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Abstract: High-rise buildings (HRBs) as a modern and visually distinctive land use play an important
role in urbanization. Large-scale monitoring of HRBs is valuable in urban planning and environ-
mental protection and so on. Due to the complex 3D structure and seasonal dynamic image features
of HRBs, it is still challenging to monitor large-scale HRBs in a routine way. This paper extends
our previous work on the use of the Fully Convolutional Networks (FCN) model to extract HRBs
from Sentinel-2 data by studying the influence of seasonal and spatial factors on the performance
of the FCN model. 16 Sentinel-2 subset images covering four diverse regions in four seasons were
selected for training and validation. Our results indicate the performance of the FCN-based method
at the extraction of HRBs from Sentinel-2 data fluctuates among seasons and regions. The seasonal
change of accuracy is larger than that of the regional change. If an optimal season can be chosen to
get a yearly best result, F1 score of detected HRBs can reach above 0.75 for all regions with most
errors located on the boundary of HRBs. FCN model can be trained on seasonally and regionally
combined samples to achieve similar or even better overall accuracy than that of the model trained
on an optimal combination of season and region. Uncertainties exist on the boundary of detected
results and may be relieved by revising the definition of HRBs in a more rigorous way. On the whole,
the FCN based method can be largely effective at the extraction of HRBs from Sentinel-2 data in
regions with a large diversity in culture, latitude, and landscape. Our results support the possibility
to build a powerful FCN model on a larger size of training samples for operational monitoring HRBs
at the regional level or even on a country scale.

Keywords: high-rising building; Sentinel-2; seasonal; regional; fully convolutional networks

1. Introduction

With decades of rapid urbanization, High-Rise Buildings (HRBs) have been emerging
as a distinctive landscape in urban areas in China. HRBs mainly serving as high-end
commercial and business centers and residential apartments have obvious advantages at
improving the efficiency of resources and energy [1]. With their unique characteristics and
functions, HRBs have a great impact on the urban environment and socioeconomics [2–4].
For example, HRBs influence local climate in urban areas by modifying energy balance
and roughness of the urban surface, which are closely related to the urban heat island
effect [2,3]; the compact and complex geometric structure of HRBs makes people easily
vulnerable to contagious diseases [4]. Therefore, the monitoring of HRBs in urban areas
can be useful in urban planning, environment protection, and ecological assessment, and
so on.

Remote sensing has been proven to be an efficient and cost-efficient way to monitor
urban dynamics at various temporal and spatial scales [5–7]. Most of the studies focus

Remote Sens. 2021, 13, 4073. https://doi.org/10.3390/rs13204073 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0319-7753
https://doi.org/10.3390/rs13204073
https://doi.org/10.3390/rs13204073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13204073
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13204073?type=check_update&version=1


Remote Sens. 2021, 13, 4073 2 of 18

on urban land covers such as vegetation and impervious surfaces in the remote sensing
community [8–11]. A few studies draw attention to land use mapping by considering
spatial context [12,13]. However, the study of HRBs is far behind that of other urban
features, although HRBs are quite visually distinct in urban areas [14,15]. Large-scale
monitoring of HRBs is still challenging mainly for two reasons. On the one hand, little
consistent and clear definition has ever been given to HRBs in the context of the large-scale
monitoring of HRBs. This is due to the physical properties of HRBs, which vary a lot in
different regions with different cultural, terrain, and other factors. On the other hand, HRBs
have complex 3D geometric structures and surface materials, and these characteristics
bring difficulties to large-scale monitor HRBs in a routine way.

To address the above challenges, HRBs have been defined as spatial clusters of build-
ings, and each cluster represents spatially connected buildings with relatively uniform
height [15]. The threshold of the height works as the only parameter in defining HRBs. In
the latest “Uniform standard for design of civil buildings GB 50252-2019” [16] in China,
HRBs are defined as civil buildings above 27 m or public buildings with multiple floors
above 24 m. Here we consider HRBs as building clusters with an average height of above
25 m in general. A similar definition for HRBs has been proposed in the study of Local
Climate Zone [2]. However, in the real scenario, the definition of HRBs solely based on
height is not practical, because the precise height of HRBs is quite hard to measure, and
also the height of HRBs varies a bit across geographical space. To deal with the problem,
local context is included in the definition because HRBs are empirically distinctive from
other urban features for a specific region. Thus, HRBs are defined in consideration of both
height and local context in a specific urban region.

