.
Besides, the corresponding cooperation experiment will also be carried out. By that time,
the whole signal processing chain of along-track ATI for ocean current measurements can
be demonstrated by real data.

5. Conclusions

In this study, we proposed an estimation method for the ocean surface current field
velocity based on the CGANs in deep learning. CGANs have already been widely used
in the field of image translation, that is ‘translating’ an input image into a corresponding
output image. In our application, the image of interferometric phase can be regarded as
the input image, while the image of measured ocean current velocity can be considered
as the output image, which fits well the model of CGANs. This is the motivation that we
introduce CGANs in the field of ocean current velocity measurement based on along-track
InSAR data. The major findings are as follows. First of all, since the measured data from
the ocean surface current field were not available, we used the simulated data instead
of the measured data. The input current velocity diagrams that we constructed and the
corresponding interferometric phase diagrams based on M4S software are used to test the
practicability of the method. The network structural parameters have a relatively large
impact on the training results. Specifically speaking, when the number of the epoch is 300,
the batch size is 1, dataset samples are 400, and the learning rate is 0.0002, the estimation
result has the minimum error and the maximum correlation. Based on the optimal network
structure, compared with the two traditional methods, that is, the direct method and the
iterative method, the proposed method increases the precision of the velocity estimates.
Changes in the wind field velocity and incident angle can greatly impact the error of the
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estimation of current velocity, while changes in the multi-look number only have a limited
impact. Based on these, the generalization ability of the neural network can be verified.

This study made a novel attempt to apply deep learning to the estimation of current
velocity. The experimental results verified the feasibility and effectiveness of the new
method. However, there are still some limitations in the proposed method. For instance, no
detailed optimization has been made to the network structure, and the number of samples
in the dataset is not large enough. Similarly, the types are neither broad enough. These
factors are key constraints to higher accuracy. Thus, the future work will focus on the
data augmentation, the architecture design, and the algorithm optimization to improve the
performance of the system. It is believed that in the near future, deep learning will solve
the more complex problems of ocean remote sensing.
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