Another opportunity to routinely monitor HRBs in large areas is the free access of
recent Sentinel-2 data from the European Space Agency (ESA) [17]. The Sentinel-2 data
have advantages at characterizing HRBs over traditional high spatial resolution satellite
images for nadir viewing, 10 m spatial resolution, global coverage, and short revisiting
interval, and so on. More specifically, nadir viewing can reduce the complexity of image
features of HRBs with 3D geometric structures; 10 m spatial resolution can well characterize
HRBs while omitting unnecessary spatial details. Global coverage and short revisiting
interval can guarantee consistent and large-scale monitoring.

Almost in parallel with the availability of Sentinel-2 data, the emergence of deep learn-
ing models essentially revolutionizes the framework of remote sensing data
analysis [13,18,19]. The deep learning model, which is biologically inspired by the human
brain, can integrate feature learning and parameter estimation into a single multiple lay-
ered neural networks. All parameters in the model are the weights between connected
neurons. With the help of powerful computational resources, these weights can be learned
from raw data and their labels in a rather brutal way. The merit of the deep learning model
lies directly learning complex but useful features that cannot be easily designed by human
engineers. Among deep learning models, Fully Convolutional Networks (FCN) [20,21],
initially developed to segment natural images, have proven to fit well to the pixel-wise
classification of remote sensing data [22].

With the proposed definition of HRBs, A FCN-based method has been successfully
developed to extract HRBs from Sentinel-2 images [14]. Above 90 percent of overall
accuracy measured by F1 score is obtained in the core of Xiong’an new area by the FCN-
based method, which is much better than that of traditional supervised classification
methods. Meanwhile, we have adopted the proposed FCN-based method to study the
dynamic of HRBs in similar regions [15]. However, previous works mainly use Sentinel-2
data acquired in Spring in a relatively local region. Image features of HRBs change a lot
along with many factors such as culture, sun geometry, and land cover. It is a question of
whether the newly proposed FCN-based method can be effective at extracting HRBs from
Sentinel-2 data acquired in other regions and/or seasons.

This paper extends previous work by studying the influence of seasonal and spatial
factors on the effectiveness of FCN model in HRBs detection. More specifically, we study
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the performance of FCN model on Sentinel-2 data in different seasons and regions, also we
want to evaluate the possibility to build one or a few FCN models rather than many local
FCN models to handle the large diversity of HRBs in different regions and seasons without
sacrificing much overall accuracy. To achieve this aim, we selected four cities, namely,
Harbin, Beijing, Zhengzhou, and Guangzhou, as study regions. Four cities have diverse
latitudes and landscapes. Additionally, we collected Sentinel-2 images from four seasons
in each city. With multiple spatial and seasonal data, we design and conduct extensive
experiments to evaluate the FCN-based method. Our study aims to answer three questions.

(1) What are the performances of models built on different combinations of region and season?
(2) Is it possible to build an effective model for all four seasons in a specific region?
(3) Is it possible to build an effective model for all four regions and four seasons?

The paper is divided into five parts. Part one gives an introduction to our work. Part
two describes the experimental data including images and HRBs samples, the flowchart of
our method. Part three presents HRBs detection results and the analysis. Part four gives a
discussion on the results. The final part concludes the paper and also provides perspectives
in future work.

2. Materials and Methods
2.1. Data

Four capital cities namely Harbin, Beijing, Zhengzhou, Guangzhou ranging from
north to south in China were selected as study regions as illustrated in Figure 1. Four
cities have experienced extensive urbanization processes in the past decades; meanwhile,
they are diverse from each other on many aspects such as latitude, climate, and landscape.
According to Köppen climate classification, Harbin and Beijing belong to the Dwa, while
Zhengzhou and Guangzhou pertain to Cwa. Thus, the selected regions provide a very
good testbed for the validation of the effectiveness of the FCN-based method on HRBs
detection. Fives typical areas were chosen for HRB sample collection in each region. Both
urban center and suburban areas are considered in the selection. Each area covers about
5 km × 5 km. Among the five areas, three are used to train the FCN-based model while
the other two are used as independent validation data. All selected sample areas and their
corresponding regions are shown in Figure 2.

A total of 16 Sentinel-2 images covering all regions and seasons were collected in
our study as indicated in Table 1. The images were selected as close as to the middle of
each season. All data were acquired under clear sky conditions in 2018 except the data
in Guangzhou in summer which was obtained in Summer in 2019 due to lacking of data
with clear sky in summer in 2018. All data were processed to surface reflectance using the
Sen2Cor program. Only three bands with 10 m spatial resolution were used in the study.
They are Blue, Green, and Red as shown in Table 2.

Table 1. List of dates and locations of Sentinel-2 images used in the experiment.

Season

Tile (City) T51TYL
(Harbin)

T50TMK
(Beijing)

T49SGU
(Zhengzhou)

T49QGF
(Guangzhou)

Spring 22 March 2018 12 February 2018 22 February 2018 11 March 2018
Summer 23 June 2018 14 June 2018 07 June 2018 14 June 2019
Fall 18 September 2018 05 September 2018 30 September 2018 02 October 2018
Winter 10 December 2018 19 December 2018 29 December 2018 15 January 2018

Table 2. Spectral and spatial configurations of Sentinel-2 data used in the experiment.

Band Index Name Wavelength (nm) Spatial Resolution

2 Blue 458–523 10 m

3 Green 543–578 10 m

4 Red 650–680 10 m
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Figure 1. Illustrations of five regions selected in our study and five sample areas in each region used for sample collection
(Red boxes show the selected sample areas).
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our study as indicated in Table 1. The images were selected as close as to the middle of 
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Figure 2. True color images in Spring and the corresponding HRBs masks in test1 in Guangzhou,
Zhengzhou, Beijing, and Harbin from top to bottom, respectively.

To prepare train and validation samples for the FCN-based method, a slice with a size
of 500 × 500 pixels is clipped for each sample region from its corresponding Sentinel-2
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image. Then HRBs mask of the slice for each sample region is manually extracted based
on visual interpretation of the subset image, high spatial resolution satellite images from
Google Earth, and street-side imageries from Baidu Map. In the HRB mask acquisition
process, we assume HRBs do not change in the sample region during 2018, and this
assumption is largely valid according to our manual interpretation. This assumption can
improve the accuracy of manual interpretation as the temporal change of image features
of HRBs can be exploited. Figure 2 illustrates true color images and their corresponding
HRBs labels in test1 in four regions respectively. Each clipped slice and its mask are further
divided into patches with the size of 128 × 128. There is an overlap of 96 pixels to avoid
the boundary effect in the patch preparation. Totally 432 patches were obtained for each
sample region in each season. Typical patches with outlined HRBs from four regions in four
seasons are illustrated in Figure 3. It can be seen that image features of HRBs seasonally
vary a lot mainly due to changing shadows caused by the change of sun geometry while
the spatial pattern of HRBs among seasons in the image keeps well in general.
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the patches.

2.2. Methodology

This paper aims to study the influence of seasonal and spatial factors on the effective-
ness of the newly proposed FCN model in HRBs detection. More specifically, we want
to answer the three questions posed in the introduction. For this purpose, we designed
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three groups of experiments by using the train and validation samples and the FCN model.
In the following, the FCN model and its usage in the HRBs detection are firstly presented,
and then the three groups of experiments are described in detail.

The architecture of the FCN model is illustrated in Figure 4. It can be generally seen
as a combination of an encoder and a decoder. The encoder accepts raw remote sensing
image patches as the input, and sequentially transforms the input patches into small but
informative features through a trained VGG-16 model [23]. The output of pool5 in the
encoder works as the input to the decoder. The decoder mainly uses the upsampling to
recover the label image of HRBs from the encoded features. The dimension of features in
each decoded layer is equal to the number of classes (two in our case, HRBs and others).
The upsampling in the decoder is a transposed convolution with a fixed filter defined
by the bilinear interpolation. Two skip layers connecting layers of the same size in the
encoder and the decoder as shown in Figure 4 are used to enhance the spatial detail of
label recovery. As the final layer, the softmax function transforms the decoded features
into probabilities of HRBs and others, and then argmax function selects the label with the
highest probability for each pixel and obtains a pixel-wise map of the HRB’s mask.
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In real applications, the FCN model working as a supervised model needs to be trained
before being put into use for HRB detection. In the training process, key parameters in the
model are optimized based on the prepared train data and Adam learning algorithm [24].
The train data include a group of image pairs, and each pair contains a raw image patch
with a size of 128 × 128 and its corresponding HRB’s mask. The mask is manually extracted
based on the ground truth. In the inference process, an input image is firstly clipped into
patches. Each clipped image patch is separately processed into an image patch of HRBs
labels by the trained FCN model. The HRBs patches are spatially aligned according to
their original locations in the input image. Thus a binary image of HRBs with the same
size as the input image is obtained in the final. Here, the patch size for inference can be
much larger than the patch size used in the training, which is 128 × 128. This is because the
FCN inference works in a parallel mode, and each location is only affected by its effective
receptive field, which has a size of 32 × 32 pixels in our model. Additionally, we set
32 pixels as the step of the moving window in the patch clip to alleviate the side effects
caused by the spatial alignment of the boundary in the final result.

Three groups of experiments specifically designed in our study are coded as E1, E2,
and E3, respectively. E1 mainly works to evaluate the FCN-based method under different
combinations of season and region. E2 tries to evaluate the possibility to build an effective
FCN model that is invariant to the season. E3 aims to study the possibility to build
an effective FCN model that is invariant to both the region and the season. We list the
experiments in detail as follows.

(1) E1 evaluates FCN models built on different combinations of region and season.

In this group, totally 16 experiments are included as shown in Table 3. Each FCN
model is trained and validated independently on a specific combination of region and
season. Thus, the results can help to understand the behavior of the FCN-based method
under different combinations of spatial and seasonal conditions. Additionally, the results
in E1 can work as benchmarks for those of E2 and E3.

Table 3. Experimental setup for E1.

No. Region Season Model

1 Guangzhou Spring FCN

2 Guangzhou Summer FCN

3 Guangzhou Fall FCN

4 Guangzhou Winter FCN

5 Zhengzhou Spring FCN

6 Zhengzhou Summer FCN

7 Zhengzhou Fall FCN

8 Zhengzhou Winter FCN

9 Beijing Spring FCN

10 Beijing Summer FCN

11 Beijing Fall FCN

12 Beijing Winter FCN

13 Harbin Spring FCN

14 Harbin Summer FCN

15 Harbin Fall FCN

16 Harbin Winter FCN

(2) E2 evaluates the possibility to build an effective FCN model for all seasons in a
fixed region.
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Four experiments are designed in this group as shown in Table 4. Here, training
samples from all four seasons in a specific region are combined to support the build of
a single FCN mode that is effective for all seasons. Results from E1 are also used in this
group for comparison. The results can help understand the behavior of the FCN-based
method under different temporal conditions.

Table 4. Experimental setup for E2.

No. Region Season Model

1 Guangzhou Spring + Summer + Fall + Winter FCN

2 Zhengzhou Spring + Summer + Fall + Winter FCN

3 Beijing Spring + Summer + Fall + Winter FCN

4 Harbin Spring + Summer + Fall + Winter FCN

(3) E3 evaluates the possibility to build a single effective FCN model for all seasons
and regions.

Only one experiment is included in this group as shown in Table 5. Here, training
samples from all four seasons and four regions are combined to support the build of a
single FCN mode that is effective for all seasons and regions. Results from E1 and E2 are
also used in this group for comparison. The results can help to understand the behavior of
the FCN-based method under seasonal and spatial conditions.

Table 5. Experimental setup for E3.

No. Region Season Model

1 Guangzhou + Zhengzhou + Beijing + Harbin Spring + Summer + Fall + Winter FCN

As our purpose is to evaluate the FCN-based method under various spatial and
temporal conditions, we used the same empirical key parameters in FCN training for all
experiments as listed in Table 6. This group of parameters has been proven robust and
effective in our previous study [8,9].

Table 6. Key parameters in the FCN model training.

Parameters Value Explanations

Input feature RGB Red, Green and Blue

transfer learning Yes Reusing trained weights of VGG-16 on ImageNet

Initializer Xavier Initialize the weight of the network before training

batch size 1 The number of patch used in each round of training

patch size 128 The size of input patch

training step 60,000 We output a trained model at each 3000 steps and select the one
with the best performance on the training data

loss function Cross-entropy Measurement of loss in the optimization

optimizer Adam Algorithm for updating the weight [24]

learning rate 0.00001 Key parameter in the Adam

We used the F1 score to assess the performance of each trained model in all ex-
periments. The F1 score can take advantage of the precision and recall as indicated in
Equation (1), where an F1 score reaches its best value at 1 and worst at 0. It is more objective
than overall accuracy in our binary classification case.

F1 score = 2 × (precision × recall)/(precision + recall), (1)
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where precision is the number of correct positive pixels divided by the number of all
positive pixels predicted by the method, and recall is the number of correct positive pixels
divided by the number of all relevant pixels.

All experiments are conducted under Ubuntu 16.04.6 LTS with Intel Core i7-5930
NVIDIA GeForce GTX 1080 and Memory 128 GB. The FCN model is built upon TensorFlow
1.8 and Python.

3. Results and Analysis

Totally 21 FCN models from E1, E2, and E3 were trained and validated according to
the experimental design. The results were analyzed quantitatively and qualitatively as
illustrated in Figures 5–10. To support a quantitative analysis, F1 scores of all trained FCN
models on test data in each region are calculated to help analyze results from E1, E2, and E3
as shown in Figures 5, 7 and 9. Meanwhile, to fulfill a qualitative analysis, predicted results
on test1 data in each region along with their corresponding images and ground truth are
shown in Figures 6, 8 and 10 respectively. Also, for ease of visual interpretation of the
Figures, true HRBs are colored in gray, omission errors are colored in red, and commission
errors are colored in green. To answer three questions in our study, the results from E1, E2,
and E3 are analyzed separately as follows.
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3.1. Results and Analysis for E1

Figure 3 shows F1 scores of all trained FCN models on test data from 16 combinations
of region and season. Figure 5 shows HRBs detection results of test1 data from four
regions. Each result in E1 was predicted by the FCN model trained on data from the same
combination of region and season as the validation.

As can be inferred from Figure 5, results from FCN models trained and validated on
the same combination of season and region fluctuate among seasons and regions. The best
result is about 0.90, which is obtained in Zhengzhou in Spring. The worst is about 0.35,
which is obtained in Guangzhou in Summer. The accuracies of HRB detection results differ
in four regions, more specifically, taking seasonally average accuracy of HRB detection
results as the criteria, Guangzhou is about 0.55, and it is the worst compared to others.
Zhengzhou is slightly better than Beijing, which is about 0.8, and both of them are better
than Harbin, which is about 0.75. In terms of the season, the regional average accuracy of
HRB detection results varies a little; however, the seasonal change of accuracy varies a lot
among regions. The most distinct change is in summer, which is the worst for all regions.
Among the regions, the results of Summer in Zhengzhou, Beijing, and Harbin are nearly
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the same at about 0.70, which is slightly worse than those of other seasons. While the result
of summer in Guangzhou has an F1 score below 0.40, it has the largest decrease of accuracy
compared to that of other seasons. If the season can be chosen to get a yearly best result, F1
score of detected HRBs can reach above 0.75 for all regions with most of the errors on the
boundary of HRBs.
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From Figure 6, we can see similar results to those in Figure 5 in terms of overall
accuracy. Guangzhou has the lowest accuracy among the four regions. Summer has the
lowest accuracy among the four seasons. However, the HRB detection results of test1
among seasons in each region are similar to the corresponding ground truth in the spatial
distribution, and it is clear that the main differences among seasons lie on the boundary
of detected HRBs in all regions. Furthermore, the accuracy of results in Guangzhou in
summer does not look as worse as it is indicated in Figure 6 in terms of the location accuracy
of HRBs.
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The results from various combinations of region and season in E1 demonstrate the
effectiveness of FCN-based method except at outlining the exact boundary. The shortage
of the FCN model trained on a specific season in detecting the boundary of HRBs is
mainly caused by dynamic image features in different seasons. The seasonal change of
sun geometry makes the image features of HRBs change in a rather complex way, and this
becomes distinct with the increase of the height. Nevertheless, by considering the seasonal
change of image features, only one ground truth mask of HRBs is manually extracted for
each region and it is the same for four seasons in the region. Thus, the discrepancy on
boundaries between the predicted one and the ground truth is inevitable. Additionally, the
bad performance of trained FCN model in summer, especially in Guangdong, is attributed
to a near nadir sun geometry. Because a small solar zenith angle largely weakens the image
feature of HRBs, this decreases the detection accuracy. However, the accuracy does not
always increase with the solar zenith angle, as indicated by results from Harbin. Large
solar zenith angle can enlarge shadows and cause them to overlap with other buildings
and further increase the complexity of HRB detection.
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3.2. Results and Analysis for E2

Figure 7 shows F1 scores of all trained FCN models on test data from 16 combinations
of region and season. Also, results from E1 are included in Figure 7 for comparison.
Figure 8 shows HRBs detection results of test1 data of four regions. Given a specific region,
each result in E2 was predicted by the FCN model trained on seasonally combined samples
from the same region as the validation data. Here, for convenience of read, we refer to
the FCN model trained on samples from a specific combination of season and region as
the single season model, and the FCN model trained on seasonally combined data from a
specific region as the all seasons model.

As can be learned from Figure 7, single-season models are slightly better than their
corresponding all-season models in terms of overall accuracy in most cases. The differences
between single-season models and all-season models vary among four regions. More
specifically, the differences in Guangzhou are tiny in all four seasons; results in Beijing
follow the same trend in Guangzhou except a small amount of difference in fall; Zhengzhou
has the most distinct difference at about 0.2 in summer, while differences are small in other
seasons; the differences in fall and winter in Harbin are about 0.1. From Figures 6 and 8,
all-season models achieve similar results as single-season models. The results are similar to
the ground truth in terms of spatial distribution. The uncertainties also lie on the boundary
of detected HRBs in the results.
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Results from E2 demonstrate the plausibility to replace four single-season models by a
single all-season model in most of the regions in our study, although image features of HRBs
seasonally change in a rather complex way due to the consistent change of sun geometry
in a specific region. The advantage of the all-season model can be largely attributed to the
powerful feature learning ability of FCN. However, as the mechanism of FCN is still in
dark, it is hard to tell the shortage of the all-season model in some cases such as the Summer
in Zhengzhou. Meanwhile, the boundary uncertainty in the HRBs detection results cannot
be reduced through the combination of seasons. Similar reasons have been discussed in E1.

3.3. Results and Analysis for E3

Figure 9 shows F1 scores of all trained FCN models on test data from 16 combinations
of region and season. Also, results from E1 are included for comparison. Figure 10 shows
HRB detection results of test1 data of the four regions. The FCN model was trained on
seasonally and regionally combined data. Here for convenience, we refer to the FCN model
trained on seasonally and regionally combined data as the all-season and regions model.

As can be seen from Figure 9, single-season FCN models are close to all-seasons-
and-regions models in terms of overall accuracy except the results in Guangzhou. The
differences between the single season models and all seasons-and-regions models vary
slightly among the four regions. More specifically, the accuracy of the all-seasons-and-
regions model is consistently better than single-season models in Guangzhou, and the
average difference is about 0.05. Single-season models perform slightly better than the
corresponding all-seasons-and-regions models in Zhengzhou and Harbin, especially in
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spring and summer for Zhengzhou and in fall and winter in Harbin. In Beijing, the
difference fluctuates at a small range in summer and fall. From Figures 6, 8 and 10, the
all-seasons-and-regions models achieve similar results as the single-season model and the
all-season model do. Both of the results are similar to the ground truth in terms of spatial
distribution. The differences among the three group of results as indicated in Figure 9
cannot be easily observed through visual interpretation due to the spatial cluster property
of the HRBs. Nevertheless, one thing in common is that the uncertainties of the results
mostly lie on the boundary of detected HRBs.
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Results from E3 demonstrate the plausibility to replace 16 single season and region
models with a single all seasons and regions model in most of the cases in our study.
Compared with results from the all seasons model in E2, the all-seasons-and-regions model
is more accurate and stable at HRBs detection, no matter how image features of HRBs
seasonally and regionally change. The advantage of the all-seasons-and-regions model is
largely attributed to the powerful feature learning ability of the FCN model. Due to the
black-box property of the FCN model as has been discussed in E2, similar seasons hold
for the difficulty in explaining the shortage of the all-seasons-and-regions model in some
cases such as in Guangzhou. Meanwhile, the boundary uncertainty in the HRB detection
results cannot be reduced through the combination of seasons and regions in the training
sample preparation.



Remote Sens. 2021, 13, 4073 16 of 18

4. Discussion

Our results show that the performance of the FCN-based method fluctuates among
seasons and regions. The best F1 score can reach 0.9 in Zhengzhou in spring while the
worst is below 0.4 in Guangzhou in summer. Compared to the large change of F1 scores,
spatial patterns of the detected HRBs keep well for all seasons and regions, because most
errors in the results locate on the boundary of HRBs. The value of the detected HRBs is
high if the spatial pattern of HRBs is the key monitoring element. Furthermore, as a special
type of land use, the HRBs monitoring frequency is usually longer than a year. In this
sense, the newly proposed FCN-based method can achieve a yearly best F1 score of above
0.75 with most of the errors locating on the boundary of HRBs for regions with a large
diversity in culture, latitude, and landscape. These results largely support the effectiveness
of the method at the extraction of HRBs from Sentinel-2 data in large-scale regions if the
best season can be chosen.

Our results also indicate that the use of data in summer in inference will lead to
relatively poor results compared with data in other seasons. This may be mainly due to the
fact that image features of HRBs are weakened by a small solar zenith angle in summer in
the four selected regions. Thus, data in summer is not suggested for use in extracting HRBs
if the timing is not as important as accuracy. One related problem of the FCN-based method
is that it may be invalid in regions around the equator. In regions with very low latitude,
the solar zenith angle is always small and even approaching zero, thus features of HRBs in
the image will be nearly lost. The situation will be worse in underdeveloped regions where
HRBs are sparsely located in urban areas, and also are relatively small compared to those
in developed urban areas.

One unsolved problem in the study is the boundary effect of HRBs in the detection
results. This is mainly due to the seasonal change of shadow of HRBs in both length
and direction in urban areas caused by the change of sun geometry. Shadow works as an
important component in the formation of image features of HRBs in our study. As HRBs are
defined to be a spatial cluster, the change of shadows inside a cluster may not bring trouble
to the HRBs detection given there are still enough image features left for learning. But
shadows on the edge of the cluster can cause uncertainties in both training and inference
stages for the FCN model. This is especially obvious when it comes to detect high and
isolated buildings. One way to handle the problem may be by revising the definition of
HRBs in a more rigorous way. The revised definition should be affected by shadows at a
minimum level, independent of seasons and practical for HRB samples collection.

5. Conclusions

In this study, we designed three groups of experiments to empirically validate the
ability of the newly proposed FCN-based method at HRB detection under various seasonal
and spatial conditions. Results show that the FCN model trained on seasonally and
regionally combined samples can achieve similar even better overall accuracy than that
of the model trained on data from a specific combination of season and region. Our
results support the potential to build a powerful FCN model on larger training samples for
operational monitoring HRBs at the regional level even country scale.

One direction is to extend the FCN model on multi-temporal satellite data to track
the changes of HRBs historically. The temporal HRBs at a large scale in a long time series
will be very useful in many areas such as urban climate and urban planning, to name a
few. However, since Sentinel-2 was put into operational work in 2016, we need to resort to
other satellite data with a long history. The series of Landsat dating back to the 1980s can
track urban development globally in the past 40 years [16]. One challenge is that the sensor
setup is different between Landsat and Sentinel-2; more specifically, it is not clear whether
the combination of the 15 m panchromatic data and the 30 m multispectral data in Landsat
can provide enough image features as the Sentinel-2 data do in our study. Furthermore,
the consistency of the detected HRB results in the time series, especially those lying on
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the boundary, needs to be handled in a proper way [15]. These are open questions to be
studied in future work.

Author Contributions: B.Z. and L.L. had the original idea for the study. J.Z. and G.C. were responsi-
ble for data processing. L.L. conceived the experiments and carried out the analysis with assistance
from J.Z.; L.L. structured and drafted the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant
number 41971327).

Data Availability Statement: Not applicable.

Acknowledgments: We thank Zhi Yan for his work on the FCN model development during his stay
as a visiting graduate student in RADI, CAS. Also, L.L. thanks Wenzhi Liao from Ghent University,
Belgium for the meaningful discussion on HRBs in early 2019 in Beijing. We also thank Denghui Fan
in AIRCAS, CAS for his help in preparing the Figures in the revision.

Conflicts of Interest: The authors declare no conflict of interest.

References
